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Where are we? Where are we going?

• Last few weeks: regression estimation and inference with one and two indepen-
dent variables

• This week: the general regression model with arbitrary covariates
• Next few weeks: what to do when the regression assumptions go wrong

Nunn & Wantchekon

• Are there long-term, persistent effects of slave trade on Africans today?
• Basic idea: compare levels of interpersonal trust (Yi) across different levels of

historical slave exports for a respondent’s ethnic group
• Problem: ethnic groups and respondents might differ in their interpersonal

trust in ways that correlate with the severity of slavery
• One solution: try to control for relevant differences between groups viamultiple

regression:
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• Our goal: Be able to understand what’s we’re saying in this equation.

nunn <- foreign::read.dta(”Nunn_Wantchekon_AER_2011.dta”)

mod <- lm(trust_neighbors ~ exports + age + male + urban_dum + malaria_ecology, data = nunn)

summary(mod)

##

## Call:

## lm(formula = trust_neighbors ~ exports + age + male + urban_dum +

## malaria_ecology, data = nunn)

##

## Residuals:

## Min 1Q Median 3Q Max

## -2.5954 -0.7491 0.1440 0.8735 1.9964

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 1.503e+00 2.183e-02 68.844 <2e-16 ***

## exports -1.021e-03 4.094e-05 -24.935 <2e-16 ***

## age 5.045e-03 4.724e-04 10.680 <2e-16 ***

## male 2.784e-02 1.382e-02 2.015 0.0439 *
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## urban_dum -2.739e-01 1.435e-02 -19.079 <2e-16 ***

## malaria_ecology 1.941e-02 8.712e-04 22.279 <2e-16 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 0.9778 on 20319 degrees of freedom

## (1497 observations deleted due to missingness)

## Multiple R-squared: 0.06039, Adjusted R-squared: 0.06016

## F-statistic: 261.2 on 5 and 20319 DF, p-value: < 2.2e-16

head(model.matrix(mod), 20)

## (Intercept) exports age male urban_dum malaria_ecology

## 1 1 854.9581 40 0 0 28.14704

## 2 1 854.9581 25 1 0 28.14704

## 3 1 854.9581 38 1 1 28.14704

## 4 1 854.9581 37 0 1 28.14704

## 5 1 854.9581 31 1 0 28.14704

## 6 1 854.9581 45 0 0 28.14704

## 7 1 854.9581 20 1 0 28.14704

## 8 1 854.9581 31 0 0 28.14704

## 9 1 854.9581 24 1 0 28.14704

## 10 1 854.9581 52 0 0 28.14704

## 11 1 854.9581 29 1 0 28.14704

## 12 1 854.9581 18 0 0 28.14704

## 13 1 854.9581 50 1 0 28.14704

## 14 1 854.9581 35 0 0 28.14704

## 15 1 854.9581 47 1 0 28.14704

## 16 1 854.9581 29 0 0 28.14704

## 17 1 854.9581 21 1 0 28.14704

## 18 1 854.9581 23 0 0 28.14704

## 19 1 854.9581 25 1 0 28.14704

## 20 1 854.9581 29 0 0 28.14704

dim(model.matrix(mod))

## [1] 20325 6
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Why matrices and vectors?

• Here’s one way to write the full multiple regression model:

yi = β0 + xi1β1 + xi2β2 + · · ·+ xiKβK + ui

• Notation is going to get needlessly messy as we add variables.

matrix algebra review
Matrices and vectors

• A matrix is just a rectangular array of numbers. We say that a matrix is n×K
(“n by K”) if it has n rows and K columns.

• Uppercase bold denotes a matrix:

A =


a11 a12 · · · a1K
a21 a22 · · · a2K
...

... . . . ...
an1 an2 · · · anK


• We will often need to refer to some generic entry (or cell) of a matrix and we

can do this with aik where this is the entry in row i and column k.
• There is nothing special about thesematrices. They are basically just like spread-

sheets in Excel or the like. It’s a way to group numbers.

