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Introduction

• Causal for us so far: selection of observables, instrumental
variables for when this doesn’t hold

• Basic idea behind both: find some plausibly exogeneous
variation in the treatment assignment

• Selection on observables: treatment as-if random conditional
on 𝑋𝑖

• IV: instrument provides exogeneous variation
• Regression Discontinuity: exogeneous variation from a

discontinuity in treatment assignment
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Plan of attack
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1/ Sharp
Regression
Discontinuity
Designs
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Setup

• The basic idea behind RDDs:
▶ 𝑋𝑖 is a forcing variable.
▶ Treatment assignment is determined by a cutoff in 𝑋𝑖.

• 𝑋𝑖 can be related to the potential outcomes, but we assume
that relationship is smooth,

• ⇝ changes in the outcome around the threshold can be
interpretted as a causal effect.

• The classic example of this is in the educational context:
▶ Scholarships allocated based on a test score threshold

(Thistlethwaite and Campbell, 1960)
▶ Class size on test scores using total student thresholds to

create new classes (Angrist and Lavy, 1999)
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Notation

• Treatment: 𝐷𝑖 = 1 or 𝐷𝑖 = 0
• Potential outcomes, 𝑌𝑖(1) and 𝑌𝑖(0)
• Observed outcomes:

𝑌𝑖 = 𝑌𝑖(1)𝐷𝑖 + 𝑌𝑖(0)(1 − 𝐷𝑖)

• Forcing variable: 𝑋𝑖 ∈ ℝ
• Covariates: an 𝑀-length vector 𝑍𝑖 = (𝑍1𝑖, … , 𝑍𝑀𝑖)
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Design

• Sharp RD: treatment assignment is a deterministic function of
the forcing variable and the threshold:

Assumption SRD

𝐷𝑖 = 1{𝑋𝑖 ≥ 𝑐} ∀𝑖
• When test scores are above 1500 → offered scholarship
• When test scores are below 1500 → not offered scholarship
• Key assumption: no compliance problems (deterministic)
• At the threshold, 𝑐, we only see treated units and below the

threshold 𝑐 − 𝜀, we only see control values:

ℙ(𝐷𝑖 = 1|𝑋𝑖 = 𝑐) = 1
ℙ(𝐷𝑖 = 1|𝑋𝑖 = 𝑐 − 𝜀) = 0

8 / 58



Threshold

• Intuitively, we are interested in the discontinuity in the
outcome at the discontinuity in the treatment assignment.

• We want to investigate the behavior of the outcome around
the threshold:

lim𝑥↓𝑐 𝐸[𝑌𝑖|𝑋𝑖 = 𝑥] − lim𝑥↑𝑐 𝐸[𝑌𝑖|𝑋𝑖 = 𝑥]

• Under certain assumptions, this quantity identifies the ATE at
the threshold:

𝜏𝑆𝑅𝐷 = 𝐸[𝑌𝑖(1) − 𝑌𝑖(0)|𝑋𝑖 = 𝑐]
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Plotting the RDD (Imbens and
Lemieux, 2008)
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Comparison to traditional setup

• Note that ignorability here hold by design, because condition
on the forcing variable, the treatment is deterministic.

𝑌𝑖(1), 𝑌𝑖(0) ⟂⟂ 𝐷𝑖|𝑋𝑖

• Remember the positivity/overlap assumption:

0 < Pr[𝐷𝑖 = 1|𝑋𝑖 = 𝑥] < 1

• With a SRD, the propensity score is only 0 or 1 and so
positivity is violated.

▶ ⇝ we can’t use ignorability directly.

• Thus, we need to extrapolate from the treated to the control
group and vice versa.
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Extrapolation and smoothness

• Remember the quantity of interest here is the effect at the
threshold:

𝜏𝑆𝑅𝐷 = 𝐸[𝑌𝑖(1) − 𝑌𝑖(0)|𝑋𝑖 = 𝑐]
= 𝐸[𝑌𝑖(1)|𝑋𝑖 = 𝑐] − 𝐸[𝑌𝑖(0)|𝑋𝑖 = 𝑐]

• But we don’t observe 𝐸[𝑌𝑖(0)|𝑋𝑖 = 𝑐] ever due to the design,
so we’re going to extrapolate from 𝐸[𝑌𝑖(0)|𝑋𝑖 = 𝑐 − 𝜀].

