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1. Heteroskedasticity

2. Clustering

3. Serial Correlation

4. What’s next for you?
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Where are we? Where are we
going?

• Last week: finding and correcting violations of linearity and
non-Normal errors

• This week: detecting and correcting violations of
homoskedasticity
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Review of the OLS assumptions

1. Linearity: 𝐲 = 𝐗𝛽 + 𝐮
2. Random/iid sample: (𝑦𝑖, 𝐱′

𝑖) are a iid sample from the
population.

3. No perfect collinearity: 𝐗 is an 𝑛 × (𝑘 + 1) matrix with rank
𝑘 + 1

4. Zero conditional mean: 𝔼[𝐮|𝐗] = 𝟎
5. Homoskedasticity: 𝕍(𝐮|𝐗) = 𝜎2𝑢𝐈𝑛
6. Normality: 𝐮|𝐗 ∼ 𝑁(𝟎, 𝜎2𝑢𝐈𝑛)

• 1-4 give us unbiasedness/consistency
• 1-5 are the Gauss-Markov, allow for large-sample inference
• 1-6 allow for small-sample inference
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How do we deal with this?
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Plan for today

• Talk about different forms of error variance problems

1. Heteroskedasticity
2. Clustering
3. Serial correlation

• Each is a violation of heteroskedasticity, but each has its own
diagnostics and corrections
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1/
Heteroskedasticity
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Review of homoskedasticity

• Remember:
𝜷 = (𝐗′𝐗)−1 𝐗′𝐲

• Let 𝕍[𝐮|𝐗] = Σ
• Using assumptions 1 and 4, we can show that we have the

following:

𝕍[𝜷̂|𝐗] = (𝐗′𝐗)−1 𝐗′Σ𝐗 (𝐗′𝐗)−1

• To derive this, use three facts about matrices:
▶ If 𝐀 is a constant matrix, then 𝕍[𝐀𝐲] = 𝐀𝕍[𝐲]𝐀′
▶ (𝐀𝐁)′ = 𝐁′𝐀′

▶ (𝐗′𝐗)−1 is symmetric ⇝ ((𝐗′𝐗)−1)
′

= (𝐗′𝐗)−1
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Review of homoskedasticity

• With homoskedasticity, Σ = 𝜎2𝐈

𝕍[𝜷̂|𝐗] = (𝐗′𝐗)−1 𝐗′Σ𝐗 (𝐗′𝐗)−1

= (𝐗′𝐗)−1 𝐗′𝜎2𝐈𝐗 (𝐗′𝐗)−1 (by homoskedasticity)
= 𝜎2 (𝐗′𝐗)−1 𝐗′𝐗 (𝐗′𝐗)−1

= 𝜎2 (𝐗′𝐗)−1

• Replace 𝜎2 with estimate 𝜎̂2 will give us our estimate of the
covariance matrix
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Non-constant error variance
• Homoskedastic:

𝕍[𝐮|𝐗] = 𝜎2𝐈 =
⎡⎢⎢⎢
⎣

𝜎2 0 0 … 0
0 𝜎2 0 … 0

⋮
0 0 0 … 𝜎2

⎤⎥⎥⎥
⎦

• Heteroskedastic:

𝕍[𝐮|𝐗] =
⎡⎢⎢⎢
⎣

𝜎2
1 0 0 … 0

0 𝜎2
2 0 … 0

⋮
0 0 0 … 𝜎2𝑛

⎤⎥⎥⎥
⎦

• Independent, not identical
• Cov(𝑢𝑖, 𝑢𝑗 |𝐗) = 0
• 𝕍(𝑢𝑖|𝐗) = 𝜎2

𝑖
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Consequences of
Heteroskedasticity

• Standard error estimates biased, likely downward
• Test statistics won’t have 𝑡 or 𝐹 distributions
• 𝛼-level tests, the probability of Type I error ≠ 𝛼
• Coverage of 1 − 𝛼 CIs ≠ 1 − 𝛼
• OLS is not BLUE
• 𝜷 still unbiased and consistent for 𝜷
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Visual diagnostics

