Gov 2002: 13. Dynamic Causal Inference

Matthew Blackwell

December 19, 2015

- 1. Time-varying treatments
- 2. Marginal structural models

1/ Time-varying treatments

Time-varying treatments

- Sometimes we want to know the effect of a treatment that varies over time.
- Example: negative advertising
 - Candidate decides whether to go negative based on polling.
 - Going negative affects future polling.
 - Which affects future negativity decisions.
 - Outcome: final voteshare.
 - Should we control for polling?

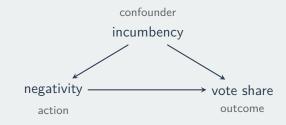
Overarching themes

- Many possible effects to estimate!
- Conditioning methods (matching, regression) can't be used in an obvious way.
- Weighting methods will be useful, but highly sensitive.

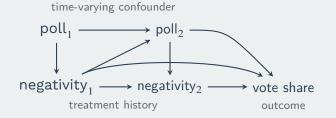
Notation

- $\underline{D}_{it} = (D_{i1}, \dots, D_{it})$ is the partial history of treatment up to time *t*.
- \underline{X}_{it} is the partial history of covariates up to t.
- \underline{d}_t and \underline{x}_t refer to specific values these vectors can take.
- $\underline{D}_i = (D_{i1}, \dots, D_{iT})$, same for \underline{X}_i

Single-shot causal inference:



Dynamic causal inference:



Potential outcomes

- Potential outcomes can be functions of the entire treatment history: Y_i(<u>d</u>).
- Two-period example: $Y_i(d_1, d_2)$.
- These regimes are static:
 - ▶ <u>d</u> is a fixed sequence of negative/positive decisions.
 - No reaction to changing environment.

Treatment regime

Definition: Treatment regime

A treatment regime is a mapping, $g(\cdot)$, from the history of time-varying covariates, \underline{x} , to a treatment history, \underline{d} , that $d_t = g_t(\underline{x}) = g_t(\underline{x}_t)$.

- Treatment regimes are rules that dictate what actions/treatments units should take given a certain covariate history.
- We enforce a no time-traveling assumption.
- Fairly complicated, but exactly the kind of effects we are often interested in.
- Static histories, <u>d</u>, are (simple) treatment regimes.

Treatment regimes and potential outcomes

- $Y_i(g)$ is the potential outcome under regime g.
- Consistency assumption connects the potential outcomes and the observed data:

$$Y_i = Y_i(g)$$
 if $\underline{D}_i = g(\underline{X}_i)$.

 This says that if a unit's observed history is equal to the perscription of the treatment regime, then the observed outcome equals the potential outcome under that regime.

Estimands

• We would like to estimate the effects of these regimes. Something like the follwing:

$$\tau(g,g') = \mathbb{E}[Y_i(g) - Y_i(g')]$$

 In medical studies, the goal is often to estimate the "optimal" regime, which is the following:

$$g^* = \arg\max_g \mathbb{E}[Y_i(g)],$$

- Here, we are trying to find the regime that maximizes the outcome (assuming the outcome is beneficial).
- Either requires us to estimate the mean of the potential outcome under a given regime. How do we do that?

Sequential ignorability

Sequential ignorability will help us identify effects:

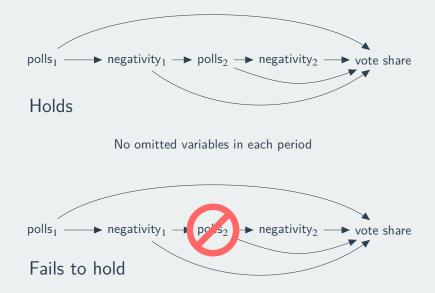
$$Y(g) \perp D_t | \underline{X}_t = \underline{x}_t, \underline{D}_{t-1} = g_{t-1}(\underline{x}_{t-1})$$

- Similar to a sequential experiment, where the randomization can depend on the past.
- Positivity if $\mathbb{P}[\underline{D}_{t-1} = \underline{d}_{t-1}, \underline{X}_t = \underline{x}_t] > 0$, then

$$\mathbb{P}[D_t = d_t | \underline{X}_t = \underline{X}_t, \underline{D}_{t-1} = \underline{d}_{t-1}] > 0$$

• If a covariate/treatment history is reachable, then any treatment is possible conditonal on that history.