• Extrapolation, even at short distances, requires smoothness in
the functions we are extrapolating.
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Continuity of the CEFs
Assumption 1: Continuity
The functions

𝐸[𝑌𝑖(0)|𝑋𝑖 = 𝑥] and 𝐸[𝑌𝑖(1)|𝑋𝑖 = 𝑥]

are continuous in 𝑥.

• This continuity implies the following:
𝐸[𝑌𝑖(0)|𝑋𝑖 = 𝑐] = lim𝑥↑𝑐 𝐸[𝑌𝑖(0)|𝑋𝑖 = 𝑥] (continuity)

= lim𝑥↑𝑐 𝐸[𝑌𝑖(0)|𝐷𝑖 = 0, 𝑋𝑖 = 𝑥] (SRD)

= lim𝑥↑𝑐 𝐸[𝑌𝑖|𝑋𝑖 = 𝑥] (consistency/SRD)

• Note that this is the same for the treated group:
𝐸[𝑌𝑖(1)|𝑋𝑖 = 𝑐] = lim𝑥↓𝑐 𝐸[𝑌𝑖|𝑋𝑖 = 𝑥]
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Identification results

• Thus, under the consistency assumption, the sharp RD
assumption, and the continuity assumption, we have:

𝜏𝑆𝑅𝐷 = 𝐸[𝑌𝑖(1) − 𝑌𝑖(0)|𝑋𝑖 = 𝑐]
= 𝐸[𝑌𝑖(1)|𝑋𝑖 = 𝑐] − 𝐸[𝑌𝑖(0)|𝑋𝑖 = 𝑐]
= lim𝑥↓𝑐 𝐸[𝑌𝑖|𝑋𝑖 = 𝑥] − lim𝑥↑𝑐 𝐸[𝑌𝑖|𝑋𝑖 = 𝑥]

• Note that each of these is identified at least with infinite data,
as long as 𝑋𝑖 has positive density around the cutpoint

• Why? With arbitrarily high 𝑁 , we’ll get an arbitrarily good
approximations to the expectation of the line

• How to estimate these nonparametrically is difficult as we’ll
see (endpoints are a big problem)
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What can go wrong?

• If the potential outcomes change at the discontinuity for
reasons other than the treatment, then smoothness will be
violated.

• For instance, if people sort around threshold, then you might
get jumps other than the one you care about.

• If things other than the treatment change at the threshold,
then that might cause discontinuities in the potential
outcomes.
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2/ Estimation in
the SRD
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Graphical approaches
• Simple plot of mean outcomes within bins of the forcing

variable:
𝑌𝑘 = 1

𝑁𝑘

𝑁
∑
𝑖=1

𝑌𝑖 ⋅ 𝕀(𝑏𝑘 < 𝑋𝑖 ≤ 𝑏𝑘+1)

where 𝑁𝑘 is the number of units within bin 𝑘 and 𝑏𝑘 are the
bin cutpoints.

• Obvious discontinuity at the threshold?
• Are there other, unexplained discontinuities?
• As Imbens and Lemieux say:

The formal statistical analyses discussed below are
essentially just sophisticated versions of this, and if
the basic plot does not show any evidence of a
discontinuity, there is relatively little chance that the
more sophisticated analyses will lead to robust and
credible estimates with statistically and substantially
significant magnitudes.
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Example from RD on extending
unemployment
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Other graphs to include

• Next, it’s a good idea to plot covariates by the forcing variable
to see if these covariates also jump at the discontinuity.

• Same binning strategy:

𝑍𝑘𝑚 = 1
𝑁𝑘

𝑁
∑
𝑖=1

𝑍𝑖𝑚 ⋅ 𝕀(𝑏𝑘 < 𝑋𝑖 ≤ 𝑏𝑘+1)

• Intuition: our key assumption is that the potential outcomes
are smooth in the forcing variable.

