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1/ IV setup
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Where are we? Where are we
going?

• We saw how to identify and estimate effects under no
unmeasured confounding and with repeated measurements

• What if we have neither? Are we doomed?
• Not necessarily if you can identify some exogenous sources of

variation that drives the treatment.
• Instrumental variables allows for unmeasured confounding on

the the treatment-outcome relationship.
• Use the unconfounded variation in the instrument to help

identify treatment effects.
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Basic IV setup with DAGs

𝑍 𝐷

𝑈

𝑌

exclusion restriction

• 𝑍 is the instrument, 𝐷 is the treatment, and 𝑈 is the
unmeasured confounder

• Exclusion restriction
▶ no common causes of the instrument and the outcome
▶ no direct or indirect effect of the instrument on the outcome

not through the treatment.

• First-stage relationship: 𝑍 affects 𝐷
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An IV is only as good as its
assumptions

𝑍 𝐷

𝑈

𝑌

exclusion restriction

• Finding a believable instrument is incredibly difficult and some
people never believe any IV setups.

• When effects vary, the IV approach estimates a “local” ATE
that is local to this particular instrument.
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IVs in the field

• Angrist (1990): Draft lottery as an IV for military service
(income as outcome)

• Acemoglu et al (2001): settler mortality as an IV for
institutional quality (GDP/capita as outcome)

• Levitt (1997): being an election year as IV for police force size
(crime as outcome)

• Kern & Hainmueller (2009): having West German TV
reception in East Berlin as an instrument for West German TV
watching (outcome is support for the East German regime)

• Nunn & Wantchekon (2011): historical distance of ethnic
group to the coast as a instrument for the slave raiding of
that ethnic group (outcome are trust attitudes today)

• Acharya, Blackwell, Sen (2015): cotton suitability as IV for
proportion slave in 1860 (outcome is white attitudes today)
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2/ IV with
constant
treatment effects
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IV with constant effects

• Let’s write down a causal model for 𝑌𝑖 with constant effects
and an unmeasured confounder, 𝑈𝑖:

𝑌𝑖(𝑑, 𝑢) = 𝛼 + 𝜏𝑑 + 𝛾𝑢 + 𝜂𝑖

• If we connect this with a consistency assumption, we get the
this regression form:

𝑌𝑖 = 𝛼 + 𝜏𝐷𝑖 + 𝛾𝑈𝑖 + 𝜂𝑖

• Here we assume that 𝔼[𝐷𝑖𝜂𝑖] = 0, so if we measured 𝑈𝑖, then
we would be able to estimate 𝜏.

• But Cov(𝛾𝑈𝑖 + 𝜂𝑖, 𝐷𝑖) ≠ 0 because 𝑈 is a common cause of 𝐷
and 𝑌 .
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The role of the instrument

• If we have an instrument, 𝑍𝑖, that satisfies the exclusions
restriction, then

Cov(𝛾𝑈𝑖 + 𝜂𝑖, 𝑍𝑖) = 0

• It must be independent of 𝑈𝑖 and it has no correlation with 𝜂𝑖
because neither does the treatment.

Cov(𝑌𝑖, 𝑍𝑖) = Cov(𝛼 + 𝜏𝐷𝑖 + 𝛾𝑈𝑖 + 𝜂𝑖, 𝑍𝑖)
= Cov(𝛼, 𝑍𝑖) + Cov(𝜏𝐷𝑖, 𝑍𝑖) + Cov(𝛾𝑈𝑖 + 𝜂𝑖, 𝑍𝑖)
= 0 + 𝜏Cov(𝐷𝑖, 𝑍𝑖) + 0
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IV estimator with constant effects

𝑌𝑖 = 𝛼 + 𝜏𝐷𝑖 + 𝛾𝑈𝑖 + 𝜂𝑖

• With this in hand, we can formulate an expression for the
average treatment effect here:

𝜏 = Cov(𝑌𝑖, 𝑍𝑖)
Cov(𝐷𝑖, 𝑍𝑖)

