Gov 2002: 11. Regression Discontinuity Designs

Matthew Blackwell

November 12, 2015

- 1. Sharp Regression Discontinuity Designs
- 2. Estimation in the SRD
- 3. Fuzzy Regression Discontinuity Designs
- 4. Bandwidth selection

Introduction

- Causal for us so far: selection of observables, instrumental variables for when this doesn't hold
- Basic idea behind both: find some plausibly exogeneous variation in the treatment assignment
- Selection on observables: treatment as-if random conditional on X_i
- IV: instrument provides exogeneous variation
- Regression Discontinuity: exogeneous variation from a discontinuity in treatment assignment

Plan of attack

1. Sharp Regression Discontinuity Designs

- 2. Estimation in the SRD
- 3. Fuzzy Regression Discontinuity Designs

4. Bandwidth selection

1/ Sharp Regression Discontinuity Designs

Setup

- The basic idea behind RDDs:
 - ► X_i is a forcing variable.
 - Treatment assignment is determined by a cutoff in X_i .
- X_i can be related to the potential outcomes, but we assume that relationship is smooth,
- → changes in the outcome around the threshold can be interpretted as a causal effect.
- The classic example of this is in the educational context:
 - Scholarships allocated based on a test score threshold (Thistlethwaite and Campbell, 1960)
 - Class size on test scores using total student thresholds to create new classes (Angrist and Lavy, 1999)

Notation

- Treatment: $D_i = 1$ or $D_i = 0$
- Potential outcomes, $Y_i(1)$ and $Y_i(0)$
- Observed outcomes:

$$Y_i = Y_i(1)D_i + Y_i(0)(1 - D_i)$$

- Forcing variable: $X_i \in \mathbb{R}$
- Covariates: an *M*-length vector $Z_i = (Z_{1i}, ..., Z_{Mi})$

Design

• Sharp RD: treatment assignment is a deterministic function of the forcing variable and the threshold:

Assumption SRD

$$D_i = 1\{X_i \ge c\} \qquad \forall i$$

- When test scores are above 1500 \rightarrow offered scholarship
- When test scores are below 1500 \rightarrow not offered scholarship
- Key assumption: no compliance problems (deterministic)
- At the threshold, c, we only see treated units and below the threshold $c \varepsilon$, we only see control values:

$$\mathbb{P}(D_i = 1 | X_i = c) = 1$$
$$\mathbb{P}(D_i = 1 | X_i = c - \varepsilon) = 0$$

Threshold

- Intuitively, we are interested in the discontinuity in the outcome at the discontinuity in the treatment assignment.
- We want to investigate the behavior of the outcome around the threshold:

$$\lim_{x \downarrow c} E[Y_i | X_i = x] - \lim_{x \uparrow c} E[Y_i | X_i = x]$$

• Under certain assumptions, this quantity identifies the ATE at the threshold:

$$\tau_{SRD} = E[Y_i(1) - Y_i(0)|X_i = c]$$

Plotting the RDD (Imbens and Lemieux, 2008)

Comparison to traditional setup

• Note that ignorability here hold by design, because condition on the forcing variable, the treatment is deterministic.

 $Y_i(1), Y_i(0) \perp\!\!\!\perp D_i | X_i$

Remember the positivity/overlap assumption:

$$0 < \Pr[D_i = 1 | X_i = x] < 1$$

- With a SRD, the propensity score is only 0 or 1 and so positivity is violated.
 - ▶ ~→ we can't use ignorability directly.
- Thus, we need to extrapolate from the treated to the control group and vice versa.

Extrapolation and smoothness

• Remember the quantity of interest here is the effect at the threshold:

$$\begin{aligned} \tau_{SRD} &= E[Y_i(1) - Y_i(0)|X_i = c] \\ &= E[Y_i(1)|X_i = c] - E[Y_i(0)|X_i = c] \end{aligned}$$

- But we don't observe $E[Y_i(0)|X_i = c]$ ever due to the design, so we're going to extrapolate from $E[Y_i(0)|X_i = c \varepsilon]$.
- Extrapolation, even at short distances, requires smoothness in the functions we are extrapolating.

Continuity of the CEFs

Assumption 1: Continuity

The functions

 $E[Y_i(0)|X_i = x]$ and $E[Y_i(1)|X_i = x]$

are continuous in x.

