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1. Nonnormality of the errors

2. Nonlinearity of the regression function

3. Outliers, leverage points, and influential observations
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Where are we? Where are we
going?

• Last few weeks: estimation and inference for the linear model
under Gauss-Markov assumptions (and sometimes conditional
Normality)

• This week: what happens when the assumptions fail? Can we
tell? Can we fix it?

• Next weeks: more of the same

3 / 69



Review of the OLS assumptions

1. Linearity: 𝐲 = 𝐗𝛽 + 𝐮
2. Random/iid sample: (𝑦𝑖, 𝐱′

𝑖) are a iid sample from the
population.

3. No perfect collinearity: 𝐗 is an 𝑛 × (𝑘 + 1) matrix with rank
𝑘 + 1

4. Zero conditional mean: 𝔼[𝐮|𝐗] = 𝟎
5. Homoskedasticity: var(𝐮|𝐗) = 𝜎2𝑢𝐈𝑛
6. Normality: 𝐮|𝐗 ∼ 𝑁(𝟎, 𝜎2𝑢𝐈𝑛)

• 1-4 give us unbiasedness/consistency
• 1-5 are the Gauss-Markov, allow for large-sample inference
• 1-6 allow for small-sample inference
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Violations of the assumptions
1. Nonlinearity

▶ Result: biased/inconsistent estimates
▶ Diagnose: scatterplots, added variable plots,

component-plus-residual plots
▶ Correct: transformations, polynomials, splines

2. iid/random sample
▶ Result: no bias with appropriate alternative assumptions

(structured dependence)
▶ Result (ii): violations imply heteroskedasticity
▶ Result (iii): outliers from different distributions can cause

inefficiency/bias
▶ Diagnose/Correct: next week!

3. Perfect collinearity
▶ Result: can’t run OLS
▶ Diagnose/correct: drop one collinear term
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Violations of the assumptions (ii)

4. Zero conditional mean error
▶ Result: biased/inconsistent estimates
▶ Diagnose: very difficult
▶ Correct: instrumental variables, fixed effects, regression

discontinuity (Gov 2002)

5. Heteroskedasticity
▶ Result: SEs are biased (usually downward)
▶ Diagnose/correct: next week!

6. Non-Normality
▶ Result: critical values for 𝑡 and 𝐹 tests wrong
▶ Diagnose: checking the (studentized) residuals, QQ-plots, etc
▶ Correct: transformations, add variables to 𝐗, different model
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Example: Buchanan votes in
Florida, 2000

• 2000 Presidential election in FL (Wand et al., 2001, APSR)
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Example: Buchanan votes in
Florida, 2000
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1/ Nonnormality of
the errors
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Review of the Normality
assumption

• In matrix notation:

𝐮|𝐗 ∼ 𝒩(0, 𝜎2𝑢𝐈)

• Equivalent to:
𝑢𝑖|𝐱′

𝑖 ∼ 𝒩(0, 𝜎2𝑢)
• Fix 𝐱′

𝑖 and the distribution of errors should be Normal
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Consequences of non-Normal
errors?

• In small samples:
▶ Sampling distribution of 𝜷 will not be Normal
▶ Test statistics will not have 𝑡 or 𝐹 distributions
▶ Probability of Type I error will not be 𝛼
▶ 1 − 𝛼 confidence interval will not have 1 − 𝛼 coverage

• In large samples:
▶ Sampling distribution of 𝜷 ≈ Normal by the CLT
▶ Test statistics will be ≈ 𝑡 or 𝐹 by the CLT
▶ Probability of Type I error ≈ 𝛼
▶ 1 − 𝛼 confidence interval will have ≈ 1 − 𝛼 coverage

• The 𝑛 needed for approximation to hold depends on how
non-Normal the data are
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Marginal versus conditional

• Be careful with this assumption: distribution of the error, not
the distribution of 𝑦𝑖

• The marginal distribution of 𝑦𝑖 can be non-Normal even if the
conditional distribution is Normal!
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Is this a violation?
• For example, this looks bad:

x <- rbinom(100, 1, 0.5)
y <- 10 * x + rnorm(100, 0, 1)
plot(density(y), lwd = 3, col = "indianred", las = 1, xlab = "x", main = "",

bty = "n", ylab = "")
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Is this a violation?
• But if we look at the conditional distributions, things look

better:
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How to diagnose?