• Discontinuities in covariates unaffected by the threshold could
be indications of discontinuities in the potential outcomes.

• Similar to balance tests in matching
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Checking covariates at the
discontinuity
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General estimation strategy

• The main goal in RD is to estimate the limits of various CEFs
such as:

lim𝑥↑𝑐 𝐸[𝑌𝑖|𝑋𝑖 = 𝑥]

• It turns out that this is a hard problem because we want to
estimate the regression at a single point and that point is a
boundary point.

• As a result, the usual kinds of nonparametric estimators
perform poorly.

• In general, we are going to have to choose some way of
estimating the regression functions around the cutpoint.

• Using the entire sample on either side will obviously lead to
bias because those values that are far from the cutpoint are
clearly different than those nearer to the cutpoint.

• → restrict our estimation to units close to the threshold.
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Example of misleading trends
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Nonparametric and
semiparametric approaches

• Let’s define
𝜇+(𝑥) = lim𝑧↓𝑥 𝐸[𝑌𝑖(1)|𝑋𝑖 = 𝑧]
𝜇−(𝑥) = lim𝑧↑𝑥 𝐸[𝑌𝑖(0)|𝑋𝑖 = 𝑧]

• For the SRD, we have 𝜏𝑆𝑅𝐷 = 𝜇+(𝑐) − 𝜇−(𝑐).
• One nonparametric approach is to estimate nonparametrically

𝜇−(𝑥) with a uniform kernel:

𝜇−(𝑐) = ∑𝑁
𝑖=1 𝑌𝑖 ⋅ 𝕀{𝑐 − ℎ ≤ 𝑋𝑖 < 𝑐}
∑𝑁

𝑖=1 𝕀{𝑐 − ℎ ≤ 𝑋𝑖 < 𝑐}

• ℎ is a bandwidth parameter, selected by you.
• Basically, calculate means among units no more than ℎ away

from the threshold.
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Bandwidth equal to 7
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Bandwidth equal to 5
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Bandwidth equal to 1
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Local averages

• Estimate mean of 𝑌𝑖 when 𝑋𝑖 ∈ [𝑐, 𝑐 + ℎ] and when
𝑋𝑖 ∈ [𝑐 − ℎ, 𝑐).

• Reformulate uniform kernel approach as regression on those
units less than ℎ away from 𝑐:

(𝛼, 𝜏̂) = arg min
𝛼,𝜏

∑
𝑖∶𝑋𝑖∈[𝑐−ℎ,𝑐+ℎ]

(𝑌𝑖 − 𝛼 − 𝜏𝐷𝑖)2

• Predictions about 𝑌𝑖 are locally constant on either side of the
cutoff.

• Here, 𝜏̂𝑆𝑅𝐷 = 𝜏̂.
• Downside: large bias as the we increase the bandwidth.

27 / 58



Local linear regression
• Instead of a local constant, we can use a local linear

regression.
• Run a linear regression of 𝑌𝑖 on 𝑋𝑖 − 𝑐 in the group

𝑋𝑖 ∈ [𝑐 − ℎ, 𝑐):
(𝛼−, 𝛽−) = arg min

𝛼,𝛽
∑

𝑖∶𝑋𝑖∈[𝑐−ℎ,𝑐)
(𝑌𝑖 − 𝛼 − 𝛽(𝑋𝑖 − 𝑐))2

• Same regression for group with 𝑋𝑖 ∈ [𝑐, 𝑐 + ℎ]:
(𝛼+, 𝛽+) = arg min

𝛼,𝛽
∑

𝑖∶𝑋𝑖∈[𝑐,𝑐+ℎ]
(𝑌𝑖 − 𝛼 − 𝛽(𝑋𝑖 − 𝑐))2

• Our estimate is
𝜏̂𝑆𝑅𝐷 = 𝜇+(𝑐) − 𝜇−(𝑐)