This continuity implies the following:

$$E[Y_i(0)|X_i = c] = \lim_{x \uparrow c} E[Y_i(0)|X_i = x] \quad \text{(continuity)}$$
$$= \lim_{x \uparrow c} E[Y_i(0)|D_i = 0, X_i = x] \quad \text{(SRD)}$$
$$= \lim_{x \uparrow c} E[Y_i|X_i = x] \quad \text{(consistency/SRD)}$$

• Note that this is the same for the treated group:

$$E[Y_i(1)|X_i = c] = \lim_{x \downarrow c} E[Y_i|X_i = x]$$

Identification results

• Thus, under the consistency assumption, the sharp RD assumption, and the continuity assumption, we have:

$$\begin{aligned} \tau_{SRD} &= E[Y_i(1) - Y_i(0) | X_i = c] \\ &= E[Y_i(1) | X_i = c] - E[Y_i(0) | X_i = c] \\ &= \lim_{x \downarrow c} E[Y_i | X_i = x] - \lim_{x \uparrow c} E[Y_i | X_i = x] \end{aligned}$$

- Note that each of these is identified at least with infinite data, as long as X_i has positive density around the cutpoint
- Why? With arbitrarily high *N*, we'll get an arbitrarily good approximations to the expectation of the line
- How to estimate these nonparametrically is difficult as we'll see (endpoints are a big problem)

What can go wrong?

- If the potential outcomes change at the discontinuity for reasons other than the treatment, then smoothness will be violated.
- For instance, if people sort around threshold, then you might get jumps other than the one you care about.
- If things other than the treatment change at the threshold, then that might cause discontinuities in the potential outcomes.

2/ Estimation in the SRD

Graphical approaches

• Simple plot of mean outcomes within bins of the forcing variable:

$$\overline{Y}_k = \frac{1}{N_k} \sum_{i=1}^N Y_i \cdot \mathbb{I}(b_k < X_i \le b_{k+1})$$

where N_k is the number of units within bin k and b_k are the bin cutpoints.

- Obvious discontinuity at the threshold?
- Are there other, unexplained discontinuities?
- As Imbens and Lemieux say:

The formal statistical analyses discussed below are essentially just sophisticated versions of this, and if the basic plot does not show any evidence of a discontinuity, there is relatively little chance that the more sophisticated analyses will lead to robust and credible estimates with statistically and substantially significant magnitudes.

Example from RD on extending unemployment

R. Lalive / Journal of Econometrics 142 (2008) 785-806

Other graphs to include

- Next, it's a good idea to plot covariates by the forcing variable to see if these covariates also jump at the discontinuity.
- Same binning strategy:

$$\overline{Z}_{km} = \frac{1}{N_k} \sum_{i=1}^N Z_{im} \cdot \mathbb{I}(b_k < X_i \le b_{k+1})$$

- Intuition: our key assumption is that the potential outcomes are smooth in the forcing variable.
- Discontinuities in covariates unaffected by the threshold could be indications of discontinuities in the potential outcomes.
- Similar to balance tests in matching

Checking covariates at the discontinuity

Discontinuity at threshold = 3.442; with std. err. = 1.416.

General estimation strategy

• The main goal in RD is to estimate the limits of various CEFs such as:

 $\lim_{x \uparrow c} E[Y_i | X_i = x]$

- It turns out that this is a hard problem because we want to estimate the regression at a single point and that point is a boundary point.
- As a result, the usual kinds of nonparametric estimators perform poorly.
- In general, we are going to have to choose some way of estimating the regression functions around the cutpoint.
- Using the entire sample on either side will obviously lead to bias because those values that are far from the cutpoint are clearly different than those nearer to the cutpoint.
- \rightarrow restrict our estimation to units close to the threshold.

Example of misleading trends

22 / 58

Х

Nonparametric and semiparametric approaches

Let's define

$$\begin{split} \mu_+(x) &= \lim_{z \downarrow x} E[Y_i(1)|X_i = z] \\ \mu_-(x) &= \lim_{z \uparrow x} E[Y_i(0)|X_i = z] \end{split}$$

- For the SRD, we have $\tau_{SRD} = \mu_+(c) \mu_-(c)$.
- One nonparametric approach is to estimate nonparametrically μ_(x) with a uniform kernel:

$$\widehat{\mu}_{-}(c) = \frac{\sum_{i=1}^{N} Y_i \cdot \mathbb{I}\{c - h \le X_i < c\}}{\sum_{i=1}^{N} \mathbb{I}\{c - h \le X_i < c\}}$$

- *h* is a bandwidth parameter, selected by you.
- Basically, calculate means among units no more than h away from the threshold.

