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1. Heteroskedasticity

2. Clustering

3. Serial Correlation

4. What's next for you?
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Where are we? Where are we

going?

= Last week: finding and correcting violations of linearity and
non-Normal errors

= This week: detecting and correcting violations of
homoskedasticity
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Review of the OLS assumptions

1. Linearity: y=X8 +u

2. Random/iid sample: (y;,x;) are a iid sample from the
population.

3. No perfect collinearity: X is an n x (k + 1) matrix with rank
k+1

4. Zero conditional mean: E[u/X] =0

5. Homoskedasticity: V (u/X) = 021,

6. Normality: u|X ~ N(0, 02I,)

= 1-4 give us unbiasedness/consistency
= 1-5 are the Gauss-Markov, allow for large-sample inference
= 1-6 allow for small-sample inference



How do we deal with this?
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Plan for today

Talk about different forms of error variance problems

—

. Heteroskedasticity
. Clustering
. Serial correlation

w N

= Each is a violation of heteroskedasticity, but each has its own
diagnostics and corrections
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1/
Heteroskedasticity



Review of homoskedasticity

= Remember:

—

B=(XX)"'Xy

= Let V[uX] =2
= Using assumptions 1 and 4, we can show that we have the
following:

VIBIX] = (X'X) ' X=X (X'X) '

To derive this, use three facts about matrices:
» If A is a constant matrix, then V[Ay] = AV[y]A’
» (AB) = B’A’

4
> (X’X)71 is symmetric ~> ((X'X)fl) = (X'X)fl
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Review of homoskedasticity

= With homoskedasticity, = = ¢2I

VIBIX] = (X’X) ' X' =X (X’X) "
= (X'X)_1 X' o%IX (X’X)_1 (by homoskedasticity)
= o2 (X’X)' XX (X'X) !
=2 (X'X)"!

= Replace o2 with estimate 2 will give us our estimate of the
covariance matrix
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Non-constant error variance

= Homoskedastic:

Q
ol\)
Q

o
o o

VuX] = 0?1 =

Heteroskedastic:

o2 0 0 0

2
V@uX] = 0 o5 O 0
0O 0 O o2

= Independent, not identical
Cov(u,-,ule) =0
= V(ulX) = o?
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Consequences of
Heteroskedasticity

= Standard error estimates biased, likely downward
= Test statistics won't have ¢ or F distributions

= @-level tests, the probability of Type | error # a
= Coverageof l—a Cls #1 -«

= OLS is not BLUE

—

= [ still unbiased and consistent for 8
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Visual diagnostics

1. Plot of residuals versus fitted values

» In R, plot(mod, which = 1)
» Residuals should have the same variance across x-axis

2. Spread location plots

» y-axis: Square-root of the absolute value of the residuals
» x-axis: Fitted values

» Usually has loess trend curve, should be flat

» In R, plot(mod, which = 3)
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Example: Buchanan votes

flvote <- foreign::read.dta(”flbuchan.dta")

mod <- lm(edaybuchanan ~ edaytotal, data =
summary (mod)

flvote)

#i#
#it
#it
##
##
iz
#it
#it
##
##
#i#

Coefficients:

Estimate Std. Error t value Pr(>|t])

(Intercept) 54.22945
edaytotal 0.00232

49.14146
0.00031

1.10
7.48

Signif. codes: @ '*xx' 0.001 'x*x' 0.01

0.27
2.4e-10 *xx%

P!