Sequential ignorability



g-computation

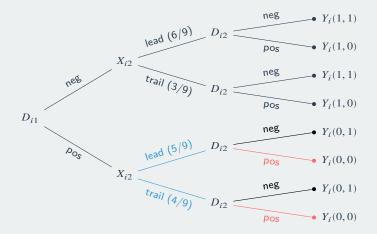
E[Y(g)]

- How to get to marginal mean of Y_i(g) in terms of observed Y_i?
- Jamie Robins's g-computational formula:

 $= \int_{x_t} \cdots \int_{x_0} E[Y_i | \underline{X}_i = \underline{x}, \underline{D}_i = g(\underline{x})] \prod_{j=0}^T \left\{ f(x_j | \underline{X}_{j-1} = \underline{x}_{j-1}, \underline{D}_{j-1} = g_{j-1}(\underline{x}_{j-1})) dx_j \right\}$

- Right hand side here only has observeable quantities.
 - ► E[Y_i|X_i = x, D_i = g(x)] is the mean outcome for people following regime g conditional on the history of covariates.
 - $f(x_j | \underline{X}_{j-1} = \underline{x}_{j-1}, \underline{D}_{j-1} = g(\underline{x}_{j-1}))$ is the density of the covariates at time *j*, conditional on the past.

g-computation example



$$\begin{split} \mathbb{E}[Y_i(0,0)] = \mathbb{E}[Y_i|D_i = (0,0), X_{i2} = 1] \times \mathbb{P}[X_{i2} = 1|D_{i1} = 0] \\ + \mathbb{E}[Y_i|D_i = (0,0), X_{i2} = 0] \times \mathbb{P}[X_{i2} = 0|D_{i1} = 0] \end{split}$$

Two-period g-computation

 $\mathbb{E}[Y_i(0,0)] = \mathbb{E}[Y_i|D_i = (0,0), X_{i2} = 1] \times \mathbb{P}[X_{i2} = 1|D_{i1} = 0] \\ + \mathbb{E}[Y_i|D_i = (0,0), X_{i2} = 0] \times \mathbb{P}[X_{i2} = 0|D_{i1} = 0]$

$$\begin{split} \mathbb{E}[Y_i(1,1)] = \mathbb{E}[Y_i|D_i = (1,1), X_{i2} = 1] \times \mathbb{P}[X_{i2} = 1|D_{i1} = 1] \\ + \mathbb{E}[Y_i|D_i = (1,1), X_{i2} = 0] \times \mathbb{P}[X_{i2} = 0|D_{i1} = 1] \end{split}$$

- Implies that $\mathbb{E}[Y_i(1,1)] \mathbb{E}[Y_i(0,0)]$ is not just within strata effects averaged over the distribution of the strata.
- Marginal means must be estimated separately unless first period treatment is the same.

Complications

- As number of time periods grows or with continuous covariates, stratification becomes infeasible.
- Continuous covariates: requires integrating over their distribution.
- A couple of approaches:
 - Model-based: write down models for outcome, all time-varying covariates and use MLE/Bayesian methods.
 - Structural nested models: reparameterize the likelihood to fix some problems with directly using g-computation.
 - Weighting approach: avoid conditioning on time-varying covariates by weighting them away.

2/ Marginal structural models

Marginal structural models

- Want to deal with time-varying confounders, but we don't want to model them.
- Ideally, we would run a regression-type model and read off coefficients as causal.
- A marginal structural model (MSM) is a model for the marginal mean of the potential outcome for a given treatment history:

$$E[Y_i(\underline{d})] = h(\underline{d};\beta)$$

• Here h is a link function and β are a set of parameters.

Curse of temporality

- With a binary treatment variable, there are 2^T possible treatment histories.
 - T = 2 has 4 possible histories
 - T = 10 has 1,024 possible histories
- Single-shot case $(T = 1) \rightsquigarrow$ non-parametrically estimate $E[Y_i(1)]$ and $E[Y_i(0)]$ using simple means.
- Dynamic case (T = 10) → very few units following any treatment history.
- Need a model to say what features of the treatment history are relevant to the potential outcome.