• Assumption is about unobserved 𝐮 = 𝐲 − 𝐗𝜷
• We can only observe residuals, �̂� = 𝐲 − 𝐗𝜷
• If distribution of residuals ≈ distribution of errors, we could

check residuals
• But this is actually not true—the distribution of the residuals

is complicated
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Hat matrix

• First we need to define an important matrix
𝐇 = 𝐗 (𝐗′𝐗)−1 𝐗′

�̂� = 𝐲 − 𝐗𝜷
= 𝐲 − 𝐗 (𝐗′𝐗)−1 𝐗′𝐲
≡ 𝐲 − 𝐇𝐲
= (𝐈 − 𝐇)𝐲

• 𝐇 is the hat matrix because it puts the “hat” on 𝐲:

�̂� = 𝐇𝐲

▶ 𝐇 is an 𝑛 × 𝑛 symmetric matrix
▶ 𝐇 is idempotent: 𝐇𝐇 = 𝐇
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Relating the residuals to the errors

• Possible to show that residuals �̂� are a linear function of the
errors, 𝐮

�̂� = (𝐈 − 𝐇)𝐮
• For instance,

̂𝑢1 = (1 − ℎ11)𝑢1 −
𝑛

∑
𝑖=2

ℎ1𝑖𝑢𝑖

• Note that the residual is a function of all of the errors
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Distribution of the residuals

𝔼[�̂�|𝐗] = (𝐈 − 𝐇)𝔼[𝐮|𝐗] = 𝟎
Var[𝐮|𝐗] = 𝜎2𝑢(𝐈 − 𝐇)

• Variance of the 𝑖th residual:

Var[ ̂𝑢𝑖] = 𝜎2𝑢(1 − ℎ𝑖𝑖)

• The residuals are not independent:
▶ We know that the must sum up to 0: ∑𝑖 ̂𝑢𝑖 = 0, so if I know

𝑛 − 1 of them, I know the last one too.

• Residuals not independent, nor identically distributed, even
when all the OLS assumptions hold

• Can’t use them yet for checking Normality
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Standardized residuals

• Problem: each residual has a different variance

Var[ ̂𝑢𝑖] = 𝜎2𝑢(1 − ℎ𝑖𝑖)

• Possible solution: calculate standardized residuals by dividing
by their variance:

̂𝑢′
𝑖 = ̂𝑢𝑖

�̂�√1 − ℎ𝑖𝑖

• Remember that 𝐇 = 𝐗 (𝐗′𝐗)−1 𝐗′, which is observed
• Problem: �̂�2 depends on estimated residuals ̂𝑢𝑖
• Numerator and denominator not independent ⇝ unknown

distribution
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Studentized residuals

• Solution: estimate residual variance without residual 𝑖:

�̂�2
−𝑖 = 𝐮′𝐮 − 𝑢2

𝑖 /(1 − ℎ𝑖𝑖)
𝑛 − 𝑘 − 2

• Use this 𝑖-free estimate to standardize, which creates the
studentized residuals:

̂𝑢∗
𝑖 = ̂𝑢𝑖

�̂�−𝑖√1 − ℎ𝑖𝑖

• If the errors are Normal, the studentized residuals follow a 𝑡
distribution with (𝑛 − 𝑘 − 2) degrees of freedom.