= 𝛼+ + 𝛽+(𝑐 − 𝑐) − 𝛼− − 𝛽−(𝑐 − 𝑐)
= 𝛼+ − 𝛼−
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More practical estimation

• We can estimate this local linear regression by dropping
observations more than ℎ away from 𝑐 and then running the
following regression:

𝑌𝑖 = 𝛼 + 𝛽(𝑋𝑖 − 𝑐) + 𝜏𝐷𝑖 + 𝛾(𝑋𝑖 − 𝑐)𝐷𝑖 + 𝜂𝑖

• Here we just have an interaction term between the treatment
status and the forcing variable.

• Here, 𝜏̂𝑆𝑅𝐷 = 𝜏̂ which is the coefficient on the treatment.
• Yields numerically the same as the separate regressions.
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Bandwidth equal to 10 (Global)
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Bandwidth equal to 7
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Bandwidth equal to 5
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Bandwidth equal to 1
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Odds and ends for the SRD

• Standard errors: robust standard errors from local OLS are
valid.

• Covariates: shouldn’t matter, but can include them for
increased precision.

• ALWAYS REPORT MODELS WITHOUT COVARIATES
FIRST

• You can include polynomials of the forcing variable in the
local regression. Let ̃𝑋𝑖 = 𝑋𝑖 − 𝑐

𝑌𝑖 = 𝛼 + 𝛽1 ̃𝑋𝑖 + 𝛽2 ̃𝑋2
𝑖 + 𝜏𝐷𝑖 + 𝛾1 ̃𝑋𝑖𝐷𝑖 + 𝛾2 ̃𝑋2

𝑖 𝐷𝑖 + 𝜂𝑖

• Make sure that your effects aren’t dependent on the
polynomial choice.
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3/ Fuzzy
Regression
Discontinuity
Designs
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Setup

• With fuzzy RD, the treatment assignment is no longer a
deterministic function of the forcing variable, but there is still
a discontinuity in the probability of treatment at the
threshold:

Assumption FRD

lim𝑥↓𝑐 Pr[𝐷𝑖 = 1|𝑋𝑖 = 𝑥] ≠ lim𝑥↑𝑐 Pr[𝐷𝑖 = 1|𝑋𝑖 = 𝑥]

• In the sharp RD, this is also true, but it further requried the
jump in probability to be from 0 to 1.

• Fuzzy RD is often useful when the a threshold encourages
participation in program, but does not actually force units to
participate.
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Fuzzy RD in a graph
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Fuzzy RD is IV

• Forcing variable is an instrument:
▶ affects 𝑌𝑖, but only through 𝐷𝑖 (at the threshold)

• Let 𝐷𝑖(𝑥) be the potential value of treatment when we set the
forcing variable to 𝑥, for some small neighborhood around 𝑐.

• 𝐷𝑖(𝑥) = 1 if unit 𝑖 would take treatment when 𝑋𝑖 was 𝑥
• 𝐷𝑖(𝑥) = 0 if unit 𝑖 would take control when 𝑋𝑖 was 𝑥
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Fuzzy RD assumptions

Assumption 2: Monotoncity
There exists 𝜀 such that 𝐷𝑖(𝑐 + 𝑒) ≥ 𝐷𝑖(𝑐 − 𝑒) for all 0 < 𝑒 < 𝜀

• No one is discouraged from taking the treatment by crossing
the threshold.

Assumption 3: Local Exogeneity of Forcing Variable
In a neighborhood of 𝑐,

{𝜏𝑖, 𝐷𝑖(𝑥)} ⟂⟂ 𝑋𝑖

• Basically, in an 𝜀-ball around 𝑐, the forcing variable is
randomly assigned.
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Compliance in Fuzzy RDs

• Compliers are those 𝑖 such that for all 0 < 𝑒 < 𝜀:

𝐷𝑖(𝑐 + 𝑒) = 1 and 𝐷𝑖(𝑐 − 𝑒) = 0

• Think about college students that get above a certain GPA
are encouraged to apply to grad school.