Examples of matrices

• One example of a matrix that we’ll use a lot is the design matrix, which has a
column of ones, and then each of the subsequent columns is each independent
variable in the regression.

X =


1 exports1 age1 male1
1 exports2 age2 male2
...

...
...

...
1 exportsn agen malen


head(model.matrix(mod), 20)
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## (Intercept) exports age male urban_dum malaria_ecology

## 1 1 854.9581 40 0 0 28.14704

## 2 1 854.9581 25 1 0 28.14704

## 3 1 854.9581 38 1 1 28.14704

## 4 1 854.9581 37 0 1 28.14704

## 5 1 854.9581 31 1 0 28.14704

## 6 1 854.9581 45 0 0 28.14704

## 7 1 854.9581 20 1 0 28.14704

## 8 1 854.9581 31 0 0 28.14704

## 9 1 854.9581 24 1 0 28.14704

## 10 1 854.9581 52 0 0 28.14704

## 11 1 854.9581 29 1 0 28.14704

## 12 1 854.9581 18 0 0 28.14704

## 13 1 854.9581 50 1 0 28.14704

## 14 1 854.9581 35 0 0 28.14704

## 15 1 854.9581 47 1 0 28.14704

## 16 1 854.9581 29 0 0 28.14704

## 17 1 854.9581 21 1 0 28.14704

## 18 1 854.9581 23 0 0 28.14704

## 19 1 854.9581 25 1 0 28.14704

## 20 1 854.9581 29 0 0 28.14704

dim(model.matrix(mod))

## [1] 20325 6

Vectors

• A vector is just a matrix with only one row or one column.

• A row vector is a vector with only one row, sometimes called a 1×K vector:

α =
[
α1 α2 α3 · · · αK

]
• A column vector is a vector with one column and more than one row. Here is

a n× 1 vector:

y =


y1
y2
...
yn


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• Unless otherwise stated, we’ll assume that a vector is column vector and vectors
will be written with lowercase bold lettering (b)

Vector examples

• One really common vector that we will work with are individual variables, such
as the dependent variable, which we will represent as y:

y =


y1
y2
...
yn


Vectors in R

• We can always get a column or row vector from a data frame or matrix in R
using the usual subset rules. Note, though, that R always prints a vector in row
form, even if it is a column in the original data:

model.matrix(mod)[1,]

## (Intercept) exports age male

## 1.00000 854.95807 40.00000 0.00000

## urban_dum malaria_ecology

## 0.00000 28.14704

head(nunn$trust_neighbors)

## [1] 3 3 0 0 1 1

• Gotcha In R, vectors aren’t the same as matrices. If try to use dim() on a vector,
R is confused:

dim(nunn$trust_neighbors)

## NULL

• Vectors in R are special constructs and you have to use length() to see howmany
entries there are in the vector:
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length(nunn$trust_neighbors)

## [1] 21822

• You can convert vectors to be matrices using as.matrix() (with one row or one
column, like our definition), but beware that R assumes all vectors are column
vectors:

dim(as.matrix(nunn$trust_neighbors))

## [1] 21822 1

Transpose

• There are many operations we’ll do on vectors and matrices, but one is very
fundamental: the transpose.

• The transpose of a matrix A is the matrix created by switching the rows and
columns of the data and is denoted A′. That is, the kth column becomes the
kth row.

Q =

 q11 q12
q21 q22
q31 q32

 Q′ =

[
q11 q21 q31
q12 q22 q32

]

• If A is j × k, then A′ will be k × j.