1. Plot of residuals versus fitted values
▶ In R, plot(mod, which = 1)
▶ Residuals should have the same variance across 𝑥-axis

2. Spread location plots
▶ y-axis: Square-root of the absolute value of the residuals
▶ x-axis: Fitted values
▶ Usually has loess trend curve, should be flat
▶ In R, plot(mod, which = 3)
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Example: Buchanan votes

flvote <- foreign::read.dta("flbuchan.dta")
mod <- lm(edaybuchanan ~ edaytotal, data = flvote)
summary(mod)

##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 54.22945 49.14146 1.10 0.27
## edaytotal 0.00232 0.00031 7.48 2.4e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 333 on 65 degrees of freedom
## Multiple R-squared: 0.463, Adjusted R-squared: 0.455
## F-statistic: 56 on 1 and 65 DF, p-value: 2.42e-10
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Diagnostics

plot(mod, which = 1, lwd = 3)
plot(mod, which = 3, lwd = 3)
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Formal tests
• Plots are usually sufficient, but can use formal hypothesis test

for heteroskedasticity:

𝐻0 ∶ 𝕍[𝑢𝑖|𝐗] = 𝜎2

• Under zero conditional mean, this is equivalent to

𝐻0 ∶ 𝔼[𝑢2
𝑖 |𝐗] = 𝔼[𝑢2

𝑖 ] = 𝜎2

• Under the null, the squared residuals should be unrelated to
the independent variables

• Breush-Pagan test:
1. Regression 𝑦𝑖 on 𝐱′

𝑖 and store residuals, ̂𝑢𝑖
2. Regress ̂𝑢2

𝑖 on 𝐱′
𝑖

3. Run 𝐹-test against null that all slope coefficients are 0

• In R, bptest() in the lmtest package
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Breush-Pagan example

library(lmtest)
bptest(mod)

##
## studentized Breusch-Pagan test
##
## data: mod
## BP = 13, df = 1, p-value = 0.0004
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Dealing with non-constant error
variance

1. Transform the dependent variable
2. Model the heteroskedasticity using Weighted Least Squares

(WLS)
3. Use an estimator of 𝕍[𝜷] that is robust to heteroskedasticity
4. Admit we have the wrong model and use a different approach
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Example: Transforming Buchanan
votes

mod2 <- lm(log(edaybuchanan) ~ log(edaytotal), data = flvote)
summary(mod2)

##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.728 0.400 -6.83 3.5e-09 ***
## log(edaytotal) 0.729 0.038 19.15 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.469 on 65 degrees of freedom
## Multiple R-squared: 0.849, Adjusted R-squared: 0.847
## F-statistic: 367 on 1 and 65 DF, p-value: <2e-16
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Example: Transformed
scale-location plot

plot(mod2, which = 3)
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Example: Transformed
bptest(mod, studentize = FALSE)

##
## Breusch-Pagan test
##
## data: mod
## BP = 250, df = 1, p-value <2e-16

bptest(mod2, studentize = FALSE)

##
## Breusch-Pagan test
##
## data: mod2
## BP = 0.011, df = 1, p-value = 0.9
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Weighted least squares

• Suppose that the heteroskedasticity is known up to a
multiplicative constant:

𝕍[𝑢𝑖|𝐗] = 𝑎𝑖𝜎2

where 𝑎𝑖 = 𝑎𝑖(𝐱′
𝑖) is a positive and known function of 𝐱′

𝑖
• WLS: multiply 𝑦𝑖 by 1/√𝑎𝑖:

𝑦𝑖/√𝑎𝑖 = 𝛽0/√𝑎𝑖 + 𝛽1𝑥𝑖1/√𝑎𝑖 + ⋯ + 𝛽𝑘𝑥𝑖𝑘/√𝑎𝑖 + 𝑢𝑖/√𝑎𝑖
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WLS intuition

• Rescales errors to 𝑢𝑖/√𝑎𝑖, which maintains zero mean error
• But makes the error variance constant again:

𝕍 [ 1
√𝑎𝑖

𝑢𝑖|𝐗] = 1
𝑎𝑖

𝕍 [𝑢𝑖|𝐗]

= 1
𝑎𝑖

𝑎𝑖𝜎2

= 𝜎2

• If you know 𝑎𝑖, then you can use this approach to makes the
model homoeskedastic and, thus, BLUE again

• When do we know 𝑎𝑖?
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WLS procedure
• Define the weighting matrix:

𝐖 =
⎡⎢⎢⎢
⎣

1/√𝑎1 0 0 0
0 1/√𝑎2 0 0
⋮ ⋮ ⋱ ⋮
0 0 0 1/√𝑎𝑛

⎤⎥⎥⎥
⎦

• Run the following regression:

𝐖𝐲 = 𝐖𝐗𝜷 + 𝐖𝐮
𝐲∗ = 𝐗∗𝜷 + 𝐮∗

• Run regression of 𝐲∗ = 𝐖𝐲 on 𝐗∗ = 𝐖𝐗 and all
Gauss-Markov assumptions are satisfied

• Plugging into the usual formula for 𝜷:

𝜷𝑊 = (𝐗′𝐖′𝐖𝐗)−1𝐗′𝐖′𝐖𝐲
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WLS example
• In R, use weights = argument to lm and give the weights

squared: 1/𝑎𝑖
• With the Buchanan data, maybe the variance is proportional

to the total number of ballots cast:

mod.wls <- lm(edaybuchanan ~ edaytotal, weights = 1/edaytotal, data = flvote)
summary(mod.wls)

##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 27.06785 8.50723 3.18 0.0022 **
## edaytotal 0.00263 0.00025 10.50 1.2e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.565 on 65 degrees of freedom
## Multiple R-squared: 0.629, Adjusted R-squared: 0.624
## F-statistic: 110 on 1 and 65 DF, p-value: 1.22e-15
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Comparing WLS to OLS
plot(mod, which = 3, lwd = 2, sub = "")
plot(mod.wls, which = 3, lwd = 2, sub = "")
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Heteroskedasticity consistent
estimator

• Under non-constant error variance:

𝕍[𝐮|𝐗] = Σ =
⎡⎢⎢⎢
⎣

𝜎2
1 0 0 … 0

0 𝜎2
2 0 … 0

⋮
0 0 0 … 𝜎2𝑛

⎤⎥⎥⎥
⎦

• When Σ ≠ 𝜎2𝐈, we are stuck with this expression:

𝕍[𝜷|𝐗] = (𝐗′𝐗)−1 𝐗′Σ𝐗 (𝐗′𝐗)−1

• White (1980) shows that we can consistently estimate this if
we have an estimate of Σ:

𝕍̂[𝜷|𝐗] = (𝐗′𝐗)−1 𝐗′Σ̂𝐗 (𝐗′𝐗)−1

• Sandwich estimator with bread (𝐗′𝐗)−1 and meat 𝐗′Σ̂𝐗
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Computing HC/robust standard
errors

1. Fit regression and obtain residuals 𝐮̂
2. Construct the “meat” matrix Σ̂ with squared residuals in

diagonal:

Σ̂ =
⎡⎢⎢⎢
⎣

̂𝑢2
1 0 0 … 0
0 ̂𝑢2

2 0 … 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … ̂𝑢2𝑛

⎤⎥⎥⎥
⎦

3. Plug Σ̂ into sandwich formula to obtain HC/robust estimator
of the covariance matrix:

𝕍̂[𝜷̂|𝐗] = (𝐗′𝐗)−1 𝐗′Σ̂𝐗 (𝐗′𝐗)−1

• Small-sample corrections (called ‘HC1’):

𝕍̂[𝜷̂|𝐗] = 𝑛
𝑛 − 𝑘 − 1 ⋅ (𝐗′𝐗)−1 𝐗′Σ̂𝐗 (𝐗′𝐗)−1
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Robust SEs in Florida data
library(sandwich)
coeftest(mod)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 54.22945 49.14146 1.10 0.27
## edaytotal 0.00232 0.00031 7.48 2.4e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

coeftest(mod, vcovHC(mod, type = "HC0"))

