Gov 2002: 13. Dynamic Causal
Inference

Matthew Blackwell
December 19, 2015

1/33



1. Time-varying treatments

2. Marginal structural models

2/33



1/ Time-varying
treatments



Time-varying treatments

= Sometimes we want to know the effect of a treatment that
varies over time.
= Example: negative advertising
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Candidate decides whether to go negative based on polling.
Going negative affects future polling.

Which affects future negativity decisions.

Outcome: final voteshare.

Should we control for polling?
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Overarching themes

= Many possible effects to estimate!
= Conditioning methods (matching, regression) can't be used in

an obvious way.
= Weighting methods will be useful, but highly sensitive.

es



Notation

= D, = (D;,...,D;,) is the partial history of treatment up to
time 1.

= X, is the partial history of covariates up to 7.

= d, and x, refer to specific values these vectors can take.

L] Ql = (Dil""’DiT)' same fOI' Xl
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Example

= Single-shot causal inference:

confounder
incumbency
negativity vote share
action outcome

= Dynamic causal inference:
time-varying confounder

poll, —— poll,

| —4— N

negativity, —— negativity, —— vote share

treatment history outcome



Potential outcomes

= Potential outcomes can be functions of the entire treatment
history: Y;(d).

= Two-period example: Y;(d;,d,).

= These regimes are static:

» d is a fixed sequence of negative/positive decisions.
> No reaction to changing environment.
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Treatment regime

Definition: Treatment regime

A treatment regime is a mapping, g(-), from the history of
time-varying covariates, x, to a treatment history, d, that

dy = g,(x) = 8(x,).

= Treatment regimes are rules that dictate what
actions/treatments units should take given a certain covariate
history.

= We enforce a no time-traveling assumption.

= Fairly complicated, but exactly the kind of effects we are often
interested in.

= Static histories, d, are (simple) treatment regimes.
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Treatment regimes and potential
outcomes

= Y;(g) is the potential outcome under regime g.

= Consistency assumption connects the potential outcomes and
the observed data:

Y; =Y (g) ifD, =gX).

= This says that if a unit’'s observed history is equal to the
perscription of the treatment regime, then the observed
outcome equals the potential outcome under that regime.
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Estimands

= We would like to estimate the effects of these regimes.
Something like the follwing:

7(g.8") = E[Yi(g) - Yi(¢")]

= |n medical studies, the goal is often to estimate the “optimal”
regime, which is the following:

g* = argmax E[Y;(g)],
g

= Here, we are trying to find the regime that maximizes the
outcome (assuming the outcome is beneficial).

= Either requires us to estimate the mean of the potential
outcome under a given regime. How do we do that?
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Sequential ignorability

= Sequential ignorability will help us identify effects:
Y(g) L DX, =x.,D, | =g_i(x, )

= Similar to a sequential experiment, where the randomization
can depend on the past.

= Positivity if P[D, | =d,_,,X, =x,]>0, then
PID, = dX,=X,D,  =d,_,1>0

=i=Il

= If a covariate/treatment history is reachable, then any
treatment is possible conditonal on that history.
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Sequential ignorability

T

polls; ——» negativity; —» polls, —» negativity, —» vote share

~_
Holds

No omitted variables in each period
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g-computation

= How to get to marginal mean of Y;(g) in terms of observed Y,;?
= Jamie Robins's g-computational formula:

E[Y(g)]
T
:fx’...fon[Yi|)_(i=£,Qi=g()_c)]n{f(x| x D, = gii(x,_))dx;}

7=0
= Right hand side here only has observeable quantities.

» E[Y)|X, = x,D, = g(x)] is the mean outcome for people
following regime g conditional on the history of covariates.

