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1. Nonnormality of the errors

2. Nonlinearity of the regression function

3. Outliers, leverage points, and influential observations
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Where are we? Where are we

going?

= Last few weeks: estimation and inference for the linear model
under Gauss-Markov assumptions (and sometimes conditional
Normality)

= This week: what happens when the assumptions fail? Can we
tell? Can we fix it?

= Next weeks: more of the same
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Review of the OLS assumptions

1. Linearity: y = X8 +u

2. Random/iid sample: (y;,x;) are a iid sample from the
population.

3. No perfect collinearity: X is an n x (k + 1) matrix with rank
k+1

4. Zero conditional mean: E[u/X] =0

5. Homoskedasticity: var(u|X) = o2I,

6. Normality: u|X ~ N(0, 02I,)

= 1-4 give us unbiasedness/consistency
= 1-5 are the Gauss-Markov, allow for large-sample inference
= 1-6 allow for small-sample inference



Violations of the assumptions

1. Nonlinearity

» Result: biased/inconsistent estimates

» Diagnose: scatterplots, added variable plots,
component-plus-residual plots

» Correct: transformations, polynomials, splines

2. iid/random sample

» Result: no bias with appropriate alternative assumptions
(structured dependence)

» Result (ii): violations imply heteroskedasticity

» Result (iii): outliers from different distributions can cause
inefficiency/bias

» Diagnose/Correct: next week!

3. Perfect collinearity

» Result: can’t run OLS
» Diagnose/correct: drop one collinear term



Violations of the assumptions (ii)

4. Zero conditional mean error
» Result: biased/inconsistent estimates

» Diagnose: very difficult
» Correct: instrumental variables, fixed effects, regression

discontinuity (Gov 2002)

5. Heteroskedasticity
» Result: SEs are biased (usually downward)
» Diagnose/correct: next week!

6. Non-Normality
» Result: critical values for ¢ and F tests wrong
» Diagnose: checking the (studentized) residuals, QQ-plots, etc
» Correct: transformations, add variables to X, different model
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Example: Buchanan votes in
Florida, 2000

= 2000 Presidential election in FL (Wand et al., 2001, APSR)

7/69



Example: Buchanan votes in
Florida, 2000
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Example: Buchanan votes in
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1/ Nonnormality of
the errors



Review of the Normality
assumption

= |n matrix notation:
uX ~ A(0,021)

= Equivalent to:
ulx! ~ N (0,02)

= Fix x; and the distribution of errors should be Normal
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Consequences of non-Normal
errors?

= In small samples:

» Sampling distribution of ﬁwill not be Normal

» Test statistics will not have ¢ or F distributions

» Probability of Type | error will not be &

» 1 — a confidence interval will not have 1 — a coverage

= In large samples:

» Sampling distribution of B ~ Normal by the CLT
» Test statistics will be ~ ¢ or F by the CLT
» Probability of Type | error ~ a

» 1 — a confidence interval will have ~ 1 — a coverage

= The n needed for approximation to hold depends on how
non-Normal the data are
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Marginal versus conditional

= Be careful with this assumption: distribution of the error, not

the distribution of y;
= The marginal distribution of y;, can be non-Normal even if the

conditional distribution is Normal!
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Is this a violation?

= For example, this looks bad:

X <= rbinom(100, 1, 0.5)
y <= 10 * x + rnorm(100, @, 1)

plot(density(y), lwd = 3, col = "indianred”, las = 1, xlab = "x", mai
bty = "n”, ylab = "")
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Is this a violation?

= But if we look at the conditional distributions, things look

better:
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How to diaghose?