• Compliers would:
▶ apply to grad school if their GPA was just above the threshold
▶ not apply to grad school if their GPA was just below the

threshold
• We don’t get to see their compliance status because due to

the fundamental problem of causal inference
• Could also think about this as changing the threshold instead

of changing 𝑋𝑖
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Compliance graph

Cutoff

D
i(x
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c − ε c c + ε
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Compliers

• Compliers would not take the treatment if they had 𝑋𝑖 = 𝑐
and we increased the cutoff by some small amount

• These are compliers at the threshold
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Compliance groups
• Compliers: 𝐷𝑖(𝑐 + 𝑒) = 1 and 𝐷𝑖(𝑐 − 𝑒) = 0
• Always-takers: 𝐷𝑖(𝑐 + 𝑒) = 𝐷𝑖(𝑐 − 𝑒) = 1
• Never-takers: 𝐷𝑖(𝑐 + 𝑒) = 𝐷𝑖(𝑐 − 𝑒) = 0

Cutoff
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Compliance groups
• Compliers: 𝐷𝑖(𝑐 + 𝑒) = 1 and 𝐷𝑖(𝑐 − 𝑒) = 0
• Always-takers: 𝐷𝑖(𝑐 + 𝑒) = 𝐷𝑖(𝑐 − 𝑒) = 1
• Never-takers: $D_i(c + e) = D_i(c-e) = 0 $

Cutoff
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0
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Never Takers

Always Takers Compliers
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LATE in the Fuzzy RD

• We can define an estimator that is in the spirit of IV:

𝜏𝐹𝑅𝐷 = lim𝑥↓𝑐 𝐸[𝑌𝑖|𝑋𝑖 = 𝑥] − lim𝑥↑𝑐 𝐸[𝑌𝑖|𝑋𝑖 = 𝑥]
lim𝑥↓𝑐 𝐸[𝐷𝑖|𝑋𝑖 = 𝑥] − lim𝑥↑𝑐 𝐸[𝐷𝑖|𝑋𝑖 = 𝑥]

= effect of threshold on 𝑌𝑖
effect of threshold on 𝐷𝑖

• Under the FRD assumption, continuity, consistency,
monotonicity, and local exogeneity, we can write that the
estimator is equal to the effect at the threshold for compliers.

𝜏𝐹𝑅𝐷 = lim
𝑒↓0

𝐸[𝜏𝑖|𝐷𝑖(𝑐 + 𝑒) > 𝐷𝑖(𝑐 − 𝑒)]
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Proof
• To prove this, we’ll look at the discontinuity in 𝑌𝑖 in a window

around the threshold and then shrink that window:
𝐸[𝑌𝑖|𝑋𝑖 = 𝑐 + 𝑒] − 𝐸[𝑌𝑖|𝑋𝑖 = 𝑐 − 𝑒]

• First, remember that by consistency,
𝑌𝑖 = 𝑌𝑖(1)𝐷𝑖 + 𝑌𝑖(0)(1 − 𝐷𝑖)

= 𝑌𝑖(0) + (𝑌𝑖(1) − 𝑌𝑖(0))𝐷𝑖
= 𝑌𝑖(0) + 𝜏𝑖𝐷𝑖

• Plug this into the CEF of the outcome:
𝐸[𝑌𝑖|𝑋𝑖 = 𝑐 + 𝑒] = 𝐸[𝑌𝑖(0) + 𝜏𝑖𝐷𝑖|𝑋𝑖 = 𝑐 + 𝑒]

= 𝐸[𝑌𝑖(0) + 𝜏𝑖𝐷𝑖(𝑐 + 𝑒)]
• Thus, we can write the difference around the threshold as:

𝐸[𝑌𝑖|𝑋𝑖 = 𝑐+𝑒]−𝐸[𝑌𝑖|𝑋𝑖 = 𝑐−𝑒] = 𝐸[𝜏𝑖(𝐷𝑖(𝑐+𝑒)−𝐷𝑖(𝑐−𝑒))]
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Proof (cont)