Local averages

- Estimate mean of Y_i when $X_i \in [c, c+h]$ and when $X_i \in [c-h, c)$.
- Reformulate uniform kernel approach as regression on those units less than h away from c:

$$(\widehat{\alpha}, \widehat{\tau}) = \underset{\alpha, \tau}{\operatorname{arg\,min}} \sum_{i: X_i \in [c-h, c+h]} (Y_i - \alpha - \tau D_i)^2$$

- Predictions about Y_i are locally constant on either side of the cutoff.
- Here, $\hat{\tau}_{SRD} = \hat{\tau}$.
- Downside: large bias as the we increase the bandwidth.

Local linear regression

- Instead of a local constant, we can use a local linear regression.
- Run a linear regression of Y_i on $X_i c$ in the group $X_i \in [c h, c)$:

$$(\widehat{\alpha}_{-},\widehat{\beta}_{-}) = \arg\min_{\alpha,\beta} \sum_{i:X_i \in [c-h,c)} (Y_i - \alpha - \beta (X_i - c))^2$$

• Same regression for group with $X_i \in [c, c+h]$:

$$(\widehat{\alpha}_+, \widehat{\beta}_+) = \underset{\alpha, \beta}{\operatorname{arg\,min}} \sum_{i: X_i \in [c, c+h]} (Y_i - \alpha - \beta (X_i - c))^2$$

Our estimate is

$$\begin{aligned} \widehat{\tau}_{SRD} &= \widehat{\mu}_+(c) - \widehat{\mu}_-(c) \\ &= \widehat{\alpha}_+ + \widehat{\beta}_+(c-c) - \widehat{\alpha}_- - \widehat{\beta}_-(c-c) \\ &= \widehat{\alpha}_+ - \widehat{\alpha}_- \end{aligned}$$

More practical estimation

• We can estimate this local linear regression by dropping observations more than *h* away from *c* and then running the following regression:

$$Y_i = \alpha + \beta (X_i - c) + \tau D_i + \gamma (X_i - c) D_i + \eta_i$$

- Here we just have an interaction term between the treatment status and the forcing variable.
- Here, $\hat{\tau}_{SRD} = \hat{\tau}$ which is the coefficient on the treatment.
- Yields numerically the same as the separate regressions.

Bandwidth equal to 10 (Global)

Х

Odds and ends for the SRD

- Standard errors: robust standard errors from local OLS are valid.
- Covariates: shouldn't matter, but can include them for increased precision.
- ALWAYS REPORT MODELS WITHOUT COVARIATES FIRST
- You can include polynomials of the forcing variable in the local regression. Let $\tilde{X}_i = X_i c$

$$Y_i = \alpha + \beta_1 \tilde{X}_i + \beta_2 \tilde{X}_i^2 + \tau D_i + \gamma_1 \tilde{X}_i D_i + \gamma_2 \tilde{X}_i^2 D_i + \eta_i$$

Make sure that your effects aren't dependent on the polynomial choice.

3/ Fuzzy Regression Discontinuity Designs

Setup

 With fuzzy RD, the treatment assignment is no longer a deterministic function of the forcing variable, but there is still a discontinuity in the probability of treatment at the threshold:

Assumption FRD

$$\lim_{x \downarrow c} \Pr[D_i = 1 | X_i = x] \neq \lim_{x \uparrow c} \Pr[D_i = 1 | X_i = x]$$

- In the sharp RD, this is also true, but it further required the jump in probability to be from 0 to 1.
- Fuzzy RD is often useful when the a threshold encourages participation in program, but does not actually force units to participate.

Fuzzy RD in a graph

Fuzzy RD is IV

- Forcing variable is an instrument:
 - affects Y_i , but only through D_i (at the threshold)
- Let D_i(x) be the potential value of treatment when we set the forcing variable to x, for some small neighborhood around c.
- $D_i(x) = 1$ if unit *i* would take treatment when X_i was x
- $D_i(x) = 0$ if unit *i* would take control when X_i was x

Fuzzy RD assumptions

Assumption 2: Monotoncity There exists ε such that $D_i(c + e) \ge D_i(c - e)$ for all $0 < e < \varepsilon$

• No one is discouraged from taking the treatment by crossing the threshold.

