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Time-varying treatments

• Sometimes we want to know the effect of a treatment that
varies over time.

• Example: negative advertising
▶ Candidate decides whether to go negative based on polling.
▶ Going negative affects future polling.
▶ Which affects future negativity decisions.
▶ Outcome: final voteshare.
▶ Should we control for polling?
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Overarching themes

• Many possible effects to estimate!
• Conditioning methods (matching, regression) can’t be used in

an obvious way.
• Weighting methods will be useful, but highly sensitive.
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Notation

• 𝐷𝑖𝑡 = (𝐷𝑖1, … , 𝐷𝑖𝑡) is the partial history of treatment up to
time 𝑡.

• 𝑋 𝑖𝑡 is the partial history of covariates up to 𝑡.
• 𝑑𝑡 and 𝑥𝑡 refer to specific values these vectors can take.
• 𝐷𝑖 = (𝐷𝑖1, … , 𝐷𝑖𝑇 ), same for 𝑋 𝑖
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Example
• Single-shot causal inference:

negativity
action

incumbency
confounder

vote share
outcome

• Dynamic causal inference:

poll1

negativity1

poll2

negativity2 vote share
treatment history outcome

time-varying confounder
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Potential outcomes

• Potential outcomes can be functions of the entire treatment
history: 𝑌𝑖(𝑑).

• Two-period example: 𝑌𝑖(𝑑1, 𝑑2).
• These regimes are static:

▶ 𝑑 is a fixed sequence of negative/positive decisions.
▶ No reaction to changing environment.
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Treatment regime

Definition: Treatment regime
A treatment regime is a mapping, 𝑔(⋅), from the history of
time-varying covariates, 𝑥, to a treatment history, 𝑑, that
𝑑𝑡 = 𝑔𝑡(𝑥) = 𝑔𝑡(𝑥𝑡).

• Treatment regimes are rules that dictate what
actions/treatments units should take given a certain covariate
history.

• We enforce a no time-traveling assumption.
• Fairly complicated, but exactly the kind of effects we are often

interested in.
• Static histories, 𝑑, are (simple) treatment regimes.
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Treatment regimes and potential
outcomes

• 𝑌𝑖(𝑔) is the potential outcome under regime 𝑔.
• Consistency assumption connects the potential outcomes and

the observed data:

𝑌𝑖 = 𝑌𝑖(𝑔) if 𝐷𝑖 = 𝑔(𝑋 𝑖).

• This says that if a unit’s observed history is equal to the
perscription of the treatment regime, then the observed
outcome equals the potential outcome under that regime.
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Estimands

• We would like to estimate the effects of these regimes.
Something like the follwing:

𝜏(𝑔, 𝑔′) = 𝔼[𝑌𝑖(𝑔) − 𝑌𝑖(𝑔′)]

• In medical studies, the goal is often to estimate the “optimal”
regime, which is the following:

𝑔∗ = arg max
𝑔

𝔼[𝑌𝑖(𝑔)],

• Here, we are trying to find the regime that maximizes the
outcome (assuming the outcome is beneficial).

• Either requires us to estimate the mean of the potential
outcome under a given regime. How do we do that?
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Sequential ignorability

• Sequential ignorability will help us identify effects:

𝑌(𝑔) ⟂⟂ 𝐷𝑡 |𝑋𝑡 = 𝑥𝑡, 𝐷𝑡−1 = 𝑔𝑡−1(𝑥𝑡−1)

• Similar to a sequential experiment, where the randomization
can depend on the past.

• Positivity if ℙ[𝐷𝑡−1 = 𝑑𝑡−1, 𝑋 𝑡 = 𝑥𝑡] > 0, then

ℙ[𝐷𝑡 = 𝑑𝑡 |𝑋𝑡 = 𝑋 𝑡, 𝐷𝑡−1 = 𝑑𝑡−1] > 0

• If a covariate/treatment history is reachable, then any
treatment is possible conditonal on that history.
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Sequential ignorability

No omitted variables in each period

negativity1 negativity2polls2polls1 vote share

Holds

negativity1 negativity2polls2polls1 vote share

Fails to hold
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g-computation

• How to get to marginal mean of 𝑌𝑖(𝑔) in terms of observed 𝑌𝑖?
• Jamie Robins’s g-computational formula:

𝐸[𝑌(𝑔)]