Models to reduce dimensionality

• How should we model this? It could be that the number of treated periods is all that matters:

$$E[Y_i(\underline{d})] = \beta_0 + \beta_1 \sum_{t=1}^T d_t$$

• Or it could be that the effect varies over time:

$$E[Y_i(\underline{d})] = \beta_0 + \beta_1 \sum_{t=1}^{T/2} d_t + \beta_2 \sum_{t=T/2+1}^{T} d_t$$

- Our model restricts certain treatment histories to have the same mean.
 - Could be wrong!

Regression/matching?

- Can we use regression or matching to estimate the parameters? Unfortunately not.
- One model conditions on the time-varying confounders (polling):

$$E[Y_i|D_{i1}, D_{i2}, X_{i2}] = \alpha_0 + \alpha_1 D_{i1} + \alpha_2 D_{i2} + \alpha_3 X_{i2}$$

- ► This model gets rid of the omitted variable bias for D_{i2} but induces posttreatment bias for D_{i1}
- Maybe we omit polls and estimate this model:

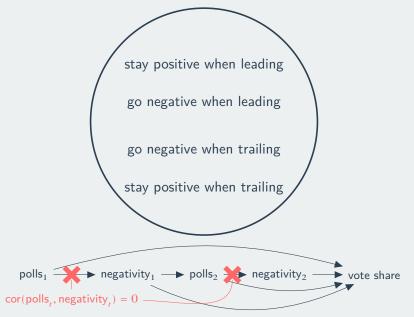
$$E[Y_i|D_{i1}, D_{i2}] = \alpha_0 + \alpha_1 D_{i1} + \alpha_2 D_{i2}$$

Avoids posttreatment bias, induced omitted variable bias

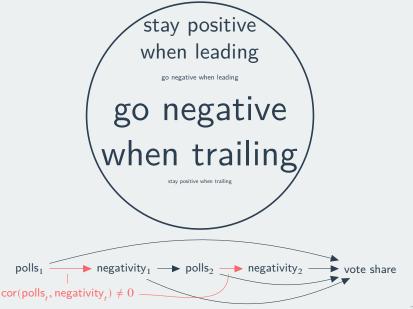
Time-varying covariates

- Basic message: time-varying covariates are dangerous when you have:
 - D_{it} and $D_{i,t-1}$ in your regression.
 - A summary of \underline{D}_{it} in your regression.
- TVCs are both pre- and post-treatment in this case.
 - If the effect of negativity early in the race flows through polls and we condition on polls, this is going to underestimate the effect of earlier negativity.
- Similar issue to the intermediate confounders in mediation/direct effects.
- Can avoid the posttreamtent bias via weighting approach.

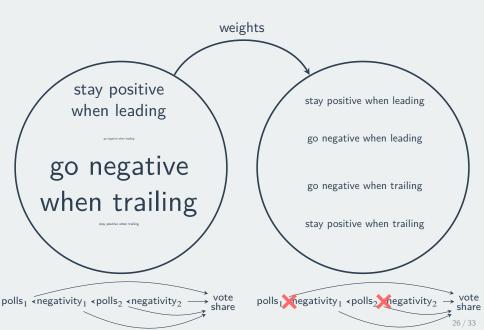
Ideal, balanced sample



Messy real world data



Fixing an imbalance sample



IPTW with single-shot treatment

- How do we weight?
- With a single-shot treatment, we can weight by the inverse of the propensity score:

$$W_i = \frac{D_i}{\mathbb{P}[D_i = 1|X_i]} + \frac{1 - D_i}{\mathbb{P}[D_i = 1|X_i]}$$

• With a dynamic treatment, the propensity scores are more complicated because the treatment is more complicated.