= Cov(𝑌𝑖, 𝑍𝑖)/𝕍[𝑍𝑖]
Cov(𝐷𝑖, 𝑍𝑖)/𝕍[𝑍𝑖]

• Reduced form coefficient: Cov(𝑌𝑖, 𝑍𝑖)/𝕍[𝑍𝑖]
• First stage coefficient: Cov(𝐷𝑖, 𝑍𝑖)/𝕍[𝑍𝑖]

11 / 48



Weak instruments

• Natural estimator:

�̂�𝐼𝑉 = Ĉov(𝑌𝑖, 𝑍𝑖)
Ĉov(𝐷𝑖, 𝑍𝑖)

• What happens with a weak first stage? Can show that this
estimator converges to:

�̂�𝐼𝑉
𝑝→ 𝜏 + Cov(𝑍𝑖, 𝑈𝑖)

Cov(𝑍𝑖, 𝐷𝑖)

• If Cov(𝑍𝑖, 𝐷𝑖) is small, then even very small violations of the
exclusion restriction Cov(𝑍𝑖, 𝑈𝑖) ≠ 0 can lead to large
inconsistencies and finite sample bias.

• Important to convey the strength of the first-stage via 𝑡-test
or 𝐹-test with multiple instruments.
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Wald Estimator

• Binary instrument leads to the Wald estimator:

𝜏 = Cov(𝑌𝑖, 𝑍𝑖)
Cov(𝐷𝑖, 𝑍𝑖)

= 𝔼[𝑌𝑖|𝑍𝑖 = 1] − 𝔼[𝑌𝑖|𝑍𝑖 = 0]
𝔼[𝐷𝑖|𝑍𝑖 = 1] − 𝔼[𝐷𝑖|𝑍𝑖 = 0]

• Intuitively:

effect of instrument on outcome
effect of instrument on treatment
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What about covariates?

• No covariates up until now. What if we have a set of
covariates 𝑋𝑖 that we are also conditioning on?

• Let’s start with linear models for both the outcome and the
treatment:

𝑌𝑖 = 𝑋′
𝑖 𝛽 + 𝜏𝐷𝑖 + 𝜀𝑖

𝐷𝑖 = 𝑋′
𝑖 𝛼 + 𝛾𝑍𝑖 + 𝜈𝑖

• Now, we assume that 𝑋𝑖 are exogenous along with 𝑍𝑖:

𝔼[𝑍𝑖𝜈𝑖] = 0 𝔼[𝑍𝑖𝜀𝑖] = 0

𝔼[𝑋𝑖𝜈𝑖] = 0 𝔼[𝑋𝑖𝜀𝑖] = 0
• …but 𝐷𝑖 is endogenous: 𝔼[𝐷𝑖𝜀𝑖] ≠ 0
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Getting the reduced form

• We can plug the treatment equation into the outcome
equation:

𝑌𝑖 = 𝑋′
𝑖 𝛽 + 𝜏[𝑋′

𝑖 𝛼 + 𝛾𝑍𝑖 + 𝜈𝑖] + 𝜀𝑖
= 𝑋′

𝑖 𝛽 + 𝜏[𝑋′
𝑖 𝛼 + 𝛾𝑍𝑖] + [𝜏𝜈𝑖 + 𝜀𝑖]

= 𝑋′
𝑖 𝛽 + 𝜏[𝑋′

𝑖 𝛼 + 𝛾𝑍𝑖] + 𝜀∗
𝑖

= 𝑋′
𝑖 𝛽 + 𝜏𝔼[𝐷𝑖|𝑋𝑖, 𝑍𝑖] + 𝜀∗

𝑖

• Red value in the brackets is the population fitted value of the
treatment, 𝔼[𝐷𝑖|𝑋𝑖, 𝑍𝑖]

• Because 𝑍𝑖 and 𝑋𝑖 are uncorrelated with 𝜈𝑖 and 𝜀𝑖, then this
fitted value is also independent of 𝜀∗

𝑖 .
• Thus, the population regression coefficient of a 𝑌𝑖 on

[𝑋′
𝑖 𝛼 + 𝛾𝑍𝑖] is the average treatment effect, 𝜏.
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Two-stage least squares

• Estimate 𝛼 and �̂� from OLS and form fitted values:

�̂�[𝐷𝑖|𝑋𝑖, 𝑍𝑖] = �̂�𝑖 = 𝑋′
𝑖 𝛼 + �̂�𝑍𝑖.