Assumption 3: Local Exogeneity of Forcing Variable In a neighborhood of c,

 $\{\tau_i, D_i(x)\} \perp \!\!\!\perp X_i$

 Basically, in an ε-ball around c, the forcing variable is randomly assigned.

Compliance in Fuzzy RDs

Compliers are those *i* such that for all 0 < e < ε:

$$D_i(c+e) = 1$$
 and $D_i(c-e) = 0$

- Think about college students that get above a certain GPA are encouraged to apply to grad school.
- Compliers would:
 - apply to grad school if their GPA was just above the threshold
 - not apply to grad school if their GPA was just below the threshold
- We don't get to see their compliance status because due to the fundamental problem of causal inference
- Could also think about this as changing the threshold instead of changing X_i

Compliance graph

- Compliers would not take the treatment if they had X_i = c and we increased the cutoff by some small amount
- These are compliers at the threshold

Compliance groups

- Compliers: $D_i(c+e) = 1$ and $D_i(c-e) = 0$
- Always-takers: $D_i(c + e) = D_i(c e) = 1$
- Never-takers: $D_i(c+e) = D_i(c-e) = 0$

Cutoff

Compliance groups

- Compliers: $D_i(c+e) = 1$ and $D_i(c-e) = 0$
- Always-takers: $D_i(c + e) = D_i(c e) = 1$
- Never-takers: $D_i(c + e) = D_i(c-e) = 0$

Cutoff

LATE in the Fuzzy RD

• We can define an estimator that is in the spirit of IV:

$$\tau_{FRD} = \frac{\lim_{x \downarrow c} E[Y_i | X_i = x] - \lim_{x \uparrow c} E[Y_i | X_i = x]}{\lim_{x \downarrow c} E[D_i | X_i = x] - \lim_{x \uparrow c} E[D_i | X_i = x]}$$
$$= \frac{\text{effect of threshold on } Y_i}{\text{effect of threshold on } D_i}$$

 Under the FRD assumption, continuity, consistency, monotonicity, and local exogeneity, we can write that the estimator is equal to the effect at the threshold for compliers.

$$\tau_{FRD} = \lim_{e \downarrow 0} E[\tau_i | D_i(c+e) > D_i(c-e)]$$

Proof

• To prove this, we'll look at the discontinuity in *Y_i* in a window around the threshold and then shrink that window:

$$E[Y_i|X_i = c + e] - E[Y_i|X_i = c - e]$$

First, remember that by consistency,

$$\begin{split} Y_i &= Y_i(1)D_i + Y_i(0)(1-D_i) \\ &= Y_i(0) + (Y_i(1) - Y_i(0))D_i \\ &= Y_i(0) + \tau_i D_i \end{split}$$

Plug this into the CEF of the outcome:

$$E[Y_i|X_i = c + e] = E[Y_i(0) + \tau_i D_i|X_i = c + e]$$

= $E[Y_i(0) + \tau_i D_i(c + e)]$

• Thus, we can write the difference around the threshold as: $E[Y_i|X_i = c + e] - E[Y_i|X_i = c - e] = E[\tau_i(D_i(c + e) - D_i(c - e))]$

Proof (cont)

 Let's break this expectation apart using the law of iterated expectations:

$$E[\tau_i(D_i(c+e)-D_i(c-e))] =$$

$$\begin{split} & E[\tau_i \times (D_i(c+e) - D_i(c-e)) \mid \text{complier} \mid \times \Pr[\text{complier}] \\ & + E[\tau_i \times (D_i(c+e) - D_i(c-e)) \mid \text{defier}] \times \Pr[\text{defier}] \\ & + E[\tau_i \times (D_i(c+e) - D_i(c-e)) \mid \text{always}] \times \Pr[\text{always}] \\ & + E[\tau_i \times (D_i(c+e) - D_i(c-e)) \mid \text{never}] \times \Pr[\text{never}] \end{split}$$

 $= E[\tau_i | \text{complier}] \times \Pr[\text{complier}]$

Proof (cont)

