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Introduction

= Causal for us so far: selection of observables, instrumental
variables for when this doesn't hold

= Basic idea behind both: find some plausibly exogeneous
variation in the treatment assignment

= Selection on observables: treatment as-if random conditional
on X;

= |V: instrument provides exogeneous variation

= Regression Discontinuity: exogeneous variation from a
discontinuity in treatment assignment



Plan of attack

1. Sharp Regression Discontinuity Designs

2. Estimation in the SRD

3. Fuzzy Regression Discontinuity Designs

4. Bandwidth selection
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1/ Sharp
Regression
Discontinuity
Designs




Setup

The basic idea behind RDDs:

» X; is a forcing variable.

» Treatment assignment is determined by a cutoff in X;.
= X; can be related to the potential outcomes, but we assume
that relationship is smooth,

= ~~ changes in the outcome around the threshold can be
interpretted as a causal effect.

= The classic example of this is in the educational context:

» Scholarships allocated based on a test score threshold
(Thistlethwaite and Campbell, 1960)

» Class size on test scores using total student thresholds to
create new classes (Angrist and Lavy, 1999)
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Notation

= Treatment: D; =1orD; =0
= Potential outcomes, Y;(1) and Y;(0)

1
= Observed outcomes:

= Forcing variable: X; € R
= Covariates: an M-length vector Z; = (Z;, ..., Zy;;)



Design

= Sharp RD: treatment assignment is a deterministic function of
the forcing variable and the threshold:

Assumption SRD
D, =1{X;>¢c) Vi

= When test scores are above 1500 — offered scholarship

= When test scores are below 1500 — not offered scholarship

= Key assumption: no compliance problems (deterministic)

= At the threshold, ¢, we only see treated units and below the
threshold ¢ — &, we only see control values:

P(Dl = 1|Xl
]P)(Dl'=1|Xi=C—£)=O

Il
)
N
Il
—



Threshold

= Intuitively, we are interested in the discontinuity in the
outcome at the discontinuity in the treatment assignment.

= We want to investigate the behavior of the outcome around
the threshold:

lim E[Y;1X; = x] - lim E[Y;1X; = x]
XTc

xlc

= Under certain assumptions, this quantity identifies the ATE at
the threshold:

Tsrp = E[Y;(1) - Y;(0)X; = c]



Plotting the RDD (Imbens and
Lemieux, 2008)
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Fig. 2. Potential and observed outcome regression functions.
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Comparison to traditional setup

= Note that ignorability here hold by design, because condition
on the forcing variable, the treatment is deterministic.

Y;(1),Y;(0) 1L DX,
= Remember the positivity /overlap assumption:
0<Pr[D; =11X; =x] < 1

= With a SRD, the propensity score is only 0 or 1 and so
positivity is violated.

» ~~ we can't use ignorability directly.

= Thus, we need to extrapolate from the treated to the control
group and vice versa.
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Extrapolation and smoothness

= Remember the quantity of interest here is the effect at the
threshold:

Terp = E[Y;(1) = Y;(0)[X; = c]
= E[Y;(1)IX; = ¢] - E[Y;(0)|X; = ]

L

= But we don't observe E[Y;(0)|X; = c] ever due to the design,
so we're going to extrapolate from E[Y;(0)|X; = ¢ — &].

= Extrapolation, even at short distances, requires smoothness in
the functions we are extrapolating.
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Continuity of the CEFs

Assumption 1: Continuity
The functions

E[Y;(0)1X; = x] and E[Y;(DIX; = x]
are continuous in x.
= This continuity implies the following:
E[Y;(0)X; =c] = lxi%lgE[Y,-(OﬂX,- =x] (continuity)

= lim E[Y;(0)ID; = 0,X; =x]  (SRD)
= lxiPClE[Y[LXi = x] (consistency/SRD)

= Note that this is the same for the treated group:

ETY;(1)X; =c] = lxi?gE[YﬂXi =x]
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Identification results

= Thus, under the consistency assumption, the sharp RD
assumption, and the continuity assumption, we have:

Tsrp = E[Y;(1) = Y;(0)IX; = c]
= E[Y;(DIX; = c] = E[Y;(0)IX; = ]
= lim E[Y;1X; = x] - lim E[Y;[X; = x]

= Note that each of these is identified at least with infinite data,
as long as X; has positive density around the cutpoint

= Why? With arbitrarily high NV, we'll get an arbitrarily good
approximations to the expectation of the line

= How to estimate these nonparametrically is difficult as we'll
see (endpoints are a big problem)
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What can go wrong?