• Regress of 𝑌𝑖 on 𝑋𝑖 and �̂�𝑖. Add and subtract 𝜏�̂�𝑖:

𝑌𝑖 = 𝑋′
𝑖 𝛽 + 𝜏�̂�𝑖 + [𝜀𝑖 + 𝜏(𝐷𝑖 − �̂�𝑖)]

• Key question: is �̂�𝑖 uncorrelated with the error?
• �̂�𝑖 is just a function of 𝑋𝑖 and 𝑍𝑖 so it is uncorrelated with 𝜀𝑖.
• We also know that �̂�𝑖 is uncorrelated with (𝐷𝑖 − �̂�𝑖)?
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Two-stage least squares

• Heuristic procedure:
1. Run regression of treatment on covariates and instrument
2. Construct fitted values of treatment
3. Run regression of outcome on covariates and fitted values

• Note that this isn’t how we actually estimate 2SLS because
the standard errors are all wrong.

• Computer wants to calculate the standard errors based on 𝜀∗
𝑖 :

𝜀∗
𝑖 = 𝑌𝑖 − 𝑋′

𝑖 𝛽 − 𝜏�̂�𝑖

• but what we really want is the standard errors based on 𝜀𝑖:

𝜀𝑖 = 𝑌𝑖 − 𝑋′
𝑖 𝛽 − 𝜏𝐷𝑖
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Nunn & Wantchekon IV example
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General 2SLS

• Notational convenience: combine 𝑋𝑖 and 𝐷𝑖 into one matrix,
𝑋𝑖, of size 𝑘, where one column contains 𝐷𝑖.

• The structural model, then is:

𝑌𝑖 = 𝑋′
𝑖 𝛽 + 𝜀𝑖

• 𝑍𝑖 will be a vector of 𝑙 exogenous variables that includes any
exogenous variables in 𝑋𝑖 plus any instruments.

• Key assumption on the instruments:

𝔼[𝑍𝑖𝜀𝑖] = 0
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Nasty Matrix Algebra
• Projection matrix projects values from the columns of 𝑍𝑖 to

the columns of 𝑋𝑖:
Π = (𝔼[𝑍𝑖𝑍′

𝑖 ])−1𝔼[𝑍𝑖𝑋′
𝑖 ] (projection matrix)

̃𝑋𝑖 = Π′𝑍𝑖 (fitted values)
• To derive the 2SLS estimator, take the fitted values, Π′𝑍𝑖 and

multiply both sides of the outcome equation by them:
𝑌𝑖 = 𝑋′

𝑖 𝛽 + 𝜀𝑖
Π′𝑍𝑖𝑌𝑖 = Π′𝑍𝑖𝑋′

𝑖 𝛽 + Π′𝑍𝑖𝜀𝑖
𝔼[Π′𝑍𝑖𝑌𝑖] = 𝔼[Π′𝑍𝑖𝑋′

𝑖 ]𝛽 + 𝔼[Π′𝑍𝑖𝜀𝑖]
𝔼[Π′𝑍𝑖𝑌𝑖] = 𝔼[Π′𝑍𝑖𝑋′

𝑖 ]𝛽 + Π′𝔼[𝑍𝑖𝜀𝑖]
𝔼[Π′𝑍𝑖𝑌𝑖] = 𝔼[Π′𝑍𝑖𝑋′

𝑖 ]𝛽
𝔼[ ̃𝑋𝑖𝑌𝑖] = 𝔼[ ̃𝑋𝑖𝑋′

𝑖 ]𝛽
𝛽 = (𝔼[ ̃𝑋𝑖𝑋′

𝑖 ])−1𝔼[ ̃𝑋𝑖𝑌𝑖]
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How to estimate the parameters