0.05 '." 0.1 " "1

Residual standard error: 333 on 65 degrees of freedom

Multiple R-squared: 0.463,
F-statistic: 56 on 1 and 65 DF,

Adjusted R-squared:

0.455

p-value: 2.42e-10
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Diagnostics

plot(mod, which

plot(mod, which
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Formal tests

= Plots are usually sufficient, but can use formal hypothesis test
for heteroskedasticity:

Hy: V[uX] = ¢
= Under zero conditional mean, this is equivalent to
Hy: ]E[M%|X] = E[u%] = g2
= Under the null, the squared residuals should be unrelated to
the independent variables

= Breush-Pagan test:

1. Regression y; on x| and store residuals, i;
2. Regress ii? on x!

i

3. Run F-test against null that all slope coefficients are 0

= In R, bptest() in the Imtest package
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Breush-Pagan example

library(Imtest)
bptest(mod)

#it

## studentized Breusch-Pagan test
#it

## data: mod

## BP = 13, df = 1, p-value = 0.0004
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Dealing with non-constant error
variance

1. Transform the dependent variable

2. Model the heteroskedasticity using Weighted Least Squares
(WLS)

3. Use an estimator of V[f] that is robust to heteroskedasticity

4. Admit we have the wrong model and use a different approach
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Example: Transforming Buchanan
votes

mod2 <- 1m(log(edaybuchanan) ~ log(edaytotal), data = flvote)

summary (mod2)

##

## Coefficients:

#i# Estimate Std. Error t value Pr(>|t])

## (Intercept) -2.728 0.400 -6.83 3.5e-09 *xx*

## log(edaytotal) 0.729 0.038 19.15 < 2e-16 **x

## ---

## Signif. codes: @ 'xxx' 0.001 '**' ©0.01 'x' .05 '.' 0.1 ' ' 1
##

## Residual standard error: 0.469 on 65 degrees of freedom
## Multiple R-squared: 0.849, Adjusted R-squared: 0.847
## F-statistic: 367 on 1 and 65 DF, p-value: <2e-16
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Example: Transformed
scale-location plot

plot(mod2, which = 3)

64@

JIstandardized residuals|

Fitted values
Lm(log(edaybuchanan) ~ log(edaytotal))
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Example: Transformed

bptest(mod, studentize = FALSE)

#it

## Breusch-Pagan test

##

## data: mod

## BP = 250, df = 1, p-value <2e-16

bptest(mod2, studentize = FALSE)

##

## Breusch-Pagan test

#it

## data: mod2

## BP = 0.011, df = 1, p-value = 0.9
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Weighted least squares

= Suppose that the heteroskedasticity is known up to a
multiplicative constant:

Viu;X] = a;0?

where a; = a;(x]) is a positive and known function of x;
= WLS: multiply y; by 1/ /a;:

yilai = Bo/\a; + Bixi/fa; + -+ + Brxu/ Ja; + u;/ Ja;
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WLS intuition

= Rescales errors to u;/ /a;, which maintains zero mean error

= But makes the error variance constant again:

a; i

% [Lu,.|x] = LV [wX]

2

= If you know q;, then you can use this approach to makes the
model homoeskedastic and, thus, BLUE again

= When do we know a;7
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WLS procedure

= Define the weighting matrix:

1/a; 0 0 0
wo| 0 e 00
S =
= Run the following regression:
Wy = WX + Wu
v* =X*f +u*

= Run regression of y* = Wy on X* = WX and all
Gauss-Markov assumptions are satisfied

—

= Plugging into the usual formula for f:

Bw = X'WWX)'X'W Wy
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WLS example

mod.wls <- 1m(edaybuchanan ~ edaytotal, weights =

= In R, use weights = argument to 1m and give the weights

squared: 1/a;

= With the Buchanan data, maybe the variance is proportional

to the total number of ballots cast:

summary (mod.wls)

1/edaytotal, data

#it
#it
#it
#it
#it
#it
#it
#it
#it
#it
#it

Coefficients:

Estimate Std. Error t value
(Intercept) 27.06785 8.50723 3.18
edaytotal 0.00263 0.00025 10.50
Signif. codes: @ 'x*x' 0.001 '*x' 0.01

Pr(>tl)
0.0022 *x*
1.2e-15 ***%
Do

0.05 '." 0.1 " "1

Residual standard error: 0.565 on 65 degrees of freedom

Multiple R-squared: 0.629,
F-statistic: 110 on 1 and 65 DF,

Adjusted R-

squared: 0.624

p-value: 1.22e-15
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Comparing WLS to OLS

plot(mod, whi , lwd = 2, sub = "")
plot(mod.wls, =3, lwd = 2, sub = "")
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Heteroskedasticity consistent
estimator