= Assumption is about unobserved u =y - Xf3

= We can only observe residuals, 1 =y — Xi}\

= |f distribution of residuals = distribution of errors, we could
check residuals

= But this is actually not true—the distribution of the residuals
is complicated
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Hat matrix

= First we need to define an important matrix
H=X(XX)'X

i=y-Xpg
=y-X(X'X) ' X'y
=y - Hy
= (I-H)y

= H is the hat matrix because it puts the “hat” on y:

y = Hy

» H is an n x n symmetric matrix
» H is idempotent: HH = H
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Relating the residuals to the errors

= Possible to show that residuals u are a linear function of the
errors, u
u=(I-Hu

= For instance,

=1 =hyu Zhll uj

= Note that the residual is a function of all of the errors
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Distribution of the residuals

EuX]=d-HE[uX]=0
Var[uX] = ¢2(I - H)

= Variance of the ith residual:
Var[ﬁi] = O'%(l — hii)

= The residuals are not independent:
» We know that the must sum up to 0: 3 i; = 0, so if | know
n — 1 of them, | know the last one too.
= Residuals not independent, nor identically distributed, even
when all the OLS assumptions hold

= Can't use them yet for checking Normality

19 /69



Standardized residuals

= Problem: each residual has a different variance
Var[i;] = 02(1 - h;;)
= Possible solution: calculate standardized residuals by dividing
by their variance:

ayl—-nh

ii

= Remember that H = X (X’X) ™' X', which is observed

= Problem: G2 depends on estimated residuals ii;

= Numerator and denominator not independent ~~ unknown
distribution
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Studentized residuals

= Solution: estimate residual variance without residual i:

52 _ w'u-u?/(1-h;)
- n—k-2

= Use this i-free estimate to standardize, which creates the
studentized residuals:

g_iy1-hy

= |f the errors are Normal, the studentized residuals follow a #
distribution with (n — k — 2) degrees of freedom.

= Deviations from ¢t = violation of Normality
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Buchanan vote example

mod <- lm(edaybuchanan ~ edaytotal, data = flvote)

summary (mod)

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t])
## (Intercept) 54.22945 49.14146 1.10 Q.27

## edaytotal 0.00232 0.00031 7.48 2.4e-10 x*x*

## ---

## Signif. codes: @ 'xxx' 0.001 '**' 0.01 'x' .05 '.' 0.1 ' ' 1
##

## Residual standard error: 333 on 65 degrees of freedom

## Multiple R-squared: 0.463, Adjusted R-squared: 0.455

## F-statistic: 56 on 1 and 65 DF, p-value: 2.42e-10
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Buchanan residuals

resids <- residuals(mod)
stand.resids <- rstandard(mod)

student.resids <- rstudent(mod)
head(cbind(resids, stand.resids, student.resids))

#i# resids stand.resids student.resids
# 1 -16.94 -0.05201 -0.05161
## 2 -177.51 -0.53971 -0.53675
## 3 -595.20 -2.02639 -2.07743
## 4 -86.28 -0.26135 -0.25947
## 5 -146.31 -0.44306 -0.44030
## 6 -36.07 -0.10957 -0.10873

dotchart(student.resids, flvote$county, xlab = "Residuals"”)




Plotting the residuals
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Plotting the residuals

Histogram of resids Histogram of stand.resids
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Plotting the residuals
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Quantile-Quantile plots

= Quantile-quantile plot or QQ-plot is useful for comparing
distributions

= Plots the quantiles of one distribution against those of
another distribution

= For example, one point is the (m,,m,) where m, is the
median of the x distribution and m, is the median for the y
distribution

= |f distributions are equal = 45 degree line
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Good QQ-plot

library(car)
x <- rt(500, df = 50)

ggPlot(x, distribution = "t", df = 50, pch = 19, cex = 1, col
col.lines = "indianred”, las = 1, envelope = TRUE)

t quantiles



Buchanan QQ-plot

ggPlot(student.resids, distribution = "t", df = nrow(flvd

2, envelope = TRUE, pch = 19, cex = 1, col = "grey50’
las = 1)
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Dealing with non-Normal errors

= Remove problematic observations (be transparent!)
= Add or drop variables in X
= Transformy (log(y))
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Buchanan revisited

flvote.nopb <- flvote[flvote$county != "Palm Beach”, ]

mod.nopb <- 1lm(log(edaybuchanan) ~ log(edaytotal), data = flvote.nopb)
resids.nopb <- residuals(mod.nopb)

stand.resids.nopb <- rstandard(mod.nopb)

student.resids.nopb <- rstudent(mod.nopb)

summary (mod. nopb)

clipped.