= |f the potential outcomes change at the discontinuity for
reasons other than the treatment, then smoothness will be
violated.

= For instance, if people sort around threshold, then you might
get jumps other than the one you care about.

= |f things other than the treatment change at the threshold,
then that might cause discontinuities in the potential
outcomes.
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2/ Estimation in
the SRD



Graphical approaches

Simple plot of mean outcomes within bins of the forcing
variable:

_ 1 &
YkZ]Vk;Yi']I(bk<XiSbk+l)

where N, is the number of units within bin k£ and b, are the

bin cutpoints.

Obvious discontinuity at the threshold?

Are there other, unexplained discontinuities?

As Imbens and Lemieux say:
The formal statistical analyses discussed below are
essentially just sophisticated versions of this, and if
the basic plot does not show any evidence of a
discontinuity, there is relatively little chance that the
more sophisticated analyses will lead to robust and
credible estimates with statistically and substantially
significant magnitudes.
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Example from RD on extending
unemployment

R. Lalive | Journal of Econometrics 142 (2008) 785-806

52 A

39 A

13 A

unemployment duration (weeks)

0 -
46 47 48 49 50 51 52 53 54
age (years)
Discontinuity at threshold = 14.798; with std. err. = 1.928.
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Other graphs to include

= Next, it's a good idea to plot covariates by the forcing variable
to see if these covariates also jump at the discontinuity.
= Same binning strategy:

N
Zim = Z [(bx < X; < bryy)

= Intuition: our key assumption is that the potential outcomes
are smooth in the forcing variable.

= Discontinuities in covariates unaffected by the threshold could
be indications of discontinuities in the potential outcomes.

= Similar to balance tests in matching
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Checking covariates at the
discontinuity

52 1

39 1

13~

unemployment duration (weeks)
=

46 47 48 49 50 51 52 53 54
age (years)
Discontinuity at threshold = 3.442; with std. err. = 1.416.
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General estimation strategy

= The main goal in RD is to estimate the limits of various CEFs
such as:
llmE[Yl|Xl = .x]
xTc

= |t turns out that this is a hard problem because we want to
estimate the regression at a single point and that point is a
boundary point.

= As a result, the usual kinds of nonparametric estimators
perform poorly.

= In general, we are going to have to choose some way of
estimating the regression functions around the cutpoint.

= Using the entire sample on either side will obviously lead to
bias because those values that are far from the cutpoint are
clearly different than those nearer to the cutpoint.

= — restrict our estimation to units close to the threshold.
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Example of misleading trends

200 300
] ]

100
]

X 22 /58



Nonparametric and
semiparametric approaches

Let’s define

pe () = Im ETY;(DIX; = 2]
p-(x) = lim ETY;(0)[X; = 2]

= For the SRD, we have tgpp = p,(c) — u_(c).
= One nonparametric approach is to estimate nonparametrically
1_(x) with a uniform kernel:

YN Y- He-h<X;<c)
Zfil]l{c—hSXi<c}

p_(c) =

= K is a bandwidth parameter, selected by you.
= Basically, calculate means among units no more than 4 away
from the threshold.
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Bandwidth equal to 7
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Bandwidth equal to 5
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Local averages

= Estimate mean of ¥; when X; € [c,c + h] and when
X; € [c—h,c).

= Reformulate uniform kernel approach as regression on those
units less than # away from c:

(a,T) = argmin Z (Y, —a— TDI-)2
(@7, .
i:X;€[c—h,c+h]

= Predictions about Y; are locally constant on either side of the
cutoff.
u Here, :ESRD = 7.