= Under non-constant error variance:

2 0 0 0

2
vuxj—z-| © 3 0 - 0
0 0 0 .. o2

= When X # ¢2I, we are stuck with this expression:

VIBIX] = (X'X) ' X=X (X’X)

White (1980) shows that we can consistently estimate this if
we have an estimate of X:

VIBX] = (X'X) ' X=X (X'X) "'

= Sandwich estimator with bread (X’X)_1 and meat X'TX
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Computing HC/robust standard
errors

1.

Fit regression and obtain residuals @

2. Construct the “meat” matrix £ with squared residuals in

diagonal:
@2 0 0 .. 0
5|00t
0 0 0 .. @2

Plug ¥ into sandwich formula to obtain HC/robust estimator
of the covariance matrix:

VIgX] = (X'X) ' X=X (X'X)"

Small-sample corrections (called 'HC1'):

VIBIX] = —— - (XX)” X'EX (X'X)"

1
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Robust SEs in Florida data

library(sandwich)
coeftest(mod)

##

## t test of coefficients:

##

#i# Estimate Std. Error t value Pr(>|t])

## (Intercept) 54.22945 49.14146 1.10 0.27

## edaytotal 0.00232 0.00031 7.48 2.4e-10 x*x

#H -—-

## Signif. codes: @ 'x*x' 0.001 'xx' 0.01 'x' ©.05 '.’' 0.1 ' ' 1

coeftest(mod, vcovHC(mod, type = "HC@"))

##

## t test of coefficients:

##

## Estimate Std. Error t value Pr(>|t])

## (Intercept) 54.22945 40.61283 1.34 0.1864

## edaytotal 0.00232 0.00087 2.67 0.0096 *x*

#H# ---

## Signif. codes: @ 'xx*x' 0.001 'xx' 0.01 'x' ©0.05 '.' 0.1 " ' 1
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Robust SEs with correction

##

## t test of coefficients:

#it

#it Estimate Std. Error t value Pr(>|t])

## (Intercept) 54.22945 40.61283 1.34 0.1864

## edaytotal 0.00232 0.00087 2.67 0.0096 *x

#H ---

## Signif. codes: @ 'xxx' 0.001 'xx' 0.01 'x' .05 '.' 0.1 ' ' 1

coeftest(mod, vcovHC(mod, type = "HC1"))

#H#

## t test of coefficients:

#H#

## Estimate Std. Error t value Pr(>|t])

## (Intercept) 54.229453 41.232904 1.32 0.193

## edaytotal 0.002323 0.000884 2.63 0.011 *

## ---

## Signif. codes: @ 'x*x' 0.001 'xx' 0.01 'x' ©.05 '.' 0.1 ' ' 1
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WLS vs. White’s Estimator

= WLS:

» With known weights, WLS is efficient
» and SE[Bws] is consistent
> but weights usually aren't known

= White's Estimator:

» Doesn't change estimate 8

Consistent for V[B\] under any form of heteroskedasticity
Because it relies on consistency, it is a large sample result, best
with large n

For small n, performance might be poor

vV

v
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2/ Clustering



Clustered dependence: intuition

= Think back to the Gerber, Green, and Larimer (2008) social
pressure mailer example.

