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1/ IV setup



Where are we? Where are we

going?

= We saw how to identify and estimate effects under no
unmeasured confounding and with repeated measurements

= What if we have neither? Are we doomed?

= Not necessarily if you can identify some exogenous sources of
variation that drives the treatment.

= |nstrumental variables allows for unmeasured confounding on
the the treatment-outcome relationship.

= Use the unconfounded variation in the instrument to help
identify treatment effects.



Basic IV setup with DAGs

V2N
2NN
4

<
Z—D—Y

exclusion restriction

= Z is the instrument, D is the treatment, and U is the
unmeasured confounder

= Exclusion restriction

» no common causes of the instrument and the outcome

» no direct or indirect effect of the instrument on the outcome
not through the treatment.

= First-stage relationship: Z affects D
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An 1V is only as good as its
assumptions

VAN
’ \
»

<
Z—D—Y

exclusion restriction

= Finding a believable instrument is incredibly difficult and some
people never believe any IV setups.

= When effects vary, the IV approach estimates a “local” ATE
that is local to this particular instrument.



IVs in the field

Angrist (1990): Draft lottery as an IV for military service
(income as outcome)

Acemoglu et al (2001): settler mortality as an IV for
institutional quality (GDP /capita as outcome)

Levitt (1997): being an election year as IV for police force size
(crime as outcome)

Kern & Hainmueller (2009): having West German TV
reception in East Berlin as an instrument for West German TV
watching (outcome is support for the East German regime)
Nunn & Wantchekon (2011): historical distance of ethnic
group to the coast as a instrument for the slave raiding of
that ethnic group (outcome are trust attitudes today)
Acharya, Blackwell, Sen (2015): cotton suitability as IV for
proportion slave in 1860 (outcome is white attitudes today)
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2/ |\/ with
constant
treatment effects



IV with constant effects

= Let's write down a causal model for Y; with constant effects
and an unmeasured confounder, U;:

Y,(d,u) =a+7td+yu+n;

= |f we connect this with a consistency assumption, we get the
this regression form:

Yi=a+TDl-+}/U,~+7]i

= Here we assume that E[D;7;] = 0, so if we measured U;, then
we would be able to estimate 7.

= But Cov(yU; +1;,D;) # 0 because U is a common cause of D
and Y.
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The role of the instrument

= If we have an instrument, Z;, that satisfies the exclusions
restriction, then

COV(}’UZ' ar ni’Zi) =0

= |t must be independent of U; and it has no correlation with 7;
because neither does the treatment.

Cov(Y;,Z;) = Cov(a + tD; + yU; + n;,Z;)
= COV(O{,Zl-) F COV(TDi,Zi) aF COV(YUI ar ”i?Zi)
= 0 aF TCOV(Di,Zi) ar 0
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IV estimator with constant effects

Yi:a+TDi+)/Ui+7]i
= With this in hand, we can formulate an expression for the
average treatment effect here:

_ Cov(Y,,Z;)  Cov(Y;,Z)/VI[Z;]
T = Cov(D,.Z,) ~ Cov(D,,Z,)/VIZ]

= Reduced form coefficient: Cov(Y;,Z;)/V[Z;]
= First stage coefficient: Cov(D;,Z;)/V[Z;]
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Weak instruments

= Natural estimator:
__ Cov(¥,Z)
Ty = — —
COV(D[,Z[)

= What happens with a weak first stage? Can show that this
estimator converges to:

e ﬁ) +COV(Zi,Ul')
TV =TT Cov(Z,, D)

= If Cov(Z;,D;) is small, then even very small violations of the

exclusion restriction Cov(Z;, U;) # 0 can lead to large
inconsistencies and finite sample bias.

= |mportant to convey the strength of the first-stage via t-test
or F-test with multiple instruments.
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Wald Estimator

= Binary instrument leads to the Wald estimator:

COV(YiaZi) E[Yilzi =1] - E[Yi|Zi =0]

' 7 CovD;,Z,) ~ BIDjZ; = 1] - EID;IZ; = 0]
= Intuitively:

effect of instrument on outcome
effect of instrument on treatment
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What about covariates?

= No covariates up until now. What if we have a set of
covariates X; that we are also conditioning on?