IPTW with time-varying treatment

- Easiest to build up over time using factorization:

$$\begin{split} \mathbb{P}(\underline{D}_i | \underline{X}_i) = & \mathbb{P}(D_{i1} | X_{i1}) \times \mathbb{P}(D_{i2} | D_{i1}, \underline{X}_{i2}) \\ & \times \mathbb{P}(D_{i3} | \underline{D}_{i2}, \underline{X}_{i3}) \times \cdots \times \mathbb{P}(D_{iT} | \underline{D}_{i,T-1}, \underline{X}_{iT}) \end{split}$$

Thus, we can create weights like so:

$$W_i = \prod_{t=1}^T W_{ii}$$

 Here, the weight in period t is the probability of recieving treatment at time t conditional on the past:

$$W_{it} = \frac{1}{\Pr(D_{it}|\underline{D}_{it-1}, \underline{X}_{it})}.$$

Weights

$$W_{i} = \prod_{t=1}^{T} W_{it}$$
$$W_{it} = \frac{1}{\Pr(D_{it}|\underline{D}_{it-1}, \underline{X}_{it})}$$

- Weight unit by the probability of receiving the treatment history they did, conditional on the past.
- Two-period example:
 - Race *i* is positive in the first period, then they are trailing, then they negative later in the race. The weights we would calculate would be:

$$W_i = \frac{1}{\mathbb{P}(\mathsf{pos}_1)} \cdot \frac{1}{\mathbb{P}(\mathsf{neg}_2 | \mathsf{trail}, \mathsf{pos}_1)}$$

Why weighting works

- Why does the weighting work?
- Essentially replaces D_{it} with a version that is unaffected by time-varying confouders
- Reweighted D_{it} still has the same effect on Y_i
- In reweighted data, X_{it} is no longer a confounder, don't have to control for it.
 - Weighting takes care of omitted variable bias
 - ► Leave *X_{it}* out of the outcome model to remove posttreatment bias.

Weighting to achieve balance

					Race	$polls_1$	$negativity_1$	vote share
					1	trailing	negative	0.45
					1	trailing	negative	0.45
					1	trailing	negative	0.45
					2	trailing	negative	0.45
					2	trailing	negative	0.45
					2	trailing	negative	0.45
					3	trailing	positive	0.4
Race	polls ₁	negativity ₁	vote share		3	trailing	positive	0.4
1	trailing	negative	0.45	-	3	trailing	positive	0.4
	0	<u> </u>			3	trailing	positive	0.4
2	trailing	negative	0.45	Weights	3	trailing	positive	0.4
3	trailing	positive	0.4		3	trailing	positive	0.4
4	leading	negative	0.6		4	leading	negative	0.6
	0				4	leading	negative	0.6
5	leading	positive	0.55		4	leading	negative	0.6
6	leading	positive	0.55		4	leading	negative	0.6
		1			4	leading	negative	0.6
					4	leading	negative	0.6
					5	leading	positive	0.55
					5	leading	positive	0.55
trailing & negative > trailing & positive					5	leading	positive	0.55
					6	leading	positive	0.55

6

6

leading

leading

trailing & negative = trailing & positive $\frac{31/33}{31}$

positive

positive

0.55

0.55

Estimating the weights

- Need to estimate $\mathbb{P}[D_{it}|\underline{D}_{i,t-1}, \underline{X}_{it}]$ for all time periods
 - Easy, but not robust: logit models.
 - More complicated, but robust: Covariate Balancing Propensity Score (Imai, Ratkovic)
- Hard to include all past treatments, confoudners. Possible strategies:
 - Last period confounders, perhaps a few lags for important confounders.
 - Use GAMs to smooth functional form for key variables.
 - Last few lags of treatment and/or a summary of cumulative treatment.
 - Time trend in *t*.
- Use the cumulative product of predicted values from this model to get weights.

Outcome MSM

$$\begin{split} E[Y_i(\underline{d})] &= \beta_0 + \beta_1 \left(\sum_{T=5}^T D_{it} \right) + \beta_2 Z_i \\ &+ \beta_3 Z_i \left(\sum_{T=5}^T D_{it} \right) + \beta_4 \underline{D}_{iT-6} \\ &+ \beta_5 Z_i \underline{D}_{iT-6} + \beta_6 X_i \end{split}$$

- Model from Blackwell (2014)
 - Allows for different effects of negativity early and late in campaign.
 - Interaction with baseline covariate, Z_i , incumbency status.
 - Controls for other baseline covariates.
- Baseline covariates are ok to include—never posttreatment.
- Bootstrap for SEs.