= Their design: randomly sample households and randomly
assign them to different treatment conditions

= But the measurement of turnout is at the individual level

= Violation of iid/random sampling:

» errors of individuals within the same household are correlated
» ~~ violation of homoskedasticity

= Called clustering or clustered dependence
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Clustered dependence: notation

= Clusters: j=1,....m
= Units: [ = 1,...,11/
= n; is the number of units in cluster j

= n =) n;is the total number of units

= Units are (usually) belong to a single cluster:

voters in households
individuals in states
students in classes
rulings in judges

vV V. Vv vy

= Especially important when outcome varies at the unit-level, y;;
and the main independent variable varies at the cluster level,
T

= lIgnoring clustering is “cheating”: units not independent
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Clustered dependence: example
model

Yij = Bo + B1xi + &

= Po+ Brxy; +v; +uy

=V i N(0, po?) cluster error component

" Uy Ui N, (1 - p)az) unit error component

= v; and u;; are assumed to be independent of each other

= p e (0,1) is called the within-cluster correlation.

= What if we ignore this structure and just use ¢;; as the error?
= Variance of the composite error is o

V[Sij] = V[VJ arF “ij
= V[Vj] ar V[ulj]

— e 4k (= e = G
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Lack of independence

= Covariance between two units i and s in the same cluster is

p0'22
Cov[gija 85]’] = p0.2

= Correlation between units in the same group is just p:
Corle;, e]1 = p
= Zero covariance of two units i and s in different clusters j and

k:
Covle;j, ] =0
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Example covariance matrix

&= [ €11 €21 €31 €42 E52 62 ]
o2 po? po*r 0 0 0
pa® o> po* 0 0 0
2 2

_« _ | po” po o 0 0 0
Wl & o2 = 0 0 0 o2 po? po?
0 0 0 po* o* po?

0 0 0 po? po? o2
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Error covariance matrix with

clustering

= In general, we can write the covariance matrix as a block

diagonal

= By independence, the errors are uncorrelated across clusters:

|0 0
VieglX] == = U | 2 L
00 >,

= Here 0 is a matrix of Qs of the appropriate size.
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Correcting for clustering

1. Including a dummy variable for each cluster

2. "Random effects” models (take above model as true and
estimate p and o)

3. Cluster-robust ("clustered”) standard errors

4. Aggregate data to the cluster-level and use OLS y; = % 2 Vi

» If n; varies by cluster, then cluster-level errors will have
heteroskedasticity
» Can use WLS with cluster size as the weights
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Cluster-robust SEs

= First, let's write the within-cluster regressions like so:
y,=X;B +¢;

= y; is the vector of responses for cluster j, and so on

= We assume that respondents are independent across clusters,

but possibly dependent within clusters. Thus, we have

= Remember our sandwich expression:
VIBIX] = (X'X) ' X=X (X'X) ™

= Under this clustered dependence, we can write this as:

V[BIX] = (ZX’ ) (X'X)"
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Estimating CRSEs

= Way to estimate this matrix: replace X; with an estimate
based on the within-cluster residuals, &;:

—~

— /\./\’
L = &€

= Final expression for our cluster-robust covariance matrix
estimate:

VIBX] = (ZX ) (X'x)™"!

= With small-sample adjustment (which is what most software
packages report):

m n-—1

BX) = g e (XX (ZX}Z £X; ) (X'X)"
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Example: Gerber, Green, Larimer

Dear Registered Vioter
WHAT IF YOUR NEIGHBORS KNEW WHETHER YOU VOTED?

Why do so many people fail to vote? We've been talking about the problem for
years, but it only seems to get worse. This year, we're taking a new approach.
We're sending this mailing to you and your neighbors to publicize who does and
does not vate.

The chart shows the names of some of your neighbors, showing which have voted in
the past. After the August 8 election, we intend o mail an updated chart. You
and your neighbors will all know who voted and who did not.

DO YOUR CIVIC DUTY —VOTE!