= ∫
𝑥𝑡

⋯ ∫
𝑥0

𝐸[𝑌𝑖|𝑋𝑖 = 𝑥, 𝐷𝑖 = 𝑔(𝑥)]
𝑇

∏
𝑗=0

{𝑓 (𝑥𝑗 |𝑋𝑗−1 = 𝑥𝑗−1, 𝐷𝑗−1 = 𝑔𝑗−1(𝑥𝑗−1))𝑑𝑥𝑗}

• Right hand side here only has observeable quantities.
▶ 𝐸[𝑌𝑖 |𝑋𝑖 = 𝑥, 𝐷𝑖 = 𝑔(𝑥)] is the mean outcome for people

following regime 𝑔 conditional on the history of covariates.
▶ 𝑓 (𝑥𝑗 |𝑋𝑗−1 = 𝑥𝑗−1, 𝐷𝑗−1 = 𝑔(𝑥𝑗−1)) is the density of the

covariates at time 𝑗, conditional on the past.
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g-computation example

𝐷𝑖1

𝑋𝑖2

𝐷𝑖2
𝑌𝑖(0, 0)pos

𝑌𝑖(0, 1)negtrail (4/9)

𝐷𝑖2
𝑌𝑖(0, 0)pos

𝑌𝑖(0, 1)neg

lead (5/9)pos

𝑋𝑖2

𝐷𝑖2
𝑌𝑖(1, 0)pos

𝑌𝑖(1, 1)negtrail (3/9)

𝐷𝑖2
𝑌𝑖(1, 0)pos

𝑌𝑖(1, 1)neg

lead (6/9)

neg

𝔼[𝑌𝑖(0, 0)] =𝔼[𝑌𝑖|𝐷𝑖 = (0, 0), 𝑋𝑖2 = 1] × ℙ[𝑋𝑖2 = 1|𝐷𝑖1 = 0]
+ 𝔼[𝑌𝑖|𝐷𝑖 = (0, 0), 𝑋𝑖2 = 0] × ℙ[𝑋𝑖2 = 0|𝐷𝑖1 = 0]

15 / 33



Two-period g-computation

𝔼[𝑌𝑖(0, 0)] =𝔼[𝑌𝑖|𝐷𝑖 = (0, 0), 𝑋𝑖2 = 1] × ℙ[𝑋𝑖2 = 1|𝐷𝑖1 = 0]
+ 𝔼[𝑌𝑖|𝐷𝑖 = (0, 0), 𝑋𝑖2 = 0] × ℙ[𝑋𝑖2 = 0|𝐷𝑖1 = 0]

𝔼[𝑌𝑖(1, 1)] =𝔼[𝑌𝑖|𝐷𝑖 = (1, 1), 𝑋𝑖2 = 1] × ℙ[𝑋𝑖2 = 1|𝐷𝑖1 = 1]
+ 𝔼[𝑌𝑖|𝐷𝑖 = (1, 1), 𝑋𝑖2 = 0] × ℙ[𝑋𝑖2 = 0|𝐷𝑖1 = 1]

• Implies that 𝔼[𝑌𝑖(1, 1)] − 𝔼[𝑌𝑖(0, 0)] is not just within strata
effects averaged over the distribution of the strata.

• Marginal means must be estimated separately unless first
period treatment is the same.
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Complications

• As number of time periods grows or with continuous
covariates, stratification becomes infeasible.

• Continuous covariates: requires integrating over their
distribution.

• A couple of approaches:
▶ Model-based: write down models for outcome, all time-varying

covariates and use MLE/Bayesian methods.
▶ Structural nested models: reparameterize the likelihood to fix

some problems with directly using g-computation.
▶ Weighting approach: avoid conditioning on time-varying

covariates by weighting them away.
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2/ Marginal
structural models
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Marginal structural models

• Want to deal with time-varying confounders, but we don’t
want to model them.

• Ideally, we would run a regression-type model and read off
coefficients as causal.

• A marginal structural model (MSM) is a model for the
marginal mean of the potential outcome for a given treatment
history:

𝐸[𝑌𝑖(𝑑)] = ℎ(𝑑; 𝛽)
• Here ℎ is a link function and 𝛽 are a set of parameters.
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Curse of temporality

• With a binary treatment variable, there are 2𝑇 possible
treatment histories.