= Let's start with linear models for both the outcome and the

treatment:
Yl':Xl-/ﬁ+TDl'+8i

D;=Xa+yZ +v;
= Now, we assume that X; are exogenous along with Z;:
E[Zv;1=0 E[Z¢]=0
EX;v;]=0 E[X;6;]1=0
= ..but D, is endogenous: E[D;¢g;] # 0
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Getting the reduced form

= We can plug the treatment equation into the outcome
equation:

Yi=X/B+7Xa+yZ; +v;]+¢;
=X/B+7[X/a+yZ]+[tv; +¢&;]
=X/B+7X/a+7yZ]+¢er
= X/p + tE[D,X,, Z,] + &

= Red value in the brackets is the population fitted value of the
treatment, E[D;|X;, Z;]

= Because Z; and X; are uncorrelated with v; and ¢;, then this
fitted value is also independent of &7.

= Thus, the population regression coefficient of a ¥; on
[X/a + yZ;] is the average treatment effect, .
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Two-stage least squares

Estimate @ and 7 from OLS and form fitted values:

[D|Xl, l]—D X/a+7Z,.

Regress of ¥; on X; and D;. Add and subtract 7D;:
Y; =X/B + tD; + [¢; + T(D; - D;)]

= Key question: is D; uncorrelated with the error?
= D, is just a function of X; and Z; so it is uncorrelated with ;.
= We also know that D; is uncorrelated with (D; — D;)?
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Two-stage least squares

= Heuristic procedure:

1. Run regression of treatment on covariates and instrument
2. Construct fitted values of treatment
3. Run regression of outcome on covariates and fitted values

Note that this isn't how we actually estimate 2SLS because
the standard errors are all wrong.
= Computer wants to calculate the standard errors based on &}:

g =Y, - X/ - 7D,
= but what we really want is the standard errors based on ¢;:

g =Y, -X/p-D;
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Nunn & Wantchekon IV example

TABLE 5—IV ESTIMATES OF THE EFFECT OF THE SLAVE TRADE ON TRUST

Trust Trust Trust of
of of local Intragroup Intergroup
relatives neighbors council trust trust
(1 2 3) 4 (5)
Second stage: Dependent variable is an individual’s trust
In {1 +exports /area) —0.190%** —0.245%%% —0.22] %= —0.251%%= —0.174%*
(0.067) (0.070) (0.060) (0.088) (0.080)
Hausman test (p-value) 0.88 0.53 0.09 0.44 0.41
R 0.13 0.16 0.20 0.15 0.12
First stage: Dependent variable is In (1 + exports/area)
Historical distance of ethnic —0.0014%*%  _QQ014***  _Q00L4***  _0.0014%**  —0.0014%%*
group from coast (0.0003) (0.0003) (0.0003) (0.0003) (0.0003)
Colonial population density Yes Yes Yes Yes Yes
Ethnicity-level colonial controls Yes Yes Yes Yes Yes
Individual controls Yes Yes Yes Yes Yes
District controls Yes Yes Yes Yes Yes
Country fixed effects Yes Yes Yes Yes Yes
Number of ohservations 16,709 16,679 15,905 16,636 16,473
Number of clusters 147 / 1,187 147/1,187 146 /1,194 147 /1,186 147 /1,184
F-stat of excl. instrument 26.9 26.8 274 271 27.0
R 0.81 0.81 0.81 0.81 0.81

Notes: The table reports IV estimates. The top panel reports the second-stage estimates, and the bottom panel
reports first-stape estimates. Standard errors are adjusted for two-way clustering at the ethnicity and district levels.
The individual controls, district controls, ethnicity-level colonial controls, and colonial population density measures
are described in Table 3. The null hypothesis of the Hausman test is that the OLS estimates are consistent.
**+Significant at the 1 percent level.
++Significant at the 5 percent level.
#Significant at the 10 percent level.

18 /48



General 2SLS

= Notational convenience: combine X; and D; into one matrix,
X;, of size k, where one column contains D;.

= The structural model, then is:
Yi=X/B+¢;

= Z; will be a vector of [/ exogenous variables that includes any
exogenous variables in X; plus any instruments.

= Key assumption on the instruments:

]E[Zigi] =0
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Nasty Matrix Algebra

= Projection matrix projects values from the columns of Z; to
the columns of X;:

= (E[ZZ!]) 'E[ZX]] (projection matrix)
X, =17,  (fitted values)
= To derive the 2SLS estimator, take the fitted values, 11'Z; and
multiply both sides of the outcome equation by them:
Yi=X/B+¢;
zY, =ZXp+1Z

E[I1'ZY;] = E[I'Z;X/1B + ]E[n’z,.a,.]
E[1T’ ZY;] = E[11’ ZX 18 + H’]E[Zig,-]
E[1T’ Z,Yl] = E[IT’ ZX 18

[ Y] = E[ ],B

B = (EIX;X/D'E[X,Y;]
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How to estimate the parameters

= Collect X; into a n x k matrix X = (X{, ..., X,)
= Collect Z; into a nx [ matrix Z = (Z1,...,Z,)

= Let X = Z(Z'Z)"'Z’X be the matrix of fitted values for X,
then we have

= Matrix party trick: X'Z/n = (1/n) YN X,Z] % E[X,Z]].