• Collect 𝑋𝑖 into a 𝑛 × 𝑘 matrix 𝐗 = (𝑋′
1, … , 𝑋′𝑛)

• Collect 𝑍𝑖 into a 𝑛 × 𝑙 matrix 𝐙 = (𝑍′
1, … , 𝑍′𝑛)

• Let �̂� = 𝐙(𝐙′𝐙)−1𝐙′𝐗 be the matrix of fitted values for 𝐗,
then we have

• Matrix party trick: 𝐗′𝐙/𝑛 = (1/𝑛) ∑𝑁
𝑖 𝑋𝑖𝑍′

𝑖
𝑝→ 𝔼[𝑋𝑖𝑍′

𝑖 ].
• Take the population formula for the parameters:

𝛽 = (𝔼[ ̃𝑋𝑖𝑋′
𝑖 ])−1𝔼[ ̃𝑋𝑖𝑌𝑖]

• And plug in the sample values (the 𝑛 cancels out):

̂𝛽 = (�̂�′𝐗)−1�̂�′𝐲

• This is how R/Stata estimates the 2SLS parameters
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Asymptotics for 2SLS

̂𝛽 = (�̂�′𝐗)−1�̂�′𝐲

• We can insert the true model for 𝐲:

̂𝛽 = (�̂�′𝐗)−1�̂�′(𝐗𝛽 + 𝜀)

• Using the matrix party trick and that �̂�′𝐗 = �̂�′�̂�, we have

̂𝛽 = (�̂�′𝐗)−1�̂�′𝐗𝛽 + (�̂�′𝐗)−1�̂�′𝜀
= 𝛽 + (�̂�′�̂�)−1�̂�′𝜀

= 𝛽 + [𝑛−1 ∑
𝑖

𝑋𝑖𝑋′
𝑖 ]−1𝑛−1 ∑

𝑖
𝑋𝑖𝜀𝑖

• Consistent because 𝑛−1 ∑𝑖 𝑋𝑖𝜀𝑖
𝑝→ 𝔼[𝑋𝑖𝜀𝑖] = 0.
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Asymptotic variance for 2SLS

√𝑛( ̂𝛽 − 𝛽) = (𝑛−1 ∑
𝑖

𝑋𝑖𝑋′
𝑖 )−1(𝑛−1/2 ∑

𝑖
𝑋𝑖𝜀𝑖)

• By the CLT, 𝑛−1/2 ∑𝑖 𝑋𝑖𝜀𝑖 converges in distribution to
𝑁(0, 𝐵), where 𝐵 = 𝔼[𝑋′

𝑖 𝜀′
𝑖𝜀𝑖𝑋𝑖].

• By the LLN, 𝑛−1 ∑𝑖 𝑋𝑖𝑋′
𝑖

𝑝→ 𝔼[𝑋𝑖𝑋′
𝑖 ].

• Thus, we have that √𝑛( ̂𝛽 − 𝛽) has asymptotic variance:

(𝔼[𝑋𝑖𝑋′
𝑖 ])−1𝔼[𝑋′

𝑖 𝜀′
𝑖𝜀𝑖𝑋𝑖](𝔼[𝑋𝑖𝑋′

𝑖 ])−1

• Replace with the sample quantities to get estimate of the
robust 2SLS variance estimator:

v̂ar( ̂𝛽) = (�̂�′�̂�)−1( ∑
𝑖

̂𝑢2
𝑖 𝑋𝑖𝑋′

𝑖 )(�̂�′�̂�)−1

where ̂𝑢𝑖 = 𝑌𝑖 − 𝑋′
𝑖 ̂𝛽

23 / 48



Overidentification

• What if we have more instruments than endogenous variables?
• When there are more instruments than causal parameters

(𝑙 > 𝑘), the model is overidentified.
• When there are as many instruments as causal parameters

(𝑙 = 𝑘), the model is just identified.
• With more than one instrument and constant effects, we can

test for the plausibility of the exclusion restriction(s) using an
overidentification test.