• Deviations from 𝑡 ⟹ violation of Normality

21 / 69



Buchanan vote example

mod <- lm(edaybuchanan ~ edaytotal, data = flvote)
summary(mod)

##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 54.22945 49.14146 1.10 0.27
## edaytotal 0.00232 0.00031 7.48 2.4e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 333 on 65 degrees of freedom
## Multiple R-squared: 0.463, Adjusted R-squared: 0.455
## F-statistic: 56 on 1 and 65 DF, p-value: 2.42e-10
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Buchanan residuals

resids <- residuals(mod)
stand.resids <- rstandard(mod)
student.resids <- rstudent(mod)
head(cbind(resids, stand.resids, student.resids))

## resids stand.resids student.resids
## 1 -16.94 -0.05201 -0.05161
## 2 -177.51 -0.53971 -0.53675
## 3 -595.20 -2.02639 -2.07743
## 4 -86.28 -0.26135 -0.25947
## 5 -146.31 -0.44306 -0.44030
## 6 -36.07 -0.10957 -0.10873

dotchart(student.resids, flvote$county, xlab = "Residuals")
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Plotting the residuals
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Plotting the residuals
Histogram of resids
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Plotting the residuals
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Quantile-Quantile plots

• Quantile-quantile plot or QQ-plot is useful for comparing
distributions

• Plots the quantiles of one distribution against those of
another distribution

• For example, one point is the (𝑚𝑥, 𝑚𝑦) where 𝑚𝑥 is the
median of the 𝑥 distribution and 𝑚𝑦 is the median for the 𝑦
distribution

• If distributions are equal ⟹ 45 degree line
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Good QQ-plot
library(car)
x <- rt(500, df = 50)
qqPlot(x, distribution = "t", df = 50, pch = 19, cex = 1, col = "grey50",

col.lines = "indianred", las = 1, envelope = TRUE)
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Buchanan QQ-plot
qqPlot(student.resids, distribution = "t", df = nrow(flvote) - 1 -

2, envelope = TRUE, pch = 19, cex = 1, col = "grey50", col.lines = "indianred",
las = 1)
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Dealing with non-Normal errors

• Remove problematic observations (be transparent!)
• Add or drop variables in 𝐗
• Transform 𝐲 (log(𝐲))
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Buchanan revisited
flvote.nopb <- flvote[flvote$county != "Palm Beach", ]
mod.nopb <- lm(log(edaybuchanan) ~ log(edaytotal), data = flvote.nopb)
resids.nopb <- residuals(mod.nopb)
stand.resids.nopb <- rstandard(mod.nopb)
student.resids.nopb <- rstudent(mod.nopb)
summary(mod.nopb)

clipped.print(summary(mod.nopb))

##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.4860 0.3789 -6.56 1.1e-08 ***
## log(edaytotal) 0.7031 0.0362 19.42 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.436 on 64 degrees of freedom
## Multiple R-squared: 0.855, Adjusted R-squared: 0.853
## F-statistic: 377 on 1 and 64 DF, p-value: <2e-16
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Buchanan revisited
Histogram of resids.nopb
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Buchanan revisited
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2/ Nonlinearity of
the regression
function
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Buchanan model, part 2

mod3 <- lm(edaybuchanan ~ edaytotal + absnbuchanan, data = flvote)
summary(mod3)

##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -29.34807 55.19635 -0.53 0.5969
## edaytotal 0.00110 0.00048 2.29 0.0253 *
## absnbuchanan 6.89546 2.12942 3.24 0.0019 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 317 on 61 degrees of freedom
## (3 observations deleted due to missingness)
## Multiple R-squared: 0.536, Adjusted R-squared: 0.521
## F-statistic: 35.2 on 2 and 61 DF, p-value: 6.71e-11
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Added variable plot

• Need a way to visualize conditional relationship between 𝑌
and 𝑋𝑗

• How to construct an added variable plot:
1. Get residuals from regression of 𝑌 on all covariates except 𝑋𝑗
2. Get residuals from regression of 𝑋𝑗 on all other covariates
3. Plot residuals from (1) against residuals from (2)