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 54.22945 40.61283 1.34 0.1864
## edaytotal 0.00232 0.00087 2.67 0.0096 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Robust SEs with correction
coeftest(mod, vcovHC(mod, type = "HC0"))

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 54.22945 40.61283 1.34 0.1864
## edaytotal 0.00232 0.00087 2.67 0.0096 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

coeftest(mod, vcovHC(mod, type = "HC1"))

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 54.229453 41.232904 1.32 0.193
## edaytotal 0.002323 0.000884 2.63 0.011 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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WLS vs. White’s Estimator

• WLS:
▶ With known weights, WLS is efficient
▶ and 𝑆𝐸[𝜷𝑊𝐿𝑆] is consistent
▶ but weights usually aren’t known

• White’s Estimator:
▶ Doesn’t change estimate 𝜷
▶ Consistent for 𝕍[𝜷] under any form of heteroskedasticity
▶ Because it relies on consistency, it is a large sample result, best

with large 𝑛
▶ For small 𝑛, performance might be poor
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2/ Clustering
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Clustered dependence: intuition

• Think back to the Gerber, Green, and Larimer (2008) social
pressure mailer example.

• Their design: randomly sample households and randomly
assign them to different treatment conditions

• But the measurement of turnout is at the individual level
• Violation of iid/random sampling:

▶ errors of individuals within the same household are correlated
▶ ⇝ violation of homoskedasticity

• Called clustering or clustered dependence
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Clustered dependence: notation

• Clusters: 𝑗 = 1, … , 𝑚
• Units: 𝑖 = 1, … , 𝑛𝑗
• 𝑛𝑗 is the number of units in cluster 𝑗
• 𝑛 = ∑𝑗 𝑛𝑗 is the total number of units
• Units are (usually) belong to a single cluster:

▶ voters in households
▶ individuals in states
▶ students in classes
▶ rulings in judges

• Especially important when outcome varies at the unit-level, 𝑦𝑖𝑗
and the main independent variable varies at the cluster level,
𝑥𝑗.

• Ignoring clustering is “cheating”: units not independent
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Clustered dependence: example
model

𝑦𝑖𝑗 = 𝛽0 + 𝛽1𝑥𝑖𝑗 + 𝜀𝑖𝑗
= 𝛽0 + 𝛽1𝑥𝑖𝑗 + 𝑣𝑗 + 𝑢𝑖𝑗

• 𝑣𝑗
𝑖𝑖𝑑∼ 𝑁(0, 𝜌𝜎2) cluster error component

• 𝑢𝑖𝑗
𝑖𝑖𝑑∼ 𝑁(0, (1 − 𝜌)𝜎2) unit error component

• 𝑣𝑖𝑗 and 𝑢𝑖𝑗 are assumed to be independent of each other
• 𝜌 ∈ (0, 1) is called the within-cluster correlation.
• What if we ignore this structure and just use 𝜀𝑖𝑗 as the error?
• Variance of the composite error is 𝜎2:

𝕍[𝜀𝑖𝑗] = 𝕍[𝑣𝑗 + 𝑢𝑖𝑗]
= 𝕍[𝑣𝑗] + 𝕍[𝑢𝑖𝑗]
= 𝜌𝜎2 + (1 − 𝜌)𝜎2 = 𝜎2
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Lack of independence

• Covariance between two units 𝑖 and 𝑠 in the same cluster is
𝜌𝜎2:

Cov[𝜀𝑖𝑗 , 𝜀𝑠𝑗] = 𝜌𝜎2

• Correlation between units in the same group is just 𝜌:

Cor[𝜀𝑖𝑗 , 𝜀𝑠𝑗] = 𝜌

• Zero covariance of two units 𝑖 and 𝑠 in different clusters 𝑗 and
𝑘:

Cov[𝜀𝑖𝑗 , 𝜀𝑠𝑘] = 0
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Example covariance matrix