• Let’s break this expectation apart using the law of iterated
expectations:

𝐸[𝜏𝑖(𝐷𝑖(𝑐 + 𝑒) − 𝐷𝑖(𝑐 − 𝑒))] =

𝐸[𝜏𝑖 × (𝐷𝑖(𝑐 + 𝑒) − 𝐷𝑖(𝑐 − 𝑒)) | complier ] × Pr[complier]
+𝐸[𝜏𝑖 × (𝐷𝑖(𝑐 + 𝑒) − 𝐷𝑖(𝑐 − 𝑒)) | defier] × Pr[defier]
+𝐸[𝜏𝑖 × (𝐷𝑖(𝑐 + 𝑒) − 𝐷𝑖(𝑐 − 𝑒)) | always] × Pr[always]
+𝐸[𝜏𝑖 × (𝐷𝑖(𝑐 + 𝑒) − 𝐷𝑖(𝑐 − 𝑒)) | never] × Pr[never]

= 𝐸[𝜏𝑖 | complier] × Pr[complier]
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Proof (cont)
• So far, we’ve shown that the outcome jump at the

discontinuity is the LATE times the probability of compliance:

𝐸[𝑌𝑖|𝑋𝑖 = 𝑐+𝑒]−𝐸[𝑌𝑖|𝑋𝑖 = 𝑐−𝑒] = 𝐸[𝜏𝑖 | complier]×Pr[complier]
• What is the probability of compliance though?

Pr[complier] = Pr[𝐷𝑖(𝑐 + 𝑒) − 𝐷𝑖(𝑐 − 𝑒) = 1]
= 𝐸[𝐷𝑖(𝑐 + 𝑒) − 𝐷𝑖(𝑐 − 𝑒)]
= 𝐸[𝐷𝑖(𝑐 + 𝑒)] − 𝐸[𝐷𝑖(𝑐 − 𝑒)]
= 𝐸[𝐷𝑖(𝑐 + 𝑒)|𝑋𝑖 = 𝑐 + 𝑒] − 𝐸[𝐷𝑖(𝑐 − 𝑒)|𝑋𝑖 = 𝑐 − 𝑒]
= 𝐸[𝐷𝑖|𝑋𝑖 = 𝑐 + 𝑒] − 𝐸[𝐷𝑖|𝑋𝑖 = 𝑐 − 𝑒]

• Thus,
𝐸[𝑌𝑖|𝑋𝑖 = 𝑐 + 𝑒] − 𝐸[𝑌𝑖|𝑋𝑖 = 𝑐 − 𝑒]
𝐸[𝐷𝑖|𝑋𝑖 = 𝑐 + 𝑒] − 𝐸[𝐷𝑖|𝑋𝑖 = 𝑐 − 𝑒] = 𝐸[𝜏𝑖 | 𝐷𝑖(𝑐+𝑒) > 𝐷𝑖(𝑐−𝑒)]
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Misc notes
• Taking the limit as 𝑒 → 0, we’ve shown that:

𝜏𝐹𝑅𝐷 = lim𝑥↓𝑐 𝐸[𝑌𝑖|𝑋𝑖 = 𝑥] − lim𝑥↑𝑐 𝐸[𝑌𝑖|𝑋𝑖 = 𝑥]
lim𝑥↓𝑐 𝐸[𝐷𝑖|𝑋𝑖 = 𝑥] − lim𝑥↑𝑐 𝐸[𝐷𝑖|𝑋𝑖 = 𝑥]

= lim
𝑒↓0

𝐸[𝜏𝑖|𝐷𝑖(𝑐 + 𝑒) > 𝐷𝑖(𝑐 − 𝑒)]

• Note that the FRD estimator emcompasses the SRD estimator
because with a sharp design:

lim𝑥↓𝑐 𝐸[𝐷𝑖|𝑋𝑖 = 𝑥] − lim𝑥↑𝑐 𝐸[𝐷𝑖|𝑋𝑖 = 𝑥] = 1

• A note on external validity: obsviously, FRD puts even more
restrictions on the external validity of our estimates because
not only are we discussing a LATE, but also the effect is at
the threshold. That might give us pause about generalizing
other populations for the both the SRD and FRD.
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Estimation in FRD
• Remember that we had:

𝜏𝐹𝑅𝐷 = lim𝑥↓𝑐 𝐸[𝑌𝑖|𝑋𝑖 = 𝑥] − lim𝑥↑𝑐 𝐸[𝑌𝑖|𝑋𝑖 = 𝑥]
lim𝑥↓𝑐 𝐸[𝐷𝑖|𝑋𝑖 = 𝑥] − lim𝑥↑𝑐 𝐸[𝐷𝑖|𝑋𝑖 = 𝑥]

• We can estimate the numerator using the SRD approaches we
just outlined, 𝜏̂𝑆𝑅𝐷.

• For the denominator, we simply apply the local linear
regression to the 𝐷𝑖:

(𝛼𝑑𝐿, 𝛽𝑑𝐿) = arg min
𝛼,𝛽

∑
𝑖∶𝑋𝑖∈[𝑐−ℎ,𝑐)

(𝐷𝑖 − 𝛼 − 𝛽(𝑋𝑖 − 𝑐))2

(𝛼𝑑𝑅, 𝛽𝑑𝑅) = arg min
𝛼,𝛽

∑
𝑖∶𝑋𝑖∈[𝑐,𝑐+ℎ]

(𝐷𝑖 − 𝛼 − 𝛽(𝑋𝑖 − 𝑐))2

• Use this to calculate the effect of threshold on 𝐷𝑖:
𝜏̂𝑑 = 𝛼𝑑𝑅 − 𝛼𝑑𝐿

• Calculate ratio estimator:

𝜏̂𝐹𝑅𝐷 = 𝜏̂𝑆𝑅𝐷
𝜏̂𝑑
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More practical FRD estimation

• The ratio estimator above is equivalent to a TSLS approach.
• Use the same specification as above with the following

covariates:

𝑉𝑖 =
⎛⎜⎜⎜⎜
⎝

1
𝕀{𝑋𝑖 < 𝑐}(𝑋𝑖 − 𝑐)
𝕀{𝑋𝑖 ≥ 𝑐}(𝑋𝑖 − 𝑐)

⎞⎟⎟⎟⎟
⎠

• First stage:
𝐷𝑖 = 𝛿′

1𝑉𝑖 + 𝜌𝕀{𝑋𝑖 ≥ 𝑐} + 𝜈𝑖

• Second stage:
𝑌𝑖 = 𝛿′

2𝑉𝑖 + 𝜏𝐷𝑖 + 𝜂𝑖

• Thus, being above the threshold is treated like an instrument,
controlling for trends in 𝑋𝑖.
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4/ Bandwidth
selection
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How to choose the bandwidth
• The bandwidth, ℎ, is a tuning parameter that you set.
• ℎ controls the bias-variance tradeoff:

▶ High ℎ: high bias, low variance (more data points, farther from
the cutoff)

▶ Low ℎ: low bias, high variance (fewer data points, closer to the
cutoff)

• Bias-variance tradeoff captured in the mean-square error of
the estimator:

𝑀𝑆𝐸(ℎ) = 𝔼[(𝜏̂ℎ − 𝜏𝑆𝑅𝐷)2] = (𝔼[𝜏̂ℎ] − 𝜏𝑆𝑅𝐷)2⏟⏟⏟⏟⏟⏟⏟⏟⏟
bias2

+ 𝕍[𝜏̂ℎ]⏟
variance

• Given the setup we need to minimize the MSE of these two
estimators:

𝑀𝑆𝐸+(ℎ) = 𝔼 [(𝜇+(𝑐, ℎ) − 𝔼[𝑌𝑖(1)|𝑋𝑖 = 𝑐])2]
𝑀𝑆𝐸−(ℎ) = 𝔼 [(𝜇−(𝑐, ℎ) − 𝔼[𝑌𝑖(0)|𝑋𝑖 = 𝑐])2]
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Choosing the optimal bandwidth

• Goal: choose a value of ℎ that minimizes the MSE of our CEF
estimators.