MAPLE DR Aug 04 Nov04 Aug 08
9995 JOSEPH JAMES SMITH Voted Voted
9095 JENNIFER KAY SMITH Voted
9997 RICHARD B JACKSON Voted
9999 KATHY MARIE JACKSON Voted
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Social pressure model

load("gerber_green_larimer.RData")
social$voted <- 1 * (social$voted == "Yes")
social$treatment <- factor(social$treatment, levels = c("Control”,

"Hawthorne”, "Civic Duty"”, "Neighbors”, "Self"))
mod1 <- Im(voted ~ treatment, data = social)
coeftest(mod1)

#H#

## t test of coefficients:

#i#

#it Estimate Std. Error t value Pr(>|t])

## (Intercept) 0.29664 0.00106 279.53 < 2e-16 **x*

## treatmentHawthorne 0.02574 0.00260 9.90 < 2e-16 ***
## treatmentCivic Duty 0.01790 0.00260 6.88 5.8e-12 **x%
## treatmentNeighbors ©.08131 0.00260 31.26 < 2e-16 *x*xx*
## treatmentSelf 0.04851 0.00260 18.66 < 2e-16 *x*x*
#H# —--

## Signif. codes: @ 'x*xx' 0.001 'xx' ©.01 'x' ©0.05 '.' @.1 ' ' 1



Social pressure model, CRSEs

source("vcovCluster.R")

coeftest(modl, vcov = vcovCluster(modT,

#i#
#it
#it
#i#
#it
#it
#i#
#it
#it
#it
#it

"hh_id"))

Estimate Std. Error t value Pr(>|t])

t test of coefficients:
(Intercept) 0.29664
treatmentHawthorne  0.02574

treatmentCivic Duty ©.01790

treatmentNeighbors  0.08131
treatmentSelf 0.04851
Signif. codes: @ 'x*x' 0.001

0.00131
0.00326
0.00324
0.00337
0.00330

'xx' 0.01

o]

226.52
7.90
5,53

24.13
14.70

0.05

< 2e-16
2.8e-15
3.2e-08
< 2e-16
< 2e-16

e

= No canned CRSE in R, we posted some code on Canvas:

*kk
K*k*
KRk
*kk
Kk*
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Cluster-robust standard errors

= CRSE do not change our estimates B\ cannot fix bias

= CRSE is consistent estimator of V[f] given clustered
dependence

» Relies on independence between clusters, dependence within
clusters

» Doesn't depend on the model we present

» CRSEs usually > conventional SEs—use when you suspect
clustering

= Consistency of the CRSE are in the number of groups, not the
number of individuals

» CRSEs can be incorrect with a small (< 50 maybe) number of
clusters
» Block bootstrap can be a useful alternative (see Gov 2002)
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3/ Serial
Correlation



Time dependence: serial
correlation

= Sometimes we deal with data that is measured over time,
t=1,....,T

= Examples: a country over several years or a person over
weeks/months

= Often have serially correlated: errors in one time period are
correlated with errors in other time periods

= Many different ways for this to happen, but we often assume
a very limited type of dependence called AR(1).
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AR(1) model

= Model for the mean:
Yi=Bo+ Bix +u
= Autoregressive error:
u, = pu,_1 +e, where |[p|<1

= ¢, ~N(0,02)
= p is an unknown autoregressive coefficient and measures the
dependence/correlation between the errors and lagged errors
= Just one of many possible time-series models: AR(2) has
Uy = puyq +8u, 5 +e
= Model could be wrong!
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Error structure of the AR(1) model

1 P p? p’~

P 1 P p’=2

Viul =X =0%| p? p 1 a2
pT—l pT—2 pT—3 1

= What is this saying?

Covluy,uy] = o%p

Covluy,uz] = o%p?

Covluy,uyl = 02 p3

Covariance/correlation decreases as time between errors grows
(because |p| < 1)

vV V. Vv vy

= p is usually positive, which means we underestimate the
variance
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Detecting and fixing serial
correlation

= Detection:

> Plot residuals over time
» Formal tests (Durbin-Watson statistics)

= Correction:

Use SEs that are robust to serial correlation

AR corrections (e.g. Prais-Winston, Cochrane-Orcutt, etc)
Lagged dependent variables or other dynamic models
Transformations via first-differencing methods

vV v v vy
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Example: weight and activity
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Regression ignoring serial
dependence

mod.ts <- Im(weight ~ active.mins, data =

summary (mod. ts)

weight)

#i#
#it
##
##
##
#i#
#it
#it
##
##
#i#

Coefficients:

Estimate Std. Error t value
(Intercept) 171.5521 0.5832 294.16
active.mins -0.0409 0.0138 -2.96

Signif. codes: @ '#*xx' 0.001 'x*' 0.01

Pri>(tl)
<2e-16 *xx
0.0053 **

V!