• Is it plausible to find more than one instrument?
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Overidentification tests

• Sargan-Hausman test:
▶ Under the null of all valid instruments, using all instruments

versus a subset should only differ by sampling variation.
▶ Regress 2SLS residuals, ̂𝜀𝑖 on 𝑋𝑖 and calculate 𝑅2𝑢 from this

regression.
▶ Under the null (and homoskedasticity), 𝑁𝑅2𝑢 ∼ Χ2

𝑙−𝑘.
▶ Degrees of freedom depends on how many overidentifying

restrictions there are.
• If we reject the null hypothesis in these overidentification

tests, then it means that the exclusion restrcitions for our
instruments are probably incorrect.

• Note that it won’t tell us which of them are incorrect, just
that at least one is.

• These overidentification tests depend heavily on the constant
effects assumption
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3/ IV with
heterogenous
treatment effects
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Instrumental Variables and
Potential Outcomes

• Basic idea of IV:
▶ 𝐷𝑖 not randomized, but 𝑍𝑖 is
▶ 𝑍𝑖 only affects 𝑌𝑖 through 𝐷𝑖

• 𝐷𝑖 now depends on 𝑍𝑖 ⇝ potential treatments:
𝐷𝑖(1) = 𝐷𝑖(𝑧 = 1) and 𝐷𝑖(0).

• Consistency:

𝐷𝑖 = 𝑍𝑖𝐷𝑖(1) + (1 − 𝑍𝑖)𝐷𝑖(0)

• Outcome can depend on both the treatment and the
instrument: 𝑌𝑖(𝑑, 𝑧) is the outcome if unit 𝑖 had received
treatment 𝐷𝑖 = 𝑑 and instrument value 𝑍𝑖 = 𝑧.
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Key assumptions

1. Randomization
2. Exclusion Restriction
3. First-stage relationship
4. Monotonicity
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Randomization

• Need the instrument to be randomized:

[{𝑌𝑖(𝑑, 𝑧), ∀𝑑, 𝑧}, 𝐷𝑖(1), 𝐷𝑖(0)] ⟂⟂ 𝑍𝑖

• We can weaken this to conditional ignorability
• But why believe conditional ignorability for the instrument but

not the treatment?
• Best instruments are truly randomized.
• Identifies the intent-to-treat (ITT) effect:

𝐸[𝑌𝑖|𝑍𝑖 = 1] − 𝐸[𝑌𝑖|𝑍𝑖 = 0] = 𝐸[𝑌𝑖(𝐷𝑖(1), 1) − 𝑌𝑖(𝐷𝑖(0), 0)]
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Exclusion Restriction

• The instrument has no direct effect on the outcome, once we
fix the value of the treatment.

𝑌𝑖(𝑑, 1) = 𝑌𝑖(𝑑, 0) for 𝑑 = 0, 1

• Given this exclusion restriction, we know that the potential
outcomes for each treatment status only depend on the
treatment, not the instrument:

𝑌𝑖(1) ≡ 𝑌𝑖(1, 1) = 𝑌𝑖(1, 0)
𝑌𝑖(0) ≡ 𝑌𝑖(0, 1) = 𝑌𝑖(0, 0)

• NOT A TESTABLE ASSUMPTION
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The linear model with
heterogeneous effects

• As usual, rewrite 𝑌𝑖 using consistency:

𝑌𝑖 = 𝑌𝑖(0) + (𝑌𝑖(1) − 𝑌𝑖(0))𝐷𝑖
= 𝛼0 + 𝜏𝑖𝐷𝑖 + 𝜂𝑖

• Here, we have 𝛼0 = 𝐸[𝑌𝑖(0)] and 𝜏𝑖 = 𝑌𝑖(1) − 𝑌𝑖(0).
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First Stage

• This next assumption is a little mundane, but turns out to be
very important: the instrument must have an effect on the
treatment.