= Downside: large bias as the we increase the bandwidth.
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Local linear regression

Instead of a local constant, we can use a local linear
regression.

Run a linear regression of ¥; on X; — ¢ in the group
X; € [c—h,c):

(@_, B_) = argmin Z (Y, —a - BX; — )2
@B iX.E[c—h.c)

Same regression for group with X; € [c,c + h]:

(@,,p,) = argmin Z (Y, —a - B(X; —c))?
@B iX.E[c.c+h)

Our estimate is

Tsrp = H4(c) — p_(c)
— G R (9) T (@)
=q, —a_
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More practical estimation

= We can estimate this local linear regression by dropping
observations more than 4 away from ¢ and then running the
following regression:

= Here we just have an interaction term between the treatment
status and the forcing variable.

= Here, Tggp = T which is the coefficient on the treatment.

= Yields numerically the same as the separate regressions.
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Bandwidth equal to 10 (Global)
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Bandwidth equal to 7
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Bandwidth equal to 5
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Odds and ends for the SRD

= Standard errors: robust standard errors from local OLS are
valid.

= Covariates: shouldn’'t matter, but can include them for
increased precision.

= ALWAYS REPORT MODELS WITHOUT COVARIATES
FIRST

= You can include polynomials of the forcing variable in the
local regression. Let X; = X; — ¢

Y, = a+ B X;+ BoX? + tD; + v 1 X;D; + v, X?D; + 1),

= Make sure that your effects aren’t dependent on the
polynomial choice.
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3/ Fuzzy
Regression
Discontinuity
DesIgns




Setup

= With fuzzy RD, the treatment assignment is no longer a
deterministic function of the forcing variable, but there is still
a discontinuity in the probability of treatment at the
threshold:

Assumption FRD

hmPr[ = 1|X; = x] ;éhmPr[ = 11X; = x]

= In the sharp RD, this is also true, but it further requried the
jump in probability to be from 0 to 1.
= Fuzzy RD is often useful when the a threshold encourages

participation in program, but does not actually force units to
participate.
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Fuzzy RD in a graph
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Fig. 4. Potential and observed outcome regression (FRD).
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Fuzzy RD is IV

= Forcing variable is an instrument:

» affects Y;, but only through D; (at the threshold)

Let D,(x) be the potential value of treatment when we set the
forcing variable to x, for some small neighborhood around c.
D;(x) = 1 if unit i would take treatment when X; was x

D;(x) = 0 if unit i would take control when X; was x

38/58



Fuzzy RD assumptions

Assumption 2: Monotoncity
There exists & such that D;(c +e¢) > D;(c—e) forall 0 <e< ¢

= No one is discouraged from taking the treatment by crossing
the threshold.

Assumption 3: Local Exogeneity of Forcing Variable

In a neighborhood of ¢,

{r;,D;(x)} LX;

= Basically, in an g-ball around ¢, the forcing variable is
randomly assigned.
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Compliance in Fuzzy RDs

= Compliers are those i such that for all 0 < e < &:
Dij(c+e)=1 and D;(c—e) =0

= Think about college students that get above a certain GPA
are encouraged to apply to grad school.
= Compliers would:
» apply to grad school if their GPA was just above the threshold

» not apply to grad school if their GPA was just below the
threshold

= We don't get to see their compliance status because due to
the fundamental problem of causal inference

= Could also think about this as changing the threshold instead
of changing X;
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Compliance graph

Di(x)
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o
]

Cutoff

= Compliers would not take the treatment if they had X; = ¢
and we increased the cutoff by some small amount
= These are compliers at the threshold
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Compliance groups

= Compliers: D;(c+e) =1 and D;(c—¢) =0
= Always-takers: D;(c +e) = D;(c—e) =1
= Never-takers: D;(c +e) =D;(c—e) =0
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Compliance groups

= Compliers: D;(c+e) =1 and D;(c—¢)=0
= Always-takers: D;(c +e) = D;(c—e) =1
= Never-takers: $D_i(c + e¢) = D_i(c-e) =0$
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LATE in the Fuzzy RD

= We can define an estimator that is in the spirit of IV:

FRD = Tim, . E[D,X; = x] — lim,. E[D,IX; = x]
_ effect of threshold on Y,

~ effect of threshold on D;,

= Under the FRD assumption, continuity, consistency,
monotonicity, and local exogeneity, we can write that the

estimator is equal to the effect at the threshold for compliers.