Transposing vectors

• Transposing will turn a k × 1 column vector into a 1 × k row vector and vice
versa:

ω =


1
3
2

−5

 ω′ =
[
1 3 2 −5

]
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Transposing in R

a <- matrix(1:6, ncol = 3, nrow = 2)

a

## [,1] [,2] [,3]

## [1,] 1 3 5

## [2,] 2 4 6

t(a)

## [,1] [,2]

## [1,] 1 2

## [2,] 3 4

## [3,] 5 6

Write matrices as vectors

• Sometimes it will be easier to refer to matrices as a group of column or row
vectors:

• As a row vector:

A =

[
a11 a12 a13
a21 a22 a23

]
=

[
a′
1

a′
2

]

• with row vectors a′
1 =

[
a11 a12 a13

]
a′
2 =

[
a21 a22 a23

]
• Or we can define it in terms of column vectors:

B =

 b11 b12
b21 b22
b31 b32

 =
[

b1 b2
]

where b1 and b2 represent the columns of B.

• It should be clear what is what: matrices defined by column will be written
horizontally, whereas matrices defined by row will be written vertically with
transposes.

• Also, we’ll use k and j as subscripts for columns of a matrix: xj or xk, whereas
i and t will be used for rows x′

i.
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Addition and subtraction

• How do we add or subtract matrices and vectors?

• First, the matrices/vectors need to be comformable, meaning that the dimen-
sions have to be the same.

• Let A and B both be 2× 2matrices. Then, let C = A+B, where we add each
cell together:

A+B =

[
a11 a12
a21 a22

]
+

[
b11 b12
b21 b22

]
=

[
a11 + b11 a12 + b12
a21 + b21 a22 + b22

]
=

[
c11 c12
c21 c22

]
= C

Scalar multiplication

• A scalar is just a single number: you can think of it sort of like a 1 by 1 matrix.

• When we multiply a scalar by a matrix, we just multiply each element/cell by
that scalar:

αA = α

[
a11 a12
a21 a22

]
=

[
α× a11 α× a12
α× a21 α× a22

]

The linear model with new notation

• Remember that we wrote the linearmodel as the following for all i ∈ [1, . . . , n]:

yi = β0 + xiβ1 + ziβ2 + ui

• Imagine we had an n of 4. We could write out each formula:

y1 = β0 + x1β1 + z1β2 + u1 (unit 1)
y2 = β0 + x2β1 + z2β2 + u2 (unit 2)
y3 = β0 + x3β1 + z3β2 + u3 (unit 3)
y4 = β0 + x4β1 + z4β2 + u4 (unit 4)

• We can write this as:
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
y1
y2
y3
y4

 =


1
1
1
1

β0 +


x1
x2
x3
x4

β1 +


z1
z2
z3
z4

β2 +


u1
u2
u3
u4


• Hopefully it’s clear in this notation that the column vector of the outcomes is a

linear combination of the independent variables and the error, with the β coef-
ficients acting as the weights.

• Can we write this in a more compact form? Yes! Let X and β be the following:

X
(4×3)

=


1 x1 z1
1 x2 z2
1 x3 z3
1 x4 z4

 β
(3×1)

=

 β0
β1
β2


Matrix multiplication by a vector

• We will define multiplication of a matrix by a vector in the following way:


1
1
1
1

β0 +


x1
x2
x3
x4

β1 +


z1
z2
z3
z4

β2 = Xβ

• Thus, multiplication of amatrix by a vector is just the linear combination of the
columns of the matrix with the vector elements as weights/coefficients.

• And the left-hand side here only uses scalars times vectors, which is easy!

• In general, let’s say that we have a n×K matrix A and aK × 1 column vector
b (notice that the number of columns of the matrix is the same as the number
of rows of the vector)

• Let ak be the kth column of A. Then we can write:

c
(n×1)

= Ab = b1a1 + b2a2 + · · ·+ bKaK
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Back to regression

• Thus, now let X be the n× (K + 1) matrix of independent variables and β be
the (K + 1)× 1 column vector of coefficients. Then:

Xβ = β0 + β1x1 + β2x2 + · · ·+ βKxK

• Thus, we can compactly write the linear model as the following:

y
(n×1)

= Xβ + u
(n×1)

Matrix multiplication

• What if, instead of a column vector b, we have a matrix B with dimensions
K ×M .