> f(lexj_1 X 1,DJ ; g()_cjfl)) is the density of the
covariates at time j, conditional on the past.
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g-computation example

}. Y;(1,1)
@,9\ D;
\ead T hor———e ¥,(1,0)

Xi>
neg Y;(1,1
«e® % . /0 (1, 1)
13
T por——e 7(1,0)

%. Y;(0,1)
0 5/9) _ Di =
N et T bos e ¥1(0,0)
Xio

Dy

E[Y;(0,0)] =E[Y,|D; = (0,0),X,, = 1] x P[X,, = 1|D;; = 0]
+ E[Y,|D; = (0,0),X,, = 0] x P[X;, = 0|D;; =0]
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Two-period g-computation

IE[Y,-(0,0)] :]E[Yi|Di =1(0,0),X;, = 1] x P[XiZ = 1|D;; = 0]
+ E[Y;ID; = (0,0), X, = 0] x P[X;, = 0ID;; = 0]

E[Y;(1,1)] =E[Y;ID; = (1,1),X;5 = 1] x P[X;, = 1|D;; = 1]
+ E[Y;D; = (1,1), X5 = 0] x P[X;, = 0|D;; = 1]

= Implies that E[Y;(1,1)] — E[Y;(0,0)] is not just within strata
effects averaged over the distribution of the strata.

= Marginal means must be estimated separately unless first
period treatment is the same.
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Complications

= As number of time periods grows or with continuous
covariates, stratification becomes infeasible.

= Continuous covariates: requires integrating over their
distribution.

= A couple of approaches:

» Model-based: write down models for outcome, all time-varying
covariates and use MLE/Bayesian methods.

» Structural nested models: reparameterize the likelihood to fix
some problems with directly using g-computation.

» Weighting approach: avoid conditioning on time-varying
covariates by weighting them away.
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2/ Marginal
structural models



Marginal structural models

= Want to deal with time-varying confounders, but we don't
want to model them.

= |deally, we would run a regression-type model and read off
coefficients as causal.

= A marginal structural model (MSM) is a model for the
marginal mean of the potential outcome for a given treatment
history:
ELY,(d)] = h(d; p)

= Here & is a link function and B are a set of parameters.
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Curse of temporality

= With a binary treatment variable, there are 27 possible
treatment histories.

» T = 2 has 4 possible histories
» T =10 has 1,024 possible histories
= Single-shot case (T = 1) ~» non-parametrically estimate
E[Y;(1)] and E[Y;(0)] using simple means.

= Dynamic case (T = 10) ~~ very few units following any
treatment history.

= Need a model to say what features of the treatment history
are relevant to the potential outcome.
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Models to reduce dimensionality

= How should we model this? It could be that the number of
treated periods is all that matters:

T
E[Y{(d)] = o+ B1 ) d,
=1

= Or it could be that the effect varies over time:

T/2

T
E[Y;d)]=Bo+B1 Y d+ B> Y 4,
=1

t=T/2+1

= QOur model restricts certain treatment histories to have the
same mean.

» Could be wrong!
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Regression/matching?

= Can we use regression or matching to estimate the
parameters? Unfortunately not.

= One model conditions on the time-varying confounders
(polling):

ElY;|D;1,Dj5, X;5] = ag + a1Djy + axDjp + a3Xj

» This model gets rid of the omitted variable bias for D;, but
induces posttreatment bias for D;

= Maybe we omit polls and estimate this model:

E[Y;|D;1, D] = ag + a1 Dy + axDjp

» Avoids posttreatment bias, induced omitted variable bias
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Time-varying covariates

= Basic message: time-varying covariates are dangerous when
you have:

» D;, and D;,_; in your regression.
» A summary of D, in your regression.
= TVCs are both pre- and post-treatment in this case.

» If the effect of negativity early in the race flows through polls
and we condition on polls, this is going to underestimate the
effect of earlier negativity.

= Similar issue to the intermediate confounders in
mediation/direct effects.

= Can avoid the posttreamtent bias via weighting approach.
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Ideal, balanced sample

stay positive when leading

go negative when leading

go negative when trailing

stay positive when trailing

polls, | negativity, —# polls, negativity, —» vote share

cor(polls,, negativity, ) = 0
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Messy real world data

stay positive
when leading

go negative when leading

go negative
when trailing

polls, —‘b negativity; — polls, —» negativity, —» vote share

cor(polls,, negativity ) # O
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Fixing an imbalance sample

weights

stay positive
when leading

stay positive when leading

go negative when leading

go negative
when trailing

go negative when trailing

stay positive when trailing

polls; <negativity; <polls, %’s\/}gﬁa polls; Yegativity; <polls, yfhegativity, %s\ﬁ;tree
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IPTW with single-shot treatment

= How do we weight?