𝐸[𝐷𝑖(1) − 𝐷𝑖(0)] ≠ 0
• Otherwise, what would we be doing? The instrument

wouldn’t affect anything.
• Implies that Cov(𝐷𝑖, 𝑍𝑖) ≠ 0
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Monotonicity

• Lastly, we need to make another assumption about the
relationship between the instrument and the treatment.

• Monotonicity says that the presence of the instrument never
dissuades someone from taking the treatment:

𝐷𝑖(1) − 𝐷𝑖(0) ≥ 0

• Note if this holds in the opposite direction 𝐷𝑖(1) − 𝐷𝑖(0) ≤ 0,
we can always rescale 𝐷𝑖 to make the assumption hold.
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Monotonicity means no defiers

• This is sometimes called no defiers.
• With a binary treatment and a binary instrument, there are

four groups:
Name 𝐷𝑖(1) 𝐷𝑖(0)
Always Takers 1 1
Never Takers 0 0
Compliers 1 0
Defiers 0 1

• These compliance groups are sometimes called principal strata.
• The monotonicity assumption remove the possibility of there

being defiers in the population.
• Anyone with 𝐷𝑖 = 1 when 𝑍𝑖 = 0 must be an always-taker and

anyone with 𝐷𝑖 = 0 when 𝑍𝑖 = 1 must be a never-taker.
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Local Average Treatment Effect
(LATE)

• Under these four assumptions, the Wald estimator is equal
what we call Local average treatment effect (LATE) or the
complier average treatment effect (CATE).

• This is is the ATE among the compliers: those that take the
treatment when encouraged to do so.

• That is, the LATE theorem, states that:

𝐸[𝑌𝑖|𝑍𝑖 = 1] − 𝐸[𝑌𝑖|𝑍𝑖 = 0]
𝐸[𝐷𝑖|𝑍𝑖 = 1] − 𝐸[𝐷𝑖|𝑍𝑖 = 0] = 𝐸[𝑌𝑖(1) − 𝑌𝑖(0)|𝐷𝑖(1) > 𝐷𝑖(0)]

• This fact was a massive intellectual jump in our understanding
of IV.
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Proof of the LATE theorem
• Under the exclusion restriction and randomization,

𝐸[𝑌𝑖|𝑍𝑖 = 1] = 𝐸[𝑌𝑖(0) + (𝑌𝑖(1) − 𝑌𝑖(0))𝐷𝑖|𝑍𝑖 = 1]
= 𝐸[𝑌𝑖(0) + (𝑌𝑖(1) − 𝑌𝑖(0))𝐷𝑖(1)] (randomization)

• The same applies to when 𝑍𝑖 = 0, so we have

𝐸[𝑌𝑖|𝑍𝑖 = 0] = 𝐸[𝑌𝑖(0) + (𝑌𝑖(1) − 𝑌𝑖(0))𝐷𝑖(0)]

• Thus, 𝐸[𝑌𝑖|𝑍𝑖 = 1] − 𝐸[𝑌𝑖|𝑍𝑖 = 0] =

𝐸[(𝑌𝑖(1) − 𝑌𝑖(0))(𝐷𝑖(1) − 𝐷𝑖(0))]
=𝐸[(𝑌𝑖(1) − 𝑌𝑖(0))(1)|𝐷𝑖(1) > 𝐷𝑖(0)] Pr[𝐷𝑖(1) > 𝐷𝑖(0)]
+𝐸[(𝑌𝑖(1) − 𝑌𝑖(0))(−1)|𝐷𝑖(1) < 𝐷𝑖(0)] Pr[𝐷𝑖(1) < 𝐷𝑖(0)]
=𝐸[𝑌𝑖(1) − 𝑌𝑖(0)|𝐷𝑖(1) > 𝐷𝑖(0)] Pr[𝐷𝑖(1) > 𝐷𝑖(0)]