0.05 '." 0.1 " "1

Residual standard error: 1.06 on 38 degrees of freedom

Multiple R-squared: 0.187,
F-statistic: 8.74 on 1 and 38 DF,

Adjusted R-

squared: 0.166

p-value: 0.00534
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Residuals over time

plot(x=weight$date, y=residuals(mod.ts))

lines(lowess(x=weight$date, y=residuals(mod.ts)),
col = 'indianred’, lwd = 2)
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A formal test: Durbin-Watson

= Null, Hy: p=0
= Alternative, H, : p # 0
= Durbin-Watson statistic:

Z:;z(ﬁt B ﬁz—l)z
Yo a7
= If DW =2 then p=0

= DW < 1: strong evidence of positive serial correlation
= DW > 3: strong evidence of negative serial correlation

DW =

where DW = 2(1 - p)
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Durbin-Watson on weight

dwtest(mod. ts)

##

## Durbin-Watson test

#it

## data: mod.ts

## DW = 0.75, p-value = 0.000002

## alternative hypothesis: true autocorrelation is greater than @
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Corrections: HAC standard errors

= We can generalize the HC/robust standard errors to be
heteroskedastic and autocorrelation consistent (HAC)
standard errors.

= Autocorrelation is just another term for serial correlation

= Very similar to HC/robust:

> B\ remain as our esitmates

» HAC SEs are consistent for V[ﬁ] in the presence of
heteroskedasticity and/or serial correlation

» Can use the sandwich package in R, with covariance function
NeweyWest
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Example: Newey-West standard
errors

coeftest(mod.ts, vcov = NeweyWest)

##

## t test of coefficients:

#it

#i# Estimate Std. Error t value Pr(>|t])

## (Intercept) 171.5521 0.8186 209.55 <2e-16 ***
## active.mins -0.0409 0.0212 -1.93 0.061

#H# -—-

## Signif. codes: @ '#x%x' 0.001 '*x' 0.01 'x' ©.05 '.' 0.1 ' ' 1
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Summary

= Violations of homoskedasticity can come in many forms

» Non-constant error variance
» Clustered dependence
» Serial dependence

= Use plots or formal tests to detect heteroskedasticity
= “Robust SEs” of various forms are consistent even when these
problems are present
» White HC standard errors

» Cluster-robust standard errors
» Newey-West HAC standard errors
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4/ \\/hat's next for
you’?



Where are you?

= You've been given a powerful set of tools



Your new weapons

= Probability: if we knew the true parameters (means,
variances, coefficients), what kind of data would we see?

= Inference: what can we learn about the truth from the data
we have?

= Regression: how can we learn about relationships between
variables?
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You need more training!

¥

= We got through a ton of solid foundation material, but to be
honest, we have basically got you to the state of the art in
political science in the 1970s

61
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What else to learn?

= Non-linear models (Gov 2001 /Stat E-200)

» what if y; is not continuous?

= Maximum likelihood (Gov 2001/Stat E-200)

» a general way to do inference and derive estimators for almost
any model

= Causal inference (Gov 2002, Stat 186)

» how do we make more plausible causal inferences?
» what happens when treatment effects are not constant?

= Bayesian statistics (Stat 120/220)

» an alternative approach to inference based on treating
parameters as random variables

= Machine Learning (Stat 121/CS 109)

» how to handle massive data?
» how can we use text as data?
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Glutton for punishment?

= Stat 110/111: rigorous introduction to probability and
inference

= Stat 210/211: Stats PhD level introduction to probability and
inference (measure theory)
= Stat 221: statistical computing
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Fill out your evaluations!
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