𝜺 = [ 𝜀1,1 𝜀2,1 𝜀3,1 𝜀4,2 𝜀5,2 𝜀6,2 ]′

𝕍[𝜺|𝐗] = Σ =

⎡⎢⎢⎢⎢⎢⎢
⎣

𝜎2 𝜌𝜎2 𝜌𝜎2 0 0 0
𝜌𝜎2 𝜎2 𝜌𝜎2 0 0 0
𝜌𝜎2 𝜌𝜎2 𝜎2 0 0 0

0 0 0 𝜎2 𝜌𝜎2 𝜌𝜎2

0 0 0 𝜌𝜎2 𝜎2 𝜌𝜎2

0 0 0 𝜌𝜎2 𝜌𝜎2 𝜎2

⎤⎥⎥⎥⎥⎥⎥
⎦
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Error covariance matrix with
clustering

• In general, we can write the covariance matrix as a block
diagonal

• By independence, the errors are uncorrelated across clusters:

𝕍[𝜺|𝐗] = Σ =
⎡⎢⎢⎢
⎣

Σ1 𝟎 … 𝟎
𝟎 Σ2 … 𝟎

⋱
𝟎 𝟎 … Σ𝑚

⎤⎥⎥⎥
⎦

• Here 𝟎 is a matrix of 0’s of the appropriate size.
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Correcting for clustering

1. Including a dummy variable for each cluster
2. “Random effects” models (take above model as true and

estimate 𝜌 and 𝜎2)
3. Cluster-robust (”clustered”) standard errors
4. Aggregate data to the cluster-level and use OLS 𝑦𝑗 = 1𝑛𝑗 ∑𝑖 𝑦𝑖𝑗

▶ If 𝑛𝑗 varies by cluster, then cluster-level errors will have
heteroskedasticity

▶ Can use WLS with cluster size as the weights
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Cluster-robust SEs
• First, let’s write the within-cluster regressions like so:

𝐲𝑗 = 𝐗𝑗𝜷 + 𝜺𝑗

• 𝐲𝑗 is the vector of responses for cluster 𝑗, and so on
• We assume that respondents are independent across clusters,

but possibly dependent within clusters. Thus, we have

𝕍[𝜺𝑗 |𝐗𝑗] = Σ𝑗

• Remember our sandwich expression:

𝕍[𝜷|𝐗] = (𝐗′𝐗)−1 𝐗′Σ𝐗 (𝐗′𝐗)−1

• Under this clustered dependence, we can write this as:

𝕍[𝜷|𝐗] = (𝐗′𝐗)−1 ⎛⎜⎜
⎝

𝑚
∑
𝑗=1

𝐗′
𝑗Σ𝑗𝐗𝑗

⎞⎟⎟
⎠

(𝐗′𝐗)−1
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Estimating CRSEs
• Way to estimate this matrix: replace Σ𝑗 with an estimate

based on the within-cluster residuals, 𝜺𝑗:

Σ̂𝑗 = 𝜺𝑗𝜺′
𝑗

• Final expression for our cluster-robust covariance matrix
estimate:

𝕍̂[𝜷|𝐗] = (𝐗′𝐗)−1 ⎛⎜⎜
⎝

𝑚
∑
𝑗=1

𝐗′
𝑗𝜺𝑗𝜺′

𝑗𝐗𝑗
⎞⎟⎟
⎠

(𝐗′𝐗)−1

• With small-sample adjustment (which is what most software
packages report):

𝕍̂𝑎[𝜷|𝐗] = 𝑚
𝑚 − 1

𝑛 − 1
𝑛 − 𝑘 − 1 (𝐗′𝐗)−1 ⎛⎜⎜

⎝

𝑚
∑
𝑗=1

𝐗′
𝑗𝜺𝑗𝜺′

𝑗𝐗𝑗
⎞⎟⎟
⎠

(𝐗′𝐗)−1
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Example: Gerber, Green, Larimer
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Social pressure model
load("gerber_green_larimer.RData")
social$voted <- 1 * (social$voted == "Yes")
social$treatment <- factor(social$treatment, levels = c("Control",