= Take the population formula for the parameters:
B = (EIXX/)'E[X;Y;]
= And plug in the sample values (the n cancels out):
B = X'X)" X’y

= This is how R/Stata estimates the 2SLS parameters
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Asymptotics for 2SLS

p= XXXy
= We can insert the true model for y:
p=XX)'X(XB+¢)
= Using the matrix party trick and that X’X = X’X, we have

B=XX) XX+ XX)X¢
=g+ X'X)"'X'e

—p+ [ Y XX Y K
i i

= Consistent because n~! Zl.)?,-gi LS E[X;s;] = 0.
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Asymptotic variance for 2SLS

(- p) = (n! ZK‘K”)_I(”*I/Z Z)?igi)

= By the CLT, n=1/? Zl.)?igi converges in distribution to
N(0,B), where B = E[X]¢&/&;X;].

= By the LLN, n' Y. X,X! 5 E[X,X/].
= Thus, we have that va( — B) has asymptotic variance:
(BIX, X)) 'E[X]&}e,X,1(B[X,X/])~!

= Replace with the sample quantities to get estimate of the
robust 2SLS variance estimator:

var(B) = (ZﬁZXX’) X)-!

where ii; = Y; - X/ B
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Overidentification

= What if we have more instruments than endogenous variables?
= When there are more instruments than causal parameters
(I > k), the model is overidentified.
= When there are as many instruments as causal parameters
(I = k), the model is just identified.
= With more than one instrument and constant effects, we can
test for the plausibility of the exclusion restriction(s) using an
overidentification test.
= |s it plausible to find more than one instrument?

24 /48



Overidentification tests

= Sargan-Hausman test:

» Under the null of all valid instruments, using all instruments
versus a subset should only differ by sampling variation.

» Regress 2SLS residuals, ; on X; and calculate R2 from this
regression.

» Under the null (and homoskedasticity), NR2Z ~ X7 ,.

» Degrees of freedom depends on how many overidentifying
restrictions there are.

= If we reject the null hypothesis in these overidentification
tests, then it means that the exclusion restrcitions for our
instruments are probably incorrect.

= Note that it won't tell us which of them are incorrect, just
that at least one is.

= These overidentification tests depend heavily on the constant
effects assumption
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3/ IV with
neterogenous

treatment effects



Instrumental Variables and
Potential Outcomes

Basic idea of IV:

» D; not randomized, but Z; is
» Z; only affects Y; through D;

= D, now depends on Z; ~~ potential treatments:
D;(1) = D;(z = 1) and D;(0).
= Consistency:

Di = ZlDl(l) ar (1 _ZI)DZ(O)

= Qutcome can depend on both the treatment and the
instrument: Y;(d, z) is the outcome if unit i had received
treatment D; = d and instrument value Z; = z.

27 /48



Key assumptions

ORI

Randomization
Exclusion Restriction
First-stage relationship
Monotonicity
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Randomization

= Need the instrument to be randomized:
[{Y;(d,2),Vd,z},D;(1),D;(0)] 1L Z;

= We can weaken this to conditional ignorability

= But why believe conditional ignorability for the instrument but
not the treatment?

= Best instruments are truly randomized.
= |dentifies the intent-to-treat (ITT) effect:

E[Y;\Z; = 1] - E[Y,|Z; = 0] = E[Y;(D;(1),1) - Y;(D;(0),0)]
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Exclusion Restriction

= The instrument has no direct effect on the outcome, once we
fix the value of the treatment.

= Given this exclusion restriction, we know that the potential
outcomes for each treatment status only depend on the
treatment, not the instrument:

Y;(1) =Y;(1,1) = Y;(1,0)
Y;(0) = Y,(0,1) = ¥,(0,0)

= NOT A TESTABLE ASSUMPTION
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The linear model with
heterogeneous effects

= As usual, rewrite Y; using consistency:

Y; = Y:(0) + (Y;(1) - Y;(0))D;
=ag+T;D;+1;

= Here, we have a¢ = E[Y;(0)] and 7; = Y;(1) — Y;(0).
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First Stage

= This next assumption is a little mundane, but turns out to be
very important: the instrument must have an effect on the
treatment.
E[D;(1) -D;(0)] #0

= Otherwise, what would we be doing? The instrument
wouldn't affect anything.