 So far, we've shown that the outcome jump at the discontinuity is the LATE times the probability of compliance:

 $E[Y_i|X_i = c+e] - E[Y_i|X_i = c-e] = E[\tau_i | \text{complier}] \times \Pr[\text{complier}]$

• What is the probability of compliance though?

$$Pr[complier] = Pr[D_i(c + e) - D_i(c - e) = 1]$$

= $E[D_i(c + e) - D_i(c - e)]$
= $E[D_i(c + e)] - E[D_i(c - e)]$
= $E[D_i(c + e)|X_i = c + e] - E[D_i(c - e)|X_i = c - e]$
= $E[D_i|X_i = c + e] - E[D_i|X_i = c - e]$

Thus,

$$\frac{E[Y_i|X_i = c + e] - E[Y_i|X_i = c - e]}{E[D_i|X_i = c + e] - E[D_i|X_i = c - e]} = E[\tau_i \mid D_i(c + e) > D_i(c - e)]$$

Misc notes

• Taking the limit as $e \rightarrow 0$, we've shown that:

$$\tau_{FRD} = \frac{\lim_{x \downarrow c} E[Y_i | X_i = x] - \lim_{x \uparrow c} E[Y_i | X_i = x]}{\lim_{x \downarrow c} E[D_i | X_i = x] - \lim_{x \uparrow c} E[D_i | X_i = x]}$$
$$= \lim_{e \downarrow 0} E[\tau_i | D_i(c + e) > D_i(c - e)]$$

 Note that the FRD estimator emcompasses the SRD estimator because with a sharp design:

$$\lim_{x \downarrow c} E[D_i | X_i = x] - \lim_{x \uparrow c} E[D_i | X_i = x] = 1$$

 A note on external validity: obsviously, FRD puts even more restrictions on the external validity of our estimates because not only are we discussing a LATE, but also the effect is at the threshold. That might give us pause about generalizing other populations for the both the SRD and FRD.

Estimation in FRD

Remember that we had:

$$\tau_{FRD} = \frac{\lim_{x \downarrow c} E[Y_i | X_i = x] - \lim_{x \uparrow c} E[Y_i | X_i = x]}{\lim_{x \downarrow c} E[D_i | X_i = x] - \lim_{x \uparrow c} E[D_i | X_i = x]}$$

- We can estimate the numerator using the SRD approaches we just outlined, $\widehat{\tau}_{SRD}.$
- For the denominator, we simply apply the local linear regression to the D_i:

$$\begin{split} &(\widehat{\alpha}_{dL},\widehat{\beta}_{dL}) = \argmin_{\alpha,\beta} \sum_{i:X_i \in [c-h,c)} (D_i - \alpha - \beta(X_i - c))^2 \\ &(\widehat{\alpha}_{dR},\widehat{\beta}_{dR}) = \argmin_{\alpha,\beta} \sum_{i:X_i \in [c,c+h]} (D_i - \alpha - \beta(X_i - c))^2 \end{split}$$

- Use this to calculate the effect of threshold on D_i : $\widehat{\tau}_d = \widehat{\alpha}_{dR} - \widehat{\alpha}_{dL}$
- Calculate ratio estimator:

$$\widehat{\tau}_{FRD} = \frac{\widehat{\tau}_{SRD}}{\widehat{\tau}_d}$$

More practical FRD estimation

- The ratio estimator above is equivalent to a TSLS approach.
- Use the same specification as above with the following covariates:

$$V_i = \begin{pmatrix} 1 \\ \mathbb{I}\{X_i < c\}(X_i - c) \\ \mathbb{I}\{X_i \ge c\}(X_i - c) \end{pmatrix}$$

First stage:

$$D_i = \delta_1' V_i + \rho \mathbb{I}\{X_i \geq c\} + \nu_i$$

Second stage:

$$Y_i = \delta'_2 V_i + \tau D_i + \eta_i$$

 Thus, being above the threshold is treated like an instrument, controlling for trends in X_i.