• How do we do multiplication like so C = AB?

• Each column of the new matrix is just matrix by vector multiplication:

C = [c1 c2 · · · cM ] ck = Abk

• Thus, each column of C is a linear combination of the columns of A.

Special multiplications

• The inner product of a two column vectors a and b (of equal dimension,K×1)
is just the transpose of the first multiplied by the second:

a′b = a1b1 + a2b2 + · · ·+ aKbK

• This is a special case of the stuff above since a′ is a matrix withK columns and
just 1 row, so the “columns” of a′ are just scalars.

• Example: let’s say that we have a vector of residuals, û, then the inner product
of the residuals is:

û′û =
[
û1 û2 · · · ûn

]


û1
û2
...
ûn


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û′û = û1û1 + û2û2 + · · ·+ ûnûn =

n∑
i=1

û2i

• It’s just the sum of the squared residuals!

• We can use the inner product to define matrix multiplication. Let C = AB,
then

cij = a′
ibj = ai1b1j + ai2b2j + · · ·+ aiKbKj

Special matrices and jargon

• 1 is an n× 1 column vector of ones (a “ones vector”):

1′x = 1× x1 + 1× x2 + · · ·+ 1× xn =

n∑
i=1

xi

• A square matrix is one with equal numbers of rows and columns.

• The diagonal of a squarematrix are the values in which the row number is equal
to the column number: a11 or a22, etc.

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33


• To get the diagonal of a matrix in R, use the diag() function:

b <- matrix(1:4, nrow = 2, ncol = 2)

b

## [,1] [,2]

## [1,] 1 3

## [2,] 2 4

diag(b)

## [1] 1 4

• The identity matrix, I is a square matrix, with 1s along the diagonal and 0s
everywhere else.
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I =

 1 0 0
0 1 0
0 0 1


• The identity matrix multiplied by any matrix just returns the matrix: AI = A.

• To create an identity matrix in R, you can also use the diag() function, but this
time just pass it a number instead of a matrix:

diag(3)

## [,1] [,2] [,3]

## [1,] 1 0 0

## [2,] 0 1 0

## [3,] 0 0 1

regression in matrix form
Multiple linear regression in matrix form

• Let β̂ be the matrix of estimated regression coefficients:

β̂ =


β̂0
β̂1
...
β̂k


• Now, then our estimated regression fits will be:

ŷ = Xβ̂

• It might be helpful to see this again more written out:

ŷ =


ŷ1
ŷ2
...
ŷn

 = Xβ̂ =


1β̂0 + x11β̂1 + x12β̂2 + · · ·+ x1K β̂K

1β̂0 + x21β̂1 + x22β̂2 + · · ·+ x2K β̂K

...
1β̂0 + xn1β̂1 + xn2β̂2 + · · ·+ xnK β̂K


• Just a tad bit more tidy, I’d say!
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Residuals

• We can easily write the residuals in matrix form:

û = y − Xβ̂

• Our goal as usual is to minimize the sum of the squared residuals, which we
saw earlier we can write:

û′û = (y − Xβ̂)′(y − Xβ̂)

OLS estimator in matrix form

• By finding the values of β̂ that minimizes the sum of the squared residuals, we
arrive at the following formula for the OLS estimator:

X′Xβ̂ = X′y

• In order to isolate β̂, we need to move the X′X term to the other side of the
equals sign.

• We’ve learned about matrix multiplication, but what about matrix “division”?

Scalar inverses

• What is division in its simplest form? 1
a is the value such that a 1

a = 1:

• For some algebraic expression: au = b, let’s solve for u:

1

a
au =

1

a
b

u =
b

a

• Need a matrix version of this: 1
a .

Matrix inverses

• Definition If it exists, the inverse of square matrix A, denoted A−1, is the ma-
trix such that A−1A = I.
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• We can use the inverse to solve (systems of) equations:

Au = b
A−1Au = A−1b

Iu = A−1b
u = A−1b

• If the inverse exists, we say that A is invertible or nonsingular.