= Implies that Cov(D;,Z;) # 0
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Monotonicity

= Lastly, we need to make another assumption about the
relationship between the instrument and the treatment.

= Monotonicity says that the presence of the instrument never
dissuades someone from taking the treatment:

D;(1) = D;(0) > 0

= Note if this holds in the opposite direction D;(1) — D;(0) <0,
we can always rescale D; to make the assumption hold.
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Monotonicity means no defiers

= This is sometimes called no defiers.
= With a binary treatment and a binary instrument, there are

four groups:

= These compliance groups are sometimes called principal strata.

Name D;(1) D;(0)
Always Takers 1 1
Never Takers 0 0
Compliers 1 0
Defiers 0 1

= The monotonicity assumption remove the possibility of there
being defiers in the population.

= Anyone with D; = 1 when Z; = 0 must be an always-taker and
anyone with D; = 0 when Z; = 1 must be a never-taker.
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Local Average Treatment Effect
(LATE)

= Under these four assumptions, the Wald estimator is equal
what we call Local average treatment effect (LATE) or the
complier average treatment effect (CATE).

= This is is the ATE among the compliers: those that take the
treatment when encouraged to do so.

= That is, the LATE theorem, states that:

E(Y|Z; = 1] - E[Y;|Z; = 0]
EID;Z; = 1] - E[D,1Z; = 0]

= E[Y;(1) - ¥;(0)|D;(1) > D;(0)]

= This fact was a massive intellectual jump in our understanding
of IV.
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Proof of the LATE theorem

= Under the exclusion restriction and randomization,

E[Yi|Zi =1] = E[Yi(o) + (Yi(l) - Yi(o))Di|Zi =1]

= E[Y;(0) + (Y;(1) = Y;(0))D;(1)] (randomization)
= The same applies to when Z; = 0, so we have
E[Y;|Z; = 0] = E[Y;(0) + (Y;(1) - ¥;(0))D;(0)]

E[(Y;(1) = Y;(0))(D;(1) — D;(0))]
E[(Y;(1) = Y;(0))(1)ID;(1) > D;(0)] Pr[D;(1) > D;(0)]
E[(Y;(1) = Y;(0))(=1)ID;(1) < D;(0)] Pr[D;(1) < D;(0)]
E[Y;(1) = Y;(0)|D;(1) > D;(0)] Pr[D;(1) > D;(0)]

+

= The third equality comes from monotonicity: with this
assumption, D;(1) < D;(0) never occurs.
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Proof (continued)

E[Y;|Z; = 1]1-E[Y;|Z; = 0] = E[Y;(1)-Y;(0)|D;(1) > D;(0)] Pr[D;(1) > D;(0)]

= We can use the same argument for the denominator:

E[Dilzi =1] - E[Di|Zi =0] = E[Di(l) _Di(O)]
= Pr[D;(1) > D;(0)]

= Dividing these two expressions through gives the LATE.
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Is the LATE useful?

= Once we allow for heterogeneous effects, all we can estimate
with IV is the effect of treatment among compliers.

= This is a unknown subset of the data.
» Treated units are a mix of always takers and compliers.
» Control units are a mix of never takers and compliers.
= Without further assumptions, T;a7r # TATE-

= Complier group depends on the instrument ~~ different Vs
will lead to different estimands.

= 2SLS “cheats” by assuming that the effect is constant, so it is
the same for compliers and non-compliers.
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Randomized trials with one-sided
noncompliance

= Will the LATE ever be equal to a usual causal quantity?

= When non-compliance is one-sided, then the LATE is equal to
the ATT.

= Think of a randomized experiment:

» Randomized treatment assignment = instrument (Z;)
» Non-randomized actual treatment taken = treatment (D;)

= One-sided noncompliance: only those assigned to treatment
(control) can actually take the treatment (control). Or

= Maybe this is because only those treated actually get pills or
only they are invited to the job training location.
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Benefits of one-sided
noncompliance

= One-sided noncompliance ~ no “always-takers” and since
there are no defiers,

> Treated units must be compliers.
» ATT is the same as the LATE.