4/ Bandwidth selection

How to choose the bandwidth

- The bandwidth, *h*, is a tuning parameter that you set.
- *h* controls the bias-variance tradeoff:
 - High h: high bias, low variance (more data points, farther from the cutoff)
 - Low h: low bias, high variance (fewer data points, closer to the cutoff)
- Bias-variance tradeoff captured in the mean-square error of the estimator:

$$MSE(h) = \mathbb{E}[(\hat{\tau}_h - \tau_{SRD})^2] = \underbrace{(\mathbb{E}[\hat{\tau}_h] - \tau_{SRD})^2}_{\text{bias}^2} + \underbrace{\mathbb{V}[\hat{\tau}_h]}_{\text{variance}}$$

 Given the setup we need to minimize the MSE of these two estimators:

$$MSE_{+}(h) = \mathbb{E}\left[\left(\widehat{\mu}_{+}(c,h) - \mathbb{E}[Y_{i}(1)|X_{i}=c]\right)^{2}\right]$$
$$MSE_{-}(h) = \mathbb{E}\left[\left(\widehat{\mu}_{-}(c,h) - \mathbb{E}[Y_{i}(0)|X_{i}=c]\right)^{2}\right]$$

Choosing the optimal bandwidth

- Goal: choose a value of h that minimizes the MSE of our CEF estimators.
 - ▶ But that requires knowing the true CEFs, $\mathbb{E}[Y_i(d)|X_i]$.
- Two ways to handle this situation:
 - 1. Use cross validation to choose h that produces the best fit for the CEFs.
 - 2. Solve for the optimal bandwidth in terms of MSE and estimate that bandwidth.

Model fit and model selection

• Think a bivariate regression context and let *h* be the order of the polynomial that we should include in the model:

$$\mathbb{E}[Y_i|X_i = x] = \beta_0 + \sum_{k=1}^h \beta_k x^k$$

- How many orders of the polynomial should we include? How do we compare models?
 - More polynomials will always fit a particular dataset better.
 - But this could lead to overfitting for this particular dataset.
 - We could test our model on a separate dataset to get a sense of the MSE.

Cross validation

- Cross validation in general:
 - 1. Randomly split the data into a training set and a validation set, *S* of size *m*.
 - 2. Use the training set to estimate $\mu(x,h) = \mathbb{E}[Y_i|X_i = x]$ for many values of h.
 - 3. Estimate the MSE of each choice of *h* using data in the validation set:

$$\widehat{MSE}(h) = \frac{1}{m} \sum_{i \in S} (Y_i - \widehat{\mu}(X_i))^2$$

4. Choose the value of *h* that produces the lowest $\widehat{MSE}(h)$

Flavors of cross-validation

- K-fold cross-validation:
 - 1. Randomly split data into K subsets.
 - 2. For one subset k, use S_k as the validation set and S_{-k} as the test set.
 - 3. Calculate the MSE for many values of h: $\widehat{MSE}^k(h)$
 - 4. Repeat 2-3 for all $k = 1, \dots, K$
 - 5. Average across K cross-validations:

$$\widehat{MSE}(h) = \frac{1}{K} \sum_{k=1}^{K} MSE^{k}(h)$$

- 6. Choose the *h* that minimizes $\widehat{MSE}(h)$
- Leave one out cross-validation: the above procedure with K = N.

CV for RDD

• Run the SRD model for a given h:

$$\underset{\left(\alpha,\beta,\tau,\gamma\right)}{\arg\min}\frac{1}{N_{h}}\sum_{i:X_{i}\in\left(c-h,c+h\right)}\left(Y_{i}-\alpha+\beta(X_{i}-c)+\tau D_{i}+\gamma(X_{i}-c)D_{i}\right)$$

- Perform K-fold CV with this regression to choose *h*.
- Problem: minimizes error across many values of X_i = x but we only care about X_i = c.
 - Partial solution: only consider bandwidths that contain less than 50% of data.
 - Still a problem.

Optimal bandwidth selection

- Imbens and Kalyanaraman derive an approximation to the asymptotic MSE for each value of *h*.
 - ► The optimal bandwidth depends on the density of the forcing variable at c, the variance of Y_i around c, and the curvature of the CEFs at c.
- IK procedure:
 - 1. Choose initial bandwidth h_1 and calculate conditional variances on either side of c and the density of X_i at c
 - 2. Choose another initial bandwidth h_2 to calculate the 2nd derivative of $\mu_+(c)$ and $\mu_-(c)$.
 - 3. Add a small regularization penalty that ensures *h* isn't "too big" in finite samples.
- IK procedure depends on a kernel to weight units differently depending on how far they are from the cutoff.