• In R: avPlots(model) from the car package
• OLS fit to this plot will have exactly 𝛽𝑗 and 0 intercept
• Use local smoother (loess) to detect any non-linearity
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Buchanan AV plot
par(mfrow = c(1, 2))
out <- avPlots(mod3, "edaytotal")
lines(loess.smooth(x = out$edaytotal[, 1], y = out$edaytotal[, 2]),

col = "dodgerblue", lwd = 2)
out2 <- avPlots(mod3, "absnbuchanan")
lines(loess.smooth(x = out2$absnbuchanan[, 1], y = out2$absnbuchanan[,

2]), col = "dodgerblue", lwd = 2)
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How to deal with non-linearity

• Breaking up categorical variables into dummy variables
• Including interaction terms
• Including polynomial terms
• Using transformations
• Using more flexible models:

▶ Generalized additive models and splines allow the data to tell
us what the functional form is.

▶ Complicated math, but important ideas.
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Basis functions

• Basis functions are the function of 𝑋𝑖 that we include in the
model:

▶ Examples we’ve seen: ℎ𝑚(𝑋𝑖) = 𝑋𝑖, ℎ𝑚(𝑋𝑖) = 𝑋2
𝑖 ,

ℎ𝑚(𝑋𝑖) = log(𝑋𝑖)

• Different basis functions will allow for different forms of
non-linearity

• We could always break up 𝑋𝑖 into bins and estimate piecewise
constant:

ℎ1 = 𝟙(𝑋𝑖 < 𝑏1), ℎ2 = 𝟙(𝑏1 < 𝑋𝑖 < 𝑏2), ℎ3 = 𝟙(𝑋𝑖 > 𝑏2)

• 𝑏1 < 𝑏2 are knots
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Piecewise constant
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Piecewise linear
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Continuous piecewise linear

• Problem: piecewise functions are discontinuous.
• Can use clever basis functions to get continuous piecewise

linear function of 𝑋𝑖:

ℎ1(𝑋𝑖) = 1, ℎ2(𝑋𝑖) = 𝑋𝑖,
ℎ3(𝑋𝑖) = (𝑋𝑖 − 𝑏1)+, ℎ4(𝑋𝑖) = (𝑋𝑖 − 𝑏2)+

• (𝑋𝑖 − 𝑏1)+ = 𝑋𝑖 − 𝑏1 when 𝑋𝑖 > 𝑏1, 0, otherwise
• Regression with these basis functions:

𝑌𝑖 = 𝛽1ℎ1(𝑋𝑖) + 𝛽2ℎ2(𝑋𝑖) + 𝛽3ℎ3(𝑋𝑖) + 𝛽4ℎ4(𝑋𝑖) + 𝜀𝑖

▶ 𝛽2 = slope when 𝑋𝑖 < 𝑏1
▶ 𝛽2 + 𝛽3 = slope when 𝑏1 < 𝑋𝑖 < 𝑏2
▶ 𝛽2 + 𝛽3 + 𝛽4 = slope when 𝑋𝑖 > 𝑏2
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Continuous piecewise linear
h2 <- x
h3 <- 1 * (x > -1.5) * (x - -1.5)
h4 <- 1 * (x > 1.5) * (x - 1.5)
reg <- lm(y ~ h2 + h3 + h4)
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Cubic splines

• Continuous piecewise linear has “kinks” at the knots, but we
probably want “smooth” functions.

▶ What does smooth mean? Continuous derivatives!
▶ ⇝ use higher-order polynomials in the basis functions

• Cubic spline basis: bases that produce continuous functions
with continuous first and second derivatives

ℎ1(𝑋𝑖) = 1, ℎ2(𝑋𝑖) = 𝑋𝑖, ℎ3(𝑋𝑖) = 𝑋2
𝑗

ℎ4(𝑋𝑖) = 𝑋3
𝑖 , ℎ5(𝑋𝑖) = (𝑋𝑖 − 𝑏1)3+, ℎ6(𝑋𝑖) = (𝑋𝑖 − 𝑏2)3+

• Basic idea: local polynomial regression (between knots) that
have to connect and be smooth at the knots.
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Cubic spline
h2 <- x
h3 <- x^2
h4 <- x^3
h5 <- 1 * (x > -1.5) * (x - -1.5)^3
h6 <- 1 * (x > 1.5) * (x - 1.5)^3
reg <- lm(y ~ h2 + h3 + h4 + h5 + h6)
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Knotty problems

• Any function can be approximated as we increase the number
of knot points.