= Thus, we know that: E[Y,|Z; = 1] — E[Y;|Z; = 0] =
E[Y;(0) + (Y;(1) - Y;(0)D;|Z; = 1] - E[Y;(0)1Z; = 0]
(exclusion restriction + one-sided noncompliance)
=E[Y;(0)|Z; = 1] + E[(Y;(1) - Y;(0))D;|Z; = 1] - E[¥;(0)|Z; = 0]
=E[Y;(0)] + E[(Y;(1) - ¥;(0))D;|Z; = 1] - E[Y;(0)]
(randomization)
=E[(Y;(1) - Y;(0))D;|Z; = 1]
=E[Y;(1) - Y;(0)D; = 1,Z; = 1] Pr[D; = 11Z; = 1]
(law of iterated expectations + binary treatment)
=E[Y;(1) - Y;(0)ID; = 1] Pr[D; = 1|Z; = 1]
(one-sided noncompliance)
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= Noting that Pr[D; = 1|Z; = 0] = 0, then the Wald estimator is
just the ATT:

E[Y,|Z, = 1] - E[Y,|Z, = 0] _ )
Pr[D; = 1|Z; = 1] = E[Y,(1) - Y;(0)|D; = 1]

= Thus, under the additional assumption of one-sided

compliance, we can estimate the ATT using the usual IV
approach
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4/ |\/ extensions



Falsification tests

VAR
’ \
»

~
Z—D—Y

exclusion restriction

= The exclusion restriction cannot be tested directly, but it can
be falsified.

= Falsification test Test the reduced form effect of Z; on Y; in
situations where it is impossible or extremely unlikely that Z;
could affect D;.

= Because Z; can't affect D;, then the exclusion restriction
implies that this falsification test should have 0 effect.

= Nunn & Wantchekon (2011): use distance to coast as an
instrument for Africans, use distance to the coast in an Asian
sample as falsification test.
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Nunn & Wantchekon falsification
test

VOL. 101 NO. 7 NUNN AND WANTCHEKON: THE ORIGINS OF MISTRUST IN AFRICA 3243

TapLE 7—REDUCED FORM RELATIONSHIP BETWEEN THE DISTANCE FROM THE CoAST
AND TRUST WITHIN AFRICA AND ASIA

Trust of local govemment council

Afrobarometer sample Asiabarometer sample
(1) (2) (3) ()
Distance from the coast 0.00039%*+  0.00031***  _0.00001 0.00001
(0.00009) (0.00008) (0.00010) (0.00009)

Country fixed effects Yes Yes Yes Yes
Individual controls No Yes No Yes
Number of observations 19,913 19,913 5,409 5,409
Number of clusters 185 185 62 62
R 0.16 0.18 0.19 022

Notes: The table reports OLS estimates. The unit of observation is an individual. The depen-
dent variable in the Asiabarometer sample is the respondent’s answer to the question: “How
much do you trust your local government?” The categories for the answers are the same in
the Asiabarometer as in the Afrobarometer. Standard errors are clustered at the ethnicity level
in the Afrobarometer regressions and at the location (city) level in the Asiabarometer and the
‘WVS samples. The individual controls are for age, age squared, a gender indicator, education
fixed effects, and religion fixed effects.
*=*Gignificant at the 1 percent level.
**Sipnificant at the 5 percent level.
*Significant at the 10 percent level.
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Size, characteristics of the
compliers

= While we cannot identify who is a complier and who is not a
complier in general, we can estimate the size of the complier
group:

Pr[D;(1) > D;(0)] = E[D;(1)-D;(0)] = E[D;|Z; = 1]-E[D,|Z; = 0]

= Can extend this to calculate features of the complier group:

» Covariate means, variances, etc.
» Abadie (2003) shows how to weight the data to estimate these
quantities.
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Multiple instruments

= Different instruments ~» different LATEs

> Instrument 1, Z;; with LATE 7,
» Instrument 2, Z,» with LATE 7,

= Use both in the first stage:

D; = mZy; + w22y,
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2SLS as weighted average

= MHE shows that the 2SLS estimator using these two

instruments is a weighted sum of the two component LATEs:

PasLs =y T+ (1 —y)7y,
where the weights are:

~ x,Cov(D;, Z,;)
¥ = 7. Cov(D,.Z,,) + m,Cov(D;, Zy,)

= Thus, the 2SLS estimate is a weighted average of causal
effects for each instrument, where the weights are related to
the strength of first-stage.
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Covariates and heterogeneous
effects

= It might be the case that the above assumptions only hold
conditional on some covariates, X;. That is, instead of
randomization, we might have conditional ignorability:

[{Y;(d,z),Vd,z},D;(1),D;(0)] 1L Z;|X;
= We would also have exclusion conditional on the covariates:
Pr[Y;(d,0) = Y;(d,1)|X;]=1 ford=1,0

= Under these assumptions, with fully saturated first and second
stages, then 2SLS estimates a weighted average of the
covariates-specific LATEs (very similar to regression).

= Abadie (2003) shows how to estimate the overall LATE using
a weighting approach based on a “propensity score” for the
instrument.
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