Back to OLS

• Let’s assume, for now, that the inverse of X′X exists (we’ll come back to this)
• Then we can write the OLS estimator as the following:

β̂ = (X′X)−1X′y

• Memorize this: “x prime x inverse x prime y” sear it into your soul.

OLS by hand in R

• Let’s skip the lm() function and compute the coefficients directly:

• First we need to get the design matrix:

X <- model.matrix(trust_neighbors ~ exports + age + male + urban_dum + malaria_ecology, data = nunn)

dim(X)

## [1] 20325 6

## model.frame always puts the response in the first column

y <- model.frame(trust_neighbors ~ exports + age + male + urban_dum + malaria_ecology, data = nunn)[,1]

## solve() does inverses

## and %*% is matrix multiplication

solve(t(X) %*% X) %*% t(X) %*% y

## [,1]

## (Intercept) 1.503037046

## exports -0.001020836
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## age 0.005044682

## male 0.027836875

## urban_dum -0.273871917

## malaria_ecology 0.019410561

coef(mod)

## (Intercept) exports age male

## 1.503037046 -0.001020836 0.005044682 0.027836875

## urban_dum malaria_ecology

## -0.273871917 0.019410561

Intuition for the OLS in matrix form

• What’s the intuition here?
• First, note that the “numerator” X′y is roughly composed of the covariances

between the columns of X and y
• Next, the “denominator” X′X is roughly composed of the sample variances and

covariances of variables within X
• Thus, we have something like:

β̂ ≈ (variance of X)−1(covariance of X & y)

• This is a rough sketch and isn’t strictly true, but it can provide intuition.
• We’re also sidestepping the issues of what the variance of a matrix is for now.

Most general OLS assumptions

1. Linearity: y = Xβ + u
2. Random/iid sample: (yi,x′

i) are a iid sample from the population.
3. No perfect collinearity: X is an n× (K + 1) matrix with rank K + 1
4. Zero conditional mean: E[u|X] = 0
5. Homoskedasticity: var(u|X) = σ2

uIn
6. Normality: u|X ∼ N(0, σ2

uIn)

No perfect collinearity

• In matrix form: X is an n× (K + 1) matrix with rank K + 1
• Definition The rank of a matrix is the maximum number of linearly indepen-

dent columns.
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• If X has rank K + 1, then all of its columns are linearly independent
• …and none of its columns are linearly dependent =⇒ no perfect collinearity
• X has rank K + 1 =⇒ (X′X) is invertible
• Just like variation inX led us to be able to divide by the variance in simple OLS

Expected values of vectors

• The expected value of the vector is just the expected value of its entries.
• Using the zero mean conditional error assumptions:

E[u|X] =


E[u1|X]
E[u2|X]

...
E[un|X]

 =


0
0
...
0

 = 0

OLS is unbiased

• Under matrix assumptions 1-4, OLS is unbiased for β:

E[β̂] = β

Variance-covariance matrix of random vectors

• The homoskedasticity assumption is different: var(u|X) = σ2
uIn

• In order to investigate this, we need to know what the variance of a vector is.
• The variance of a vector is actually a matrix:

var[u] = Σu =


var(u1) cov(u1, u2) . . . cov(u1, un)

cov(u2, u1) var(u2) . . . cov(u2, un)
... . . .

cov(un, u1) cov(un, u2) . . . var(un)


• This matrix is symmetric since cov(ui, uj) = cov(ui, uj)

Matrix version of homoskedasticity

• Once again: var(u|X) = σ2
uIn

• Visually:
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var[u] = σ2
uIn =


σ2
u 0 0 . . . 0
0 σ2

u 0 . . . 0
...