▶ But that requires knowing the true CEFs, 𝔼[𝑌𝑖(𝑑)|𝑋𝑖].
• Two ways to handle this situation:

1. Use cross validation to choose ℎ that produces the best fit for
the CEFs.

2. Solve for the optimal bandwidth in terms of MSE and estimate
that bandwidth.
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Model fit and model selection

• Think a bivariate regression context and let ℎ be the order of
the polynomial that we should include in the model:

𝔼[𝑌𝑖|𝑋𝑖 = 𝑥] = 𝛽0 +
ℎ

∑
𝑘=1

𝛽𝑘𝑥𝑘

• How many orders of the polynomial should we include? How
do we compare models?

▶ More polynomials will always fit a particular dataset better.
▶ But this could lead to overfitting for this particular dataset.
▶ We could test our model on a separate dataset to get a sense

of the MSE.
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Cross validation

• Cross validation in general:
1. Randomly split the data into a training set and a validation

set, 𝑆 of size 𝑚.
2. Use the training set to estimate 𝜇(𝑥, ℎ) = 𝔼[𝑌𝑖 |𝑋𝑖 = 𝑥] for

many values of ℎ.
3. Estimate the MSE of each choice of ℎ using data in the

validation set:

𝑀𝑆𝐸(ℎ) = 1
𝑚 ∑

𝑖∈𝑆
(𝑌𝑖 − 𝜇(𝑋𝑖))2

4. Choose the value of ℎ that produces the lowest 𝑀𝑆𝐸(ℎ)
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Flavors of cross-validation

• K-fold cross-validation:
1. Randomly split data into K subsets.
2. For one subset 𝑘, use 𝑆𝑘 as the validation set and 𝑆−𝑘 as the

test set.
3. Calculate the MSE for many values of ℎ: 𝑀𝑆𝐸𝑘(ℎ)
4. Repeat 2-3 for all 𝑘 = 1, … , 𝐾
5. Average across 𝐾 cross-validations:

𝑀𝑆𝐸(ℎ) = 1
𝐾

𝐾
∑
𝑘=1

𝑀𝑆𝐸𝑘(ℎ)

6. Choose the ℎ that minimizes 𝑀𝑆𝐸(ℎ)
• Leave one out cross-validation: the above procedure with

𝐾 = 𝑁 .

56 / 58



CV for RDD

• Run the SRD model for a given ℎ:

arg min
(𝛼,𝛽,𝜏,𝛾)

1
𝑁ℎ

∑
𝑖∶𝑋𝑖∈(𝑐−ℎ,𝑐+ℎ)

(𝑌𝑖 − 𝛼 + 𝛽(𝑋𝑖 − 𝑐) + 𝜏𝐷𝑖 + 𝛾(𝑋𝑖 − 𝑐)𝐷𝑖)

• Perform K-fold CV with this regression to choose ℎ.
• Problem: minimizes error across many values of 𝑋𝑖 = 𝑥 but we

only care about 𝑋𝑖 = 𝑐.
▶ Partial solution: only consider bandwidths that contain less

than 50% of data.
▶ Still a problem.
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Optimal bandwidth selection

• Imbens and Kalyanaraman derive an approximation to the
asymptotic MSE for each value of ℎ.

▶ The optimal bandwidth depends on the density of the forcing
variable at 𝑐, the variance of 𝑌𝑖 around 𝑐, and the curvature of
the CEFs at 𝑐.

• IK procedure:
1. Choose initial bandwidth ℎ1 and calculate conditional variances

on either side of 𝑐 and the density of 𝑋𝑖 at 𝑐
2. Choose another initial bandwidth ℎ2 to calculate the 2nd

derivative of 𝜇+(𝑐) and 𝜇−(𝑐).
3. Add a small regularization penalty that ensures ℎ isn’t “too

big” in finite samples.
• IK procedure depends on a kernel to weight units differently

depending on how far they are from the cutoff.
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