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t])

## (Intercept) -2.4860 0.3789 -6.56 1.1e-08 *xx

## log(edaytotal) 0.7031 0.0362 19.42 < 2e-16 *x%

# -

## Signif. codes: @ '*x*x' 0.001 'x*x' 0.01 'x' ©0.05 '.' 0.1 ' "1
#H#

## Residual standard error: 0.436 on 64 degrees of freedom
## Multiple R-squared: ©.855, Adjusted R-squared: 0.853
## F-statistic: 377 on 1 and 64 DF, p-value: <2e-16



Buchanan revisited
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Buchanan revisited

Density
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2/ Nonlinearity of
the regression
function



Buchanan model, part 2

mod3 <- lm(edaybuchanan ~ edaytotal + absnbuchanan, data

summary (mod3)

#it

## Coefficients:

## Estimate Std. Error t value Pr(>|t])
## (Intercept) -29.34807 55.19635 -0.53 0.5969
## edaytotal 0.00110 0.00048 2.29 0.0253 *

## absnbuchanan  6.89546 2.12942 3.24  0.0019 *x*

#H# --—-

## Signif. codes: @ 'xxx' 0.001 '**' 0.01 'x' .05 '.' 0.1 ' ' 1
##

## Residual standard error: 317 on 61 degrees of freedom

#i# (3 observations deleted due to missingness)

## Multiple R-squared: ©.536, Adjusted R-squared: 0.521

## F-statistic: 35.2 on 2 and 61 DF, p-value: 6.71e-11
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Added variable plot

= Need a way to visualize conditional relationship between Y
and X;
= How to construct an added variable plot:
1. Get residuals from regression of Y on all covariates except X;

2. Get residuals from regression of X; on all other covariates
3. Plot residuals from (1) against residuals from (2)

= In R: avPlots(model) from the car package
= OLS fit to this plot will have exactly //Z\J and 0 intercept
= Use local smoother (loess) to detect any non-linearity
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Buchanan AV plot

par(mfrow = c(1, 2))
out <- avPlots(mod3, "edaytotal”)
lines(loess.smooth(x = out$edaytotall, 11, y = out$edaytotall, 21]),

col = "dodgerblue”, lwd = 2)

out2 <- avPlots(mod3, "absnbuchanan")

lines(loess.smooth(x = out2$absnbuchanan[, 1], y = out2$absnbuchanan(
2]1), col = "dodgerblue”, lwd = 2)
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How to deal with non-linearity

= Breaking up categorical variables into dummy variables
= Including interaction terms

= Including polynomial terms

= Using transformations

= Using more flexible models:

» Generalized additive models and splines allow the data to tell
us what the functional form is.
» Complicated math, but important ideas.
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Basis functions

= Basis functions are the function of X; that we include in the
model:

» Examples we've seen: h,,(X;) = X;, h,,(X;) = X?,
by (X;) = log(X;)

= Different basis functions will allow for different forms of
non-linearity

= We could always break up X; into bins and estimate piecewise
constant:

I’l] :]I(Xi<b1), hzz]l(b] <Xi<b2), ]’l3 Z]I(Xi>b2)

= b; < b, are knots

39 /69



Piecewise constant
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Piecewise linear
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Continuous piecewise linear

Problem: piecewise functions are discontinuous.