• The third equality comes from monotonicity: with this
assumption, 𝐷𝑖(1) < 𝐷𝑖(0) never occurs.
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Proof (continued)

𝐸[𝑌𝑖 |𝑍𝑖 = 1]−𝐸[𝑌𝑖 |𝑍𝑖 = 0] = 𝐸[𝑌𝑖(1)−𝑌𝑖(0)|𝐷𝑖(1) > 𝐷𝑖(0)] Pr[𝐷𝑖(1) > 𝐷𝑖(0)]

• We can use the same argument for the denominator:

𝐸[𝐷𝑖|𝑍𝑖 = 1] − 𝐸[𝐷𝑖|𝑍𝑖 = 0] = 𝐸[𝐷𝑖(1) − 𝐷𝑖(0)]
= Pr[𝐷𝑖(1) > 𝐷𝑖(0)]

• Dividing these two expressions through gives the LATE.
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Is the LATE useful?

• Once we allow for heterogeneous effects, all we can estimate
with IV is the effect of treatment among compliers.

• This is a unknown subset of the data.
▶ Treated units are a mix of always takers and compliers.
▶ Control units are a mix of never takers and compliers.

• Without further assumptions, 𝜏𝐿𝐴𝑇𝐸 ≠ 𝜏𝐴𝑇𝐸.
• Complier group depends on the instrument ⇝ different IVs

will lead to different estimands.
• 2SLS “cheats” by assuming that the effect is constant, so it is

the same for compliers and non-compliers.
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Randomized trials with one-sided
noncompliance

• Will the LATE ever be equal to a usual causal quantity?
• When non-compliance is one-sided, then the LATE is equal to

the ATT.
• Think of a randomized experiment:

▶ Randomized treatment assignment = instrument (𝑍𝑖)
▶ Non-randomized actual treatment taken = treatment (𝐷𝑖)

• One-sided noncompliance: only those assigned to treatment
(control) can actually take the treatment (control). Or

𝐷𝑖(0) = 0∀𝑖 ⇝ Pr[𝐷𝑖 = 1|𝑍𝑖 = 0] = 0

• Maybe this is because only those treated actually get pills or
only they are invited to the job training location.
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Benefits of one-sided
noncompliance

• One-sided noncompliance ⇝ no “always-takers” and since
there are no defiers,

▶ Treated units must be compliers.
▶ ATT is the same as the LATE.

• Thus, we know that: 𝐸[𝑌𝑖|𝑍𝑖 = 1] − 𝐸[𝑌𝑖|𝑍𝑖 = 0] =
𝔼[𝑌𝑖(0) + (𝑌𝑖(1) − 𝑌𝑖(0))𝐷𝑖 |𝑍𝑖 = 1] − 𝔼[𝑌𝑖(0)|𝑍𝑖 = 0]
(exclusion restriction + one-sided noncompliance)

=𝔼[𝑌𝑖(0)|𝑍𝑖 = 1] + 𝐸[(𝑌𝑖(1) − 𝑌𝑖(0))𝐷𝑖 |𝑍𝑖 = 1] − 𝔼[𝑌𝑖(0)|𝑍𝑖 = 0]
=𝔼[𝑌𝑖(0)] + 𝔼[(𝑌𝑖(1) − 𝑌𝑖(0))𝐷𝑖 |𝑍𝑖 = 1] − 𝔼[𝑌𝑖(0)]

(randomization)
=𝔼[(𝑌𝑖(1) − 𝑌𝑖(0))𝐷𝑖 |𝑍𝑖 = 1]
=𝔼[𝑌𝑖(1) − 𝑌𝑖(0)|𝐷𝑖 = 1, 𝑍𝑖 = 1] Pr[𝐷𝑖 = 1|𝑍𝑖 = 1]