TFRD — lelng[TJDl(C ar e) > Dl'(c_ e)]
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Proof

= To prove this, we'll look at the discontinuity in Y; in a window

around the threshold and then shrink that window:
E[Y;|X; =c+e] —E[YX; =c—e]
= First, remember that by consistency,
Y, = Y;(1)D, + Y;(0)(1 — D;)
=Y;(0) + (Y;(1) = Y;(0))D,
=Y;(0) + t;D;
= Plug this into the CEF of the outcome:
E[Y;|X; =c+e] = E[Y;(0) + T,D,X; = ¢ + €]
= E[Y;(0) + 7;D;(c + €)]
= Thus, we can write the difference around the threshold as:

E[Y)X, = c+e]—E[Y,X; = c—e] = E[t,(D;(c+e)—D,(c—e))]
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Proof (cont)

= Let's break this expectation apart using the law of iterated
expectations:

E[t;(D;(c +e) —D;(c—e))] =

E[t; x (D;(c +e) —D;(c —e))|complier | x Pr[complier]
+E[7; x (D;(c + e) — D;(c — e)) | defier] x Pr[defier]
+E|
[

+E[1; x (D;(c +e) —D;(c —e)) | never] x Pr[never]

7; % (D;(c +e) — D;(c — e)) | always] x Pr[always]

= E[7; | complier] x Pr[complier]
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Proof (cont)

= So far, we've shown that the outcome jump at the
discontinuity is the LATE times the probability of compliance:

E[Y;|X; = c+e]-E[Y;|X; = c—e] = E[7; | complier]xPr[complier]
= What is the probability of compliance though?
Pr[complier] = Pr[D;(c + e¢) — D;(c —e) = 1]
E[D;(c+e)—D;(c—e)]
D;(c+e)] —E[D;(c—e)]
(c+e)X;=c+e]—E[D;(c—e)X;=c—e]
JX; =c+e]l —E[D;X; =c—e]

= E|
E[D
E[D

= Thus,

E[Y)X;=c+e]—E[Y)X;=c—e] _
EID;X; =c+e] —EIDJX, =c—e] - LLTilDilcre) > Dylc=e)]
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Misc notes

= Taking the limit as e —» 0, we've shown that:
. _ lim,, . E[Y;X; = x] - lim,,. E[Y;|X; = x]
FRD = lim,, . E[D;IX; = x] — lim,, E[D;|X; = x]
= lig)lE[ri|Dl-(c +e) > D;(c—e)]
@

= Note that the FRD estimator emcompasses the SRD estimator
because with a sharp design:

l)gflgE[Dl'Xl = x] - 1)}11:1;‘1E[DL|X1 = x] =1

= A note on external validity: obsviously, FRD puts even more
restrictions on the external validity of our estimates because
not only are we discussing a LATE, but also the effect is at
the threshold. That might give us pause about generalizing
other populations for the both the SRD and FRD.
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Estimation in FRD

= Remember that we had:
- l.imxlcE[YilXi =x] - l%mxTcE[YAXi = x]
lim,,. E[D;|X; = x] = lim,,. E[D;|X; = x]
= We can estimate the numerator using the SRD approaches we
just outlined, Tgpp-
= For the denominator, we simply apply the local linear
regression to the D;:

(@gr. Bgr) =argmin =~ > (D;—a - B(X; - ¢))?
4B iX,E[c-h,c)

(@ars Bag) = argmin Y (D;—a = B(X; - )
@B ix.elc,c+h]