= Can use clever basis functions to get continuous piecewise
linear function of X;:

hy (X; ) = X;,

h3(X;) = (X; = by), hy(X;) = (X; = by),

) =1, hy (X;

1

= (X; —by). =X, — by when X; > by, 0, otherwise

= Regression with these basis functions:
Y; = Bih (X)) + Baho(X;) + B3hs(X;) + Baha(X;) + ¢

» B, = slope when X; < b;
> B, + B3 = slope when b; < X, < b,
> B, + B3+ B4 = slope when X; > b,
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Continuous piecewise linear

2 <= %

h3 <- 1 % (x > -1.5) * (x - -1.5)
h4 <- 1 % (x >1.5) *x (x - 1.5)
reg <- Im(y ~ h2 + h3 + h4)
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Cubic splines

= Continuous piecewise linear has "kinks" at the knots, but we
probably want “smooth"” functions.

» What does smooth mean? Continuous derivatives!
» ~~ use higher-order polynomials in the basis functions

= Cubic spline basis: bases that produce continuous functions
with continuous first and second derivatives

hy(X;) =1, hy(X;) = X;, hy(X;) = X?
ha(X)) = X7, hs(X) = (X;=b))3, he(Xp) = (X; = by)3

= Basic idea: local polynomial regression (between knots) that
have to connect and be smooth at the knots.

44 /69



Cubic spline

2 <= %

h3 <- x*2

h4 <- x*3

h5 <- 1 % (x > -1.5) * (x - -1.5)"3
he <- 1 x (x >1.5) *x (x - 1.5)"3
reg <- Im(y ~ h2 + h3 + h4 + h5 + h6)




Knotty problems

= Any function can be approximated as we increase the number
of knot points.

= How to choose the number/location of knot points?

» More knot points ~ “rougher” function, less in-sample bias,
more variance.

» Fewer knot points ~» “smoother” function, more in-sample
bias, less variance.

= In-sample fit might be great, out-of-sample fit might be
terrible.
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Cross-validation

= General strategy for bias-variance trade-offs: cross-validation.

= Set aside units to test out-of-sample prediction

= Cross-validation procedure:

1.
2.

Choose a number of evenly spread knots, b.

Withhold unit i, estimate the CEF of y; given X; using a cubic
spline with b knots.

Get predicted value for i, j)i’b' and caculate squared prediction

error: (y; — 9312

Repeat 2-3 for each observation and take that average to get

the MSE with b knots.

Repeat 1-4 for different values of b and choose the value of b
that has the lowest MSE.
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Automatic knot selection

smth <- smooth.spline(x, y)
plot(x, y, ylim = c(-3, 3), pch = 19, col = "grey50", bty = "n")
lines(smth, col = "indianred”, lwd = 2)
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Generalized additive models

= Generalized additive models (GAMs) allow you to estimate
the spline of any particular variable in the regression.

» Each spline is additive: y; = f; (X;) +f,(X5) + &;
= Can plot the AV-plot of the spline to get a sense for the
nonlinearity of the functional form.

= Use cross-validation to select the number of knots
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GAM example fit

## library(mgcv) ## GAM package

out <- gam(edaybuchanan ~ s(edaytotal) + s(absnbuchanan), data = flvote,
subset = county != "Palm Beach")

##
## Family: gaussian
## Link function: identity

##

## Formula:

## edaybuchanan ~ s(edaytotal) + s(absnbuchanan)

H##

## Parametric coefficients:

## Estimate Std. Error t value Pr(>|t])

## (Intercept) 221.84 6.41 34.6 <2e-16 *xx

## -——

## Signif. codes: 0@ 'xxx' 0.001 'xx' 9.01 'x' 0.05 '.' 0.1 ' ' 1
##

## Approximate significance of smooth terms:

## edf Ref.df F p-value

## s(edaytotal) 6.85 7.82 10.6 1.6e-09 **x

## s(absnbuchanan) 2.95 3.64 22.6 1.6e-11 **xx

HHEE s

## Signif. codes: @ 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

## R-sq.(adj) = ©0.95 Deviance explained = 95.8%

## GCV = 3129 Scale est. = 2592.3 n =63
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Example: generalized additive
models

plot(out, shade = TRUE, residual = TRUE, pch = 1)
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3/ Outliers,
leverage points,

and influential
observations



The trouble with Norway

= Lange and Garrett (1985): organizational and political power
of labor interact to improve economic growth
= Jackman (1987): relationship just due to North Sea Qil?
= Table guide:
» x; = organizational power of labor