= With a single-shot treatment, we can weight by the inverse of
the propensity score:

W D, 1-D;

‘= PID; = X1 * PD; = 1IX;]

= With a dynamic treatment, the propensity scores are more
complicated because the treatment is more complicated.
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IPTW with time-varying treatment

= We have to weight by the probability of observing the entire
history: P[D.|X_].
= Easiest to build up over time using factorization:
P(D,X;) =P(D;11X;1) x P(Dj2|D;y, X ;)

x P(Di3|2i2’)—(i3) X eee X P(DiTlgi,T—l’)—(iT)

= Thus, we can create weights like so:

T

w; =[] wa

t=1

= Here, the weight in period ¢ is the probability of recieving
treatment at time ¢ conditional on the past:

1
Wit = prD,D, . X,

—it—1>=—it
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Weights

T
W; = 1_[ Wi
=1
W = 1
TR L

= Weight unit by the probability of receiving the treatment
history they did, conditional on the past.

= Two-period example:

» Race i is positive in the first period, then they are trailing,
then they negative later in the race. The weights we would
calculate would be:

S 1
*~ P(pos;) P(neg,ltrail,pos,)’
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Why weighting works

= Why does the weighting work?

= Essentially replaces D;, with a version that is unaffected by
time-varying confouders

= Reweighted D;, still has the same effect on Y;

L

= In reweighted data, X;, is no longer a confounder, don't have
to control for it.

» Weighting takes care of omitted variable bias

» Leave X;; out of the outcome model to remove posttreatment
bias.
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Weighting to achieve balance

Race polls; negativity;  vote share
1 trailing negative 0.45
1 trailing negative 0.45
1 trailing negative 0.45
2 trailing negative 0.45
2 trailing negative 0.45
2 trailing negative 0.45
3 trailing positive 0.4
Race polls; negativity;  vote share 3 trailing positive 0.4
e 3 3 trailin positive 0.4
1 trailing negative 0.45 3 trailinz positive 0.4
2 trailing negative 0.45 WEIghtS 3 trailing positive 0.4
3 trailing positive 0.4 — —» 3 trailing positive 0.4
4 leading negative 0.6 : :eaji"g T gg
. 900 eading negative B
5 leading PEIHENE 0.55 4 leading negative 0.6
6 leading positive 0.55 4 leading negative 0.6
4 leading negative 0.6
4 leading negative 0.6
5 leading positive 0.55
5 leading positive 0.55
trailing & negative > trailing & positive 9 [y pesiice 0EH
6 leading positive 0.55
6 leading positive 0.55
6 leading positive 0.55

trailing & negative = trailing & positive
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Estimating the weights

= Need to estimate P[D;|D,, ,,X, ] for all time periods

» Easy, but not robust: logit models.
» More complicated, but robust: Covariate Balancing Propensity
Score (Imai, Ratkovic)

= Hard to include all past treatments, confoudners. Possible
strategies:

» Last period confounders, perhaps a few lags for important
confounders.

» Use GAMs to smooth functional form for key variables.

» Last few lags of treatment and/or a summary of cumulative
treatment.

» Time trend in 7.

= Use the cumulative product of predicted values from this
model to get weights.
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Outcome MSM

T
ETY; ,30+ﬁ1(ZD)+,BZZi

T-5
T
+ B3Z; (Z D; ) + BaD,y
T-5
+ :BSZil_),'T_é + ﬁ6Xi

= Model from Blackwell (2014)

» Allows for different effects of negativity early and late in
campaign.

» Interaction with baseline covariate, Z;, incumbency status.

» Controls for other baseline covariates.

= Baseline covariates are ok to include—never posttreatment.

= Bootstrap for SEs.
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