▶ 𝑇 = 2 has 4 possible histories
▶ 𝑇 = 10 has 1,024 possible histories

• Single-shot case (𝑇 = 1) ⇝ non-parametrically estimate
𝐸[𝑌𝑖(1)] and 𝐸[𝑌𝑖(0)] using simple means.

• Dynamic case (𝑇 = 10) ⇝ very few units following any
treatment history.

• Need a model to say what features of the treatment history
are relevant to the potential outcome.
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Models to reduce dimensionality

• How should we model this? It could be that the number of
treated periods is all that matters:

𝐸[𝑌𝑖(𝑑)] = 𝛽0 + 𝛽1
𝑇

∑
𝑡=1

𝑑𝑡

• Or it could be that the effect varies over time:

𝐸[𝑌𝑖(𝑑)] = 𝛽0 + 𝛽1
𝑇/2
∑
𝑡=1

𝑑𝑡 + 𝛽2
𝑇

∑
𝑡=𝑇/2+1

𝑑𝑡

• Our model restricts certain treatment histories to have the
same mean.

▶ Could be wrong!
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Regression/matching?

• Can we use regression or matching to estimate the
parameters? Unfortunately not.

• One model conditions on the time-varying confounders
(polling):

𝐸[𝑌𝑖|𝐷𝑖1, 𝐷𝑖2, 𝑋𝑖2] = 𝛼0 + 𝛼1𝐷𝑖1 + 𝛼2𝐷𝑖2 + 𝛼3𝑋𝑖2

▶ This model gets rid of the omitted variable bias for 𝐷𝑖2 but
induces posttreatment bias for 𝐷𝑖1

• Maybe we omit polls and estimate this model:

𝐸[𝑌𝑖|𝐷𝑖1, 𝐷𝑖2] = 𝛼0 + 𝛼1𝐷𝑖1 + 𝛼2𝐷𝑖2

▶ Avoids posttreatment bias, induced omitted variable bias
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Time-varying covariates

• Basic message: time-varying covariates are dangerous when
you have:

▶ 𝐷𝑖𝑡 and 𝐷𝑖,𝑡−1 in your regression.
▶ A summary of 𝐷𝑖𝑡 in your regression.

• TVCs are both pre- and post-treatment in this case.
▶ If the effect of negativity early in the race flows through polls

and we condition on polls, this is going to underestimate the
effect of earlier negativity.

• Similar issue to the intermediate confounders in
mediation/direct effects.

• Can avoid the posttreamtent bias via weighting approach.
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Ideal, balanced sample

go negative when leading

go negative when trailing

stay positive when leading

stay positive when trailing

polls1 polls2negativity1 negativity2 vote share

cor(polls𝑡, negativity𝑡) = 0
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Messy real world data

go negative
when trailing

go negative when leading

stay positive
when leading

stay positive when trailing

polls1 negativity1 polls2 negativity2 vote share

cor(polls𝑡, negativity𝑡) ≠ 0
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Fixing an imbalance sample

go negative
when trailing

go negative when leading

stay positive
when leading

stay positive when trailing

polls1 negativity1 polls2 negativity2 vote
share

weights

go negative when trailing

go negative when leading

stay positive when leading

stay positive when trailing

polls1 negativity1 polls2 negativity2 vote
share
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IPTW with single-shot treatment

• How do we weight?
• With a single-shot treatment, we can weight by the inverse of

the propensity score:

𝑊𝑖 = 𝐷𝑖
ℙ[𝐷𝑖 = 1|𝑋𝑖]

+ 1 − 𝐷𝑖
ℙ[𝐷𝑖 = 1|𝑋𝑖]

• With a dynamic treatment, the propensity scores are more
complicated because the treatment is more complicated.
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IPTW with time-varying treatment
• We have to weight by the probability of observing the entire

history: ℙ[𝐷𝑖|𝑋𝑖].
• Easiest to build up over time using factorization:

ℙ(𝐷𝑖|𝑋𝑖) =ℙ(𝐷𝑖1|𝑋𝑖1) × ℙ(𝐷𝑖2|𝐷𝑖1, 𝑋 𝑖2)
× ℙ(𝐷𝑖3|𝐷𝑖2, 𝑋 𝑖3) × ⋯ × ℙ(𝐷𝑖𝑇 |𝐷𝑖,𝑇−1, 𝑋 𝑖𝑇 )

• Thus, we can create weights like so:

𝑊𝑖 =
𝑇

∏
𝑡=1

𝑊𝑖𝑡

• Here, the weight in period 𝑡 is the probability of recieving
treatment at time 𝑡 conditional on the past:

𝑊𝑖𝑡 = 1
Pr(𝐷𝑖𝑡 |𝐷𝑖𝑡−1, 𝑋 𝑖𝑡)

.