» x, = political power of labor
» Parentheses contain #-statistics

Constant  x; Xy  X|-Xp

Norway Obs Included .814 -.192 -278 137
(47)  (20) (24) (29)

Norway Obs Excluded .641 -.068 -.138 .054
(4.8) (0.9) (1.5) (1.3)

53 /69



Creative curve fitting with Norway

Corporate Taxes and Revenue, 2004

Left scale represents tax revenues as a percentage
of GDP. Bottom scale represents central
government corporate tax rates.
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Three types of extreme values

1. Outlier: extreme in the y direction
2. Leverage point: extreme in one x direction
3. Influence point: extreme in both directions

= Not all of these are problematic

= If the data are truly “contaminated” (come from a different
distribution), can cause inefficiency and possibly bias

= Can be a violation of iid (not identically distributed)
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Outlier definition

Outlier @

Full sample

= An outlier is a data point with very large regression errors, u;
= Very distant from the rest of the data in the y-dimension

= Increases standard errors (by increasing G2)

= No bias if typical in the x's
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Detecting outliers

= Use studentized residuals, u;, since outliers can skew the

residual variance upward
» G2 >> g2, if i is an outlier

> Ul ~t,_j_n, when u; ~ N(0,0?)

* Rule of thumb: [i7] > 2 will be relatively rare
= Extreme outliers, [i}| > 4 — 5 are much less likely

= People usually adjust cutoff for multiple testing
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Buchanan outliers
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Leverage point definition
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Values that are extreme in the x direction

That is, values far from the center of the covariate distribution
Decrease SEs (more X variation)

No bias if typical in y dimension
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Hat values

§=Xp=XXX)"'X'y = Hy
= For a particular observation 7, we can show this means:
n
Yi = Zhijyj
j=1

= h;; = importance of observation j is for the fitted value y;
= Leverage/hat values: h; = h;; diagonal entries of the hat
matrix
= With a simple linear regression, we have
1, (X-X)?

hi = -+ n—_2
n Zj=](Xj_X)

» ~ how far i is from the center of the X distribution

= Rule of thumb: examine hat values greater than 2(k + 1)/n
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Buchanan hats

head(hatvalues(mod), 5)

## 1 2 3 4 5
## 0.04179 0.02285 0.22066 0.01556 0.01493
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Buchanan hats

lbe t

almpléeach

T T T T T
0.05 0.10 0.15 0.20 0.25
Hat Values

62 /69



Influence points

e
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= An influence point is one that is both an outlier and a
leverage point.

= Extreme in both the x and y dimensions

= Causes the regression line to move toward it (bias?)
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Overall measures of influence

= A measure of influence for each observation is Cook's distance:

~
_ u; hi
bi=7 <14,

Remember here that @/ is the standardized residual and h; is
the hat value.

Basically this is “outlier x leverage”
= D;>4/(n—k—1) considered “large”

Influence plot:

» x-axis: hat values, h;
» y-axis: studentized residuals, i}
» size of points: Cook's distance
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Influence Plot Buchanan

Studentized Residuals
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Influence plot from lm output

plot(mod3, which = 5, labels.id = flvote$county)
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Limitations of the standard tools

What happens when there are two influence points?

Red line drops the red influence point

Blue line drops the blue influence point

Neither of the “leave-one-out” approaches helps recover the
line
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What to do about outliers and
influential units?

= |s the data corrupted?

» Fix the observation (obvious data entry errors)
» Remove the observation
» Be transparent either way

= |s the outlier part of the data generating process?

» Transform the dependent variable (log(y))
» Use a method that is robust to outliers (robust regression,
least absolute deviations)
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Summary

= For nonnormality, influential points, and nonlinearity:

» Check your data! summary(), plot(), etc
» Use transformations to make assumptions more plausible
» Add covariates to help account for non-identical distributions

= Next week:

» What if we have heteroskedastic data?
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