"Hawthorne", "Civic Duty", "Neighbors", "Self"))
mod1 <- lm(voted ~ treatment, data = social)
coeftest(mod1)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.29664 0.00106 279.53 < 2e-16 ***
## treatmentHawthorne 0.02574 0.00260 9.90 < 2e-16 ***
## treatmentCivic Duty 0.01790 0.00260 6.88 5.8e-12 ***
## treatmentNeighbors 0.08131 0.00260 31.26 < 2e-16 ***
## treatmentSelf 0.04851 0.00260 18.66 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

42 / 64



Social pressure model, CRSEs

• No canned CRSE in R, we posted some code on Canvas:

source("vcovCluster.R")
coeftest(mod1, vcov = vcovCluster(mod1, "hh_id"))

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.29664 0.00131 226.52 < 2e-16 ***
## treatmentHawthorne 0.02574 0.00326 7.90 2.8e-15 ***
## treatmentCivic Duty 0.01790 0.00324 5.53 3.2e-08 ***
## treatmentNeighbors 0.08131 0.00337 24.13 < 2e-16 ***
## treatmentSelf 0.04851 0.00330 14.70 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Cluster-robust standard errors

• CRSE do not change our estimates 𝜷, cannot fix bias
• CRSE is consistent estimator of 𝕍[𝜷] given clustered

dependence
▶ Relies on independence between clusters, dependence within

clusters
▶ Doesn’t depend on the model we present
▶ CRSEs usually > conventional SEs—use when you suspect

clustering
• Consistency of the CRSE are in the number of groups, not the

number of individuals
▶ CRSEs can be incorrect with a small (< 50 maybe) number of

clusters
▶ Block bootstrap can be a useful alternative (see Gov 2002)
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3/ Serial
Correlation
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Time dependence: serial
correlation

• Sometimes we deal with data that is measured over time,
𝑡 = 1, … , 𝑇

• Examples: a country over several years or a person over
weeks/months

• Often have serially correlated: errors in one time period are
correlated with errors in other time periods

• Many different ways for this to happen, but we often assume
a very limited type of dependence called AR(1).
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AR(1) model

• Model for the mean:

𝑦𝑡 = 𝛽0 + 𝛽1𝑥𝑡 + 𝑢𝑡

• Autoregressive error:

𝑢𝑡 = 𝜌𝑢𝑡−1 + 𝑒𝑡 where |𝜌| < 1

• 𝑒𝑡 ∼ 𝑁(0, 𝜎2𝑒)
• 𝜌 is an unknown autoregressive coefficient and measures the

dependence/correlation between the errors and lagged errors
• Just one of many possible time-series models: AR(2) has

𝑢𝑡 = 𝜌𝑢𝑡−1 + 𝛿𝑢𝑡−2 + 𝑒𝑡
• Model could be wrong!
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Error structure of the AR(1) model

𝕍[𝐮] = Σ = 𝜎2

⎡⎢⎢⎢⎢⎢
⎣

1 𝜌 𝜌2 … 𝜌𝑇−1

𝜌 1 𝜌 … 𝜌𝑇−2

𝜌2 𝜌 1 … 𝜌𝑇−3

⋮ ⋮ ⋮ ⋱ ⋮
𝜌𝑇−1 𝜌𝑇−2 𝜌𝑇−3 … 1

⎤⎥⎥⎥⎥⎥
⎦

• What is this saying?
▶ Cov[𝑢1, 𝑢2] = 𝜎2𝜌
▶ Cov[𝑢1, 𝑢3] = 𝜎2𝜌2
▶ Cov[𝑢1, 𝑢4] = 𝜎2𝜌3
▶ Covariance/correlation decreases as time between errors grows

(because |𝜌| < 1)
• 𝜌 is usually positive, which means we underestimate the

variance
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Detecting and fixing serial
correlation

• Detection:
▶ Plot residuals over time
▶ Formal tests (Durbin-Watson statistics)