= Use this to calculate the effect of threshold on D;:
Ty = OgRr = ar
= Calculate ratio estimator:

TFRD = =
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More practical FRD estimation

= The ratio estimator above is equivalent to a TSLS approach.
= Use the same specification as above with the following

covariates:
1

Vi: ]I{Xl'<C}(Xi_C)
]I{Xl > C}(Xi — C)

= First stage:

= Second stage:

= Thus, being above the threshold is treated like an instrument,
controlling for trends in X;.
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4/ Bandwidth
selection



How to choose the bandwidth

The bandwidth, A, is a tuning parameter that you set.
h controls the bias-variance tradeoff:

» High A: high bias, low variance (more data points, farther from

the cutoff)
» Low h: low bias, high variance (fewer data points, closer to the

cutoff)
= Bias-variance tradeoff captured in the mean-square error of

the estimator:

MSE(h) = E[(T), — Tsgp)?] = (EB[T},] — Tsrp)2 + V[T)]

bias2 variance

= Given the setup we need to minimize the MSE of these two

estimators:
MSE, (h) = E (i, (c,h) — E[Y;(DIX; = c])?]
MSE_(h) = E [(i_(c,h) = E[Y;(0)IX; = ¢])?]
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Choosing the optimal bandwidth

= Goal: choose a value of i that minimizes the MSE of our CEF
estimators.

» But that requires knowing the true CEFs, E[Y;(d)[X;].

= Two ways to handle this situation:

1. Use cross validation to choose & that produces the best fit for
the CEFs.

2. Solve for the optimal bandwidth in terms of MSE and estimate
that bandwidth.
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Model fit and model selection

= Think a bivariate regression context and let & be the order of
the polynomial that we should include in the model:

E[Y;X; = x] = 0+Z,ka

= How many orders of the polynomial should we include? How
do we compare models?
» More polynomials will always fit a particular dataset better.
» But this could lead to overfitting for this particular dataset.

» We could test our model on a separate dataset to get a sense
of the MSE.
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Cross validation

= Cross validation in general:

1.

2.

Randomly split the data into a training set and a validation
set, S of size m.

Use the training set to estimate u(x,h) = E[Y;|X; = x] for
many values of h.

Estimate the MSE of each choice of & using data in the
validation set:

_ 1
MSE(h) = — (Y, = i(X;))?
ieS

. Choose the value of & that produces the lowest MSE (h)
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Flavors of cross-validation

= K-fold cross-validation:

1. Randomly split data into K subsets.

2. For one subset k, use S; as the validation set and S_; as the
test set. .

3. Calculate the MSE for many values of h: MSE (h)

4. Repeat 2-3forall k=1,...,K

5. Average across K cross-validations:

K
MSE (h) = % Z MSE¥ (h)
k=1

6. Choose the h that minimizes MSE (h)

= Leave one out cross-validation: the above procedure with
K=N.
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CV for RDD

= Run the SRD model for a given A:

1
argmin o Y (Y,—a+B(X;—c)+ 1D+ y(X; - 0)D,)
Ny ;.
(a.B,7.7) i:X;€(c—h,c+h)
= Perform K-fold CV with this regression to choose .
= Problem: minimizes error across many values of X; = x but we
only care about X; = c.

» Partial solution: only consider bandwidths that contain less
than 50% of data.
» Still a problem.
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Optimal bandwidth selection

= Imbens and Kalyanaraman derive an approximation to the
asymptotic MSE for each value of A.

» The optimal bandwidth depends on the density of the forcing
variable at ¢, the variance of Y; around ¢, and the curvature of
the CEFs at c.

= |K procedure:

1. Choose initial bandwidth /; and calculate conditional variances
on either side of ¢ and the density of X; at ¢

2. Choose another initial bandwidth &, to calculate the 2nd
derivative of u, (¢) and p_(c).

3. Add a small regularization penalty that ensures & isn't “too
big" in finite samples.

= |K procedure depends on a kernel to weight units differently
depending on how far they are from the cutoff.
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