• How to choose the number/location of knot points?
▶ More knot points ⇝ “rougher” function, less in-sample bias,

more variance.
▶ Fewer knot points ⇝ “smoother” function, more in-sample

bias, less variance.

• In-sample fit might be great, out-of-sample fit might be
terrible.
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Cross-validation

• General strategy for bias-variance trade-offs: cross-validation.
• Set aside units to test out-of-sample prediction
• Cross-validation procedure:

1. Choose a number of evenly spread knots, 𝑏.
2. Withhold unit 𝑖, estimate the CEF of 𝑦𝑖 given 𝑋𝑖 using a cubic

spline with 𝑏 knots.
3. Get predicted value for 𝑖, ̂𝑦−𝑖

𝑖𝑏 and caculate squared prediction
error: (𝑦𝑖 − ̂𝑦−𝑖

𝑖𝑏 )2.
4. Repeat 2-3 for each observation and take that average to get

the MSE with 𝑏 knots.
5. Repeat 1-4 for different values of 𝑏 and choose the value of 𝑏

that has the lowest MSE.
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Automatic knot selection
smth <- smooth.spline(x, y)
plot(x, y, ylim = c(-3, 3), pch = 19, col = "grey50", bty = "n")
lines(smth, col = "indianred", lwd = 2)
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Generalized additive models

• Generalized additive models (GAMs) allow you to estimate
the spline of any particular variable in the regression.

▶ Each spline is additive: 𝑦𝑖 = 𝑓1(𝑋1) + 𝑓𝑥(𝑋2) + 𝜀𝑖

• Can plot the AV-plot of the spline to get a sense for the
nonlinearity of the functional form.

• Use cross-validation to select the number of knots
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GAM example fit
## library(mgcv) ## GAM package
out <- gam(edaybuchanan ~ s(edaytotal) + s(absnbuchanan), data = flvote,

subset = county != "Palm Beach")

##
## Family: gaussian
## Link function: identity
##
## Formula:
## edaybuchanan ~ s(edaytotal) + s(absnbuchanan)
##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 221.84 6.41 34.6 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(edaytotal) 6.85 7.82 10.6 1.6e-09 ***
## s(absnbuchanan) 2.95 3.64 22.6 1.6e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.95 Deviance explained = 95.8%
## GCV = 3129 Scale est. = 2592.3 n = 63
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Example: generalized additive
models

plot(out, shade = TRUE, residual = TRUE, pch = 1)
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3/ Outliers,
leverage points,
and influential
observations
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The trouble with Norway

• Lange and Garrett (1985): organizational and political power
of labor interact to improve economic growth

• Jackman (1987): relationship just due to North Sea Oil?
• Table guide:

▶ 𝑥1 = organizational power of labor
▶ 𝑥2 = political power of labor
▶ Parentheses contain 𝑡-statistics

Constant 𝑥1 𝑥2 𝑥1 ⋅ 𝑥2
Norway Obs Included .814 -.192 -.278 .137

(4.7) (2.0) (2.4) (2.9)
Norway Obs Excluded .641 -.068 -.138 .054

(4.8) (0.9) (1.5) (1.3)
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Creative curve fitting with Norway
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Three types of extreme values

1. Outlier: extreme in the 𝑦 direction
2. Leverage point: extreme in one 𝑥 direction
3. Influence point: extreme in both directions

• Not all of these are problematic
• If the data are truly “contaminated” (come from a different

distribution), can cause inefficiency and possibly bias
• Can be a violation of iid (not identically distributed)
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Outlier definition
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• An outlier is a data point with very large regression errors, 𝑢𝑖
• Very distant from the rest of the data in the 𝑦-dimension
• Increases standard errors (by increasing �̂�2)
• No bias if typical in the 𝑥’s
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Detecting outliers