• Correction:
▶ Use SEs that are robust to serial correlation
▶ AR corrections (e.g. Prais-Winston, Cochrane-Orcutt, etc)
▶ Lagged dependent variables or other dynamic models
▶ Transformations via first-differencing methods
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Example: weight and activity
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Regression ignoring serial
dependence

mod.ts <- lm(weight ~ active.mins, data = weight)
summary(mod.ts)

##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 171.5521 0.5832 294.16 <2e-16 ***
## active.mins -0.0409 0.0138 -2.96 0.0053 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.06 on 38 degrees of freedom
## Multiple R-squared: 0.187, Adjusted R-squared: 0.166
## F-statistic: 8.74 on 1 and 38 DF, p-value: 0.00534
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Residuals over time
plot(x=weight$date, y=residuals(mod.ts))
lines(lowess(x=weight$date, y=residuals(mod.ts)),

col = 'indianred', lwd = 2)
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A formal test: Durbin-Watson

• Null, 𝐻0 ∶ 𝜌 = 0
• Alternative, 𝐻𝑎 ∶ 𝜌 ≠ 0
• Durbin-Watson statistic:

𝐷𝑊 = ∑𝑛
𝑡=2( ̂𝑢𝑡 − ̂𝑢𝑡−1)2

∑𝑛
𝑡=1 ̂𝑢2𝑡

where 𝐷𝑊 ≈ 2(1 − 𝜌)

• If 𝐷𝑊 ≈ 2 then 𝜌 ≈ 0
• 𝐷𝑊 < 1: strong evidence of positive serial correlation
• 𝐷𝑊 > 3: strong evidence of negative serial correlation
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Durbin-Watson on weight

dwtest(mod.ts)

##
## Durbin-Watson test
##
## data: mod.ts
## DW = 0.75, p-value = 0.000002
## alternative hypothesis: true autocorrelation is greater than 0
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Corrections: HAC standard errors

• We can generalize the HC/robust standard errors to be
heteroskedastic and autocorrelation consistent (HAC)
standard errors.

• Autocorrelation is just another term for serial correlation
• Very similar to HC/robust:

▶ 𝜷 remain as our esitmates
▶ HAC SEs are consistent for 𝕍[𝜷] in the presence of

heteroskedasticity and/or serial correlation
▶ Can use the sandwich package in R, with covariance function

NeweyWest
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Example: Newey-West standard
errors

coeftest(mod.ts, vcov = NeweyWest)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 171.5521 0.8186 209.55 <2e-16 ***
## active.mins -0.0409 0.0212 -1.93 0.061 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Summary

• Violations of homoskedasticity can come in many forms
▶ Non-constant error variance
▶ Clustered dependence
▶ Serial dependence

• Use plots or formal tests to detect heteroskedasticity
• “Robust SEs” of various forms are consistent even when these

problems are present
▶ White HC standard errors
▶ Cluster-robust standard errors
▶ Newey-West HAC standard errors
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4/ What’s next for
you?
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Where are you?

• You’ve been given a powerful set of tools
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Your new weapons

• Probability: if we knew the true parameters (means,
variances, coefficients), what kind of data would we see?

• Inference: what can we learn about the truth from the data
we have?

• Regression: how can we learn about relationships between
variables?
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You need more training!

• We got through a ton of solid foundation material, but to be
honest, we have basically got you to the state of the art in
political science in the 1970s
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What else to learn?
• Non-linear models (Gov 2001/Stat E-200)

▶ what if 𝑦𝑖 is not continuous?
• Maximum likelihood (Gov 2001/Stat E-200)

▶ a general way to do inference and derive estimators for almost
any model

• Causal inference (Gov 2002, Stat 186)
▶ how do we make more plausible causal inferences?
▶ what happens when treatment effects are not constant?

• Bayesian statistics (Stat 120/220)
▶ an alternative approach to inference based on treating

parameters as random variables
• Machine Learning (Stat 121/CS 109)

▶ how to handle massive data?
▶ how can we use text as data?
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Glutton for punishment?

• Stat 110/111: rigorous introduction to probability and
inference

• Stat 210/211: Stats PhD level introduction to probability and
inference (measure theory)

• Stat 221: statistical computing
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Thanks!

Fill out your evaluations!
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