(law of iterated expectations + binary treatment)
=𝔼[𝑌𝑖(1) − 𝑌𝑖(0)|𝐷𝑖 = 1] Pr[𝐷𝑖 = 1|𝑍𝑖 = 1]
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• Noting that Pr[𝐷𝑖 = 1|𝑍𝑖 = 0] = 0, then the Wald estimator is
just the ATT:

𝐸[𝑌𝑖|𝑍𝑖 = 1] − 𝐸[𝑌𝑖|𝑍𝑖 = 0]
Pr[𝐷𝑖 = 1|𝑍𝑖 = 1] = 𝐸[𝑌𝑖(1) − 𝑌𝑖(0)|𝐷𝑖 = 1]

• Thus, under the additional assumption of one-sided
compliance, we can estimate the ATT using the usual IV
approach
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4/ IV extensions
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Falsification tests

𝑍 𝐷

𝑈

𝑌

exclusion restriction

• The exclusion restriction cannot be tested directly, but it can
be falsified.

• Falsification test Test the reduced form effect of 𝑍𝑖 on 𝑌𝑖 in
situations where it is impossible or extremely unlikely that 𝑍𝑖
could affect 𝐷𝑖.

• Because 𝑍𝑖 can’t affect 𝐷𝑖, then the exclusion restriction
implies that this falsification test should have 0 effect.

• Nunn & Wantchekon (2011): use distance to coast as an
instrument for Africans, use distance to the coast in an Asian
sample as falsification test.
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Nunn & Wantchekon falsification
test
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Size, characteristics of the
compliers

• While we cannot identify who is a complier and who is not a
complier in general, we can estimate the size of the complier
group:

Pr[𝐷𝑖(1) > 𝐷𝑖(0)] = 𝐸[𝐷𝑖(1)−𝐷𝑖(0)] = 𝐸[𝐷𝑖|𝑍𝑖 = 1]−𝐸[𝐷𝑖|𝑍𝑖 = 0]

• Can extend this to calculate features of the complier group:
▶ Covariate means, variances, etc.
▶ Abadie (2003) shows how to weight the data to estimate these

quantities.
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Multiple instruments

• Different instruments ⇝ different LATEs
▶ Instrument 1, 𝑍𝑖1 with LATE 𝜏1
▶ Instrument 2, 𝑍𝑖2 with LATE 𝜏2

• Use both in the first stage:

�̂�𝑖 = 𝜋1𝑍1𝑖 + 𝜋2𝑍2𝑖.
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2SLS as weighted average

• MHE shows that the 2SLS estimator using these two
instruments is a weighted sum of the two component LATEs:

𝜌2𝑆𝐿𝑆 = 𝜓𝜏1 + (1 − 𝜓)𝜏2,

where the weights are:

𝜓 = 𝜋1Cov(𝐷𝑖, 𝑍1𝑖)
𝜋1Cov(𝐷𝑖, 𝑍1𝑖) + 𝜋2Cov(𝐷𝑖, 𝑍2𝑖)

• Thus, the 2SLS estimate is a weighted average of causal
effects for each instrument, where the weights are related to
the strength of first-stage.
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Covariates and heterogeneous
effects

• It might be the case that the above assumptions only hold
conditional on some covariates, 𝑋𝑖. That is, instead of
randomization, we might have conditional ignorability:

[{𝑌𝑖(𝑑, 𝑧), ∀𝑑, 𝑧}, 𝐷𝑖(1), 𝐷𝑖(0)] ⟂⟂ 𝑍𝑖|𝑋𝑖

• We would also have exclusion conditional on the covariates:

Pr[𝑌𝑖(𝑑, 0) = 𝑌𝑖(𝑑, 1)|𝑋𝑖] = 1 for 𝑑 = 1, 0

• Under these assumptions, with fully saturated first and second
stages, then 2SLS estimates a weighted average of the
covariates-specific LATEs (very similar to regression).

• Abadie (2003) shows how to estimate the overall LATE using
a weighting approach based on a “propensity score” for the
instrument.
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