• Use studentized residuals, 𝑢∗
𝑖 , since outliers can skew the

residual variance upward
▶ �̂�2 >> �̂�2

−𝑖 if 𝑖 is an outlier
▶ 𝑢∗

𝑖 ∼ 𝑡𝑛−𝑘−2, when 𝑢𝑖 ∼ 𝑁(0, 𝜎2)

• Rule of thumb: | ̂𝑢∗
𝑖 | > 2 will be relatively rare

• Extreme outliers, | ̂𝑢∗
𝑖 | > 4 − 5 are much less likely

• People usually adjust cutoff for multiple testing
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Buchanan outliers
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Leverage point definition
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• Values that are extreme in the 𝑥 direction
• That is, values far from the center of the covariate distribution
• Decrease SEs (more 𝑋 variation)
• No bias if typical in 𝑦 dimension

59 / 69



Hat values

�̂� = 𝐗𝜷 = 𝐗(𝐗′𝐗)−1𝐗′𝐲 = 𝐇𝐲

• For a particular observation 𝑖, we can show this means:

̂𝑦𝑖 =
𝑛

∑
𝑗=1

ℎ𝑖𝑗𝑦𝑗

• ℎ𝑖𝑗 = importance of observation 𝑗 is for the fitted value ̂𝑦𝑖
• Leverage/hat values: ℎ𝑖 = ℎ𝑖𝑖 diagonal entries of the hat

matrix
• With a simple linear regression, we have

ℎ𝑖 = 1
𝑛 + (𝑋𝑖 − 𝑋)2

∑𝑛
𝑗=1(𝑋𝑗 − 𝑋)2

▶ ⇝ how far 𝑖 is from the center of the 𝐗 distribution
• Rule of thumb: examine hat values greater than 2(𝑘 + 1)/𝑛
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Buchanan hats

head(hatvalues(mod), 5)

## 1 2 3 4 5
## 0.04179 0.02285 0.22066 0.01556 0.01493
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Buchanan hats
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Influence points
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Influence Point

• An influence point is one that is both an outlier and a
leverage point.

• Extreme in both the 𝑥 and 𝑦 dimensions
• Causes the regression line to move toward it (bias?)
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Overall measures of influence

• A measure of influence for each observation is Cook’s distance:

𝐷𝑖 = ̂𝑢′
𝑖

𝑘 + 1 × ℎ𝑖
1 − ℎ𝑖

• Remember here that ̂𝑢′
𝑖 is the standardized residual and ℎ𝑖 is

the hat value.
• Basically this is “outlier × leverage”
• 𝐷𝑖 > 4/(𝑛 − 𝑘 − 1) considered “large”
• Influence plot:

▶ x-axis: hat values, ℎ𝑖
▶ y-axis: studentized residuals, ̂𝑢∗

𝑖
▶ size of points: Cook’s distance
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Influence Plot Buchanan
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Influence plot from lm output
plot(mod3, which = 5, labels.id = flvote$county)

0.0 0.1 0.2 0.3 0.4 0.5

-2

0

2

4

6

8

Leverage

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

lm(edaybuchanan ~ edaytotal + absnbuchanan)

Cook's distance

Palm Beach

Miami-Dade
Broward

66 / 69



Limitations of the standard tools
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• What happens when there are two influence points?
• Red line drops the red influence point
• Blue line drops the blue influence point
• Neither of the “leave-one-out” approaches helps recover the
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What to do about outliers and
influential units?

• Is the data corrupted?
▶ Fix the observation (obvious data entry errors)
▶ Remove the observation
▶ Be transparent either way

• Is the outlier part of the data generating process?
▶ Transform the dependent variable (log(𝑦))
▶ Use a method that is robust to outliers (robust regression,

least absolute deviations)
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Summary

• For nonnormality, influential points, and nonlinearity:
▶ Check your data! summary(), plot(), etc
▶ Use transformations to make assumptions more plausible
▶ Add covariates to help account for non-identical distributions

• Next week:
▶ What if we have heteroskedastic data?
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