28 / 33



Weights

𝑊𝑖 =
𝑇

∏
𝑡=1

𝑊𝑖𝑡

𝑊𝑖𝑡 = 1
Pr(𝐷𝑖𝑡 |𝐷𝑖𝑡−1, 𝑋 𝑖𝑡)

• Weight unit by the probability of receiving the treatment
history they did, conditional on the past.

• Two-period example:
▶ Race 𝑖 is positive in the first period, then they are trailing,

then they negative later in the race. The weights we would
calculate would be:

𝑊𝑖 = 1
ℙ(pos1) ⋅ 1

ℙ(neg2|trail,pos1) .
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Why weighting works

• Why does the weighting work?
• Essentially replaces 𝐷𝑖𝑡 with a version that is unaffected by

time-varying confouders
• Reweighted 𝐷𝑖𝑡 still has the same effect on 𝑌𝑖
• In reweighted data, 𝑋𝑖𝑡 is no longer a confounder, don’t have

to control for it.
▶ Weighting takes care of omitted variable bias
▶ Leave 𝑋𝑖𝑡 out of the outcome model to remove posttreatment

bias.
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Weighting to achieve balance

Race polls1 negativity1 vote share
1 trailing negative 0.45
2 trailing negative 0.45
3 trailing positive 0.4
4 leading negative 0.6
5 leading positive 0.55
6 leading positive 0.55

trailing & negative > trailing & positive

Race polls1 negativity1 vote share
1 trailing negative 0.45
1 trailing negative 0.45
1 trailing negative 0.45
2 trailing negative 0.45
2 trailing negative 0.45
2 trailing negative 0.45
3 trailing positive 0.4
3 trailing positive 0.4
3 trailing positive 0.4
3 trailing positive 0.4
3 trailing positive 0.4
3 trailing positive 0.4
4 leading negative 0.6
4 leading negative 0.6
4 leading negative 0.6
4 leading negative 0.6
4 leading negative 0.6
4 leading negative 0.6
5 leading positive 0.55
5 leading positive 0.55
5 leading positive 0.55
6 leading positive 0.55
6 leading positive 0.55
6 leading positive 0.55

Weights

trailing & negative = trailing & positive
31 / 33



Estimating the weights

• Need to estimate ℙ[𝐷𝑖𝑡 |𝐷𝑖,𝑡−1, 𝑋 𝑖𝑡] for all time periods
▶ Easy, but not robust: logit models.
▶ More complicated, but robust: Covariate Balancing Propensity

Score (Imai, Ratkovic)
• Hard to include all past treatments, confoudners. Possible

strategies:
▶ Last period confounders, perhaps a few lags for important

confounders.
▶ Use GAMs to smooth functional form for key variables.
▶ Last few lags of treatment and/or a summary of cumulative

treatment.
▶ Time trend in 𝑡.

• Use the cumulative product of predicted values from this
model to get weights.
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Outcome MSM

𝐸[𝑌𝑖(𝑑)] =𝛽0 + 𝛽1 ⎛⎜
⎝

𝑇
∑
𝑇−5

𝐷𝑖𝑡⎞⎟
⎠

+ 𝛽2𝑍𝑖

+ 𝛽3𝑍𝑖 ⎛⎜
⎝

𝑇
∑
𝑇−5

𝐷𝑖𝑡⎞⎟
⎠

+ 𝛽4𝐷𝑖𝑇−6

+ 𝛽5𝑍𝑖 𝐷𝑖𝑇−6 + 𝛽6𝑋𝑖

• Model from Blackwell (2014)
▶ Allows for different effects of negativity early and late in

campaign.
▶ Interaction with baseline covariate, 𝑍𝑖, incumbency status.
▶ Controls for other baseline covariates.

• Baseline covariates are ok to include—never posttreatment.
• Bootstrap for SEs.
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