0 0 0 . . . σ2
u


• In less matrix notation:

– var(ui) = σ2
u for all i (constant variance)

– cov(ui, uj) = 0 for all i ̸= j (implied by iid)

Sampling variance for OLS estimates

• Under assumptions 1-5, the sampling variance of theOLS estimator can bewrit-
ten in matrix form as the following:

var[β̂] = σ2
u(X′X)−1

• This matrix looks like this:

β̂0 β̂1 β̂2 · · · β̂K
β̂0 var[β̂0] cov[β̂0, β̂1] cov[β̂0, β̂2] · · · cov[β̂0, β̂K ]

β̂1 cov[β̂0, β̂1] var[β̂1] cov[β̂1, β̂2] · · · cov[β̂1, β̂K ]

β̂2 cov[β̂0, β̂2] cov[β̂1, β̂2] var[β̂2] · · · cov[β̂2, β̂K ]
...

...
...

... . . . ...
β̂K cov[β̂0, β̂K ] cov[β̂K , β̂1] cov[β̂K , β̂2] · · · var[β̂K ]

Inference in the general setting

• Under assumption 1-5 in large samples:

β̂k − βk

ŜE[β̂k]
∼ N(0, 1)

• In small samples, under assumptions 1-6,

β̂k − βk

ŜE[β̂k]
∼ tn−(K+1)
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• Thus, under the null of H0 : βk = 0, we know that

β̂k

ŜE[β̂k]
∼ tn−(K+1)

• Here, the estimated SEs come from:

v̂ar[β̂] = σ̂2
u(X′X)−1

σ̂2
u =

û′û
n− (k + 1)

• We can access this estimated covariance matrix in R:

vcov(mod)

## (Intercept) exports age male

## (Intercept) 4.766593e-04 1.163698e-07 -7.956151e-06 -6.675717e-05

## exports 1.163698e-07 1.676040e-09 -3.658689e-10 7.282947e-09

## age -7.956151e-06 -3.658689e-10 2.231299e-07 -7.764680e-07

## male -6.675717e-05 7.282947e-09 -7.764680e-07 1.908894e-04

## urban_dum -9.658428e-05 -4.861159e-08 7.107867e-07 -1.711373e-06

## malaria_ecology -6.909410e-06 -2.124140e-08 2.324132e-10 -1.017404e-07

## urban_dum malaria_ecology

## (Intercept) -9.658428e-05 -6.909410e-06

## exports -4.861159e-08 -2.124140e-08

## age 7.107867e-07 2.324132e-10

## male -1.711373e-06 -1.017404e-07

## urban_dum 2.060633e-04 2.723938e-09

## malaria_ecology 2.723938e-09 7.590439e-07

• Note that the diagonal are the variances. So the square root of the diagonal is
are the standard errors:

sqrt(diag(vcov(mod)))

## (Intercept) exports age male

## 2.183253e-02 4.093947e-05 4.723663e-04 1.381627e-02

## urban_dum malaria_ecology

## 1.435491e-02 8.712313e-04
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coef(summary(mod))[, ”Std. Error”]

## (Intercept) exports age male

## 2.183253e-02 4.093947e-05 4.723663e-04 1.381627e-02

## urban_dum malaria_ecology

## 1.435491e-02 8.712313e-04

appendix
Covariance/variance interpretation of matrix OLS

X′y =
n∑

i=1


yi

yixi1
yixi2

...
yixiK

 ≈


ny

ĉov(yi, xi1)
ĉov(yi, xi2)

...
ĉov(yi, xiK)



X′X =
n∑

i=1


1 xi1 xi2 · · · xiK

xi1 x2
i1 xi2xi1 · · · xi1xiK

xi2 xi1xi2 x2
i2 · · · xi2xiK

...
...

...
. . .

...
xiK xi1xiK xi2xiK · · · xiKxiK

 ≈


n nx1 nx2 · · · nxK

nx1 v̂ar(xi1) ĉov(xi1, xi2) · · · ĉov(xi1, xiK)
nx2 ĉov(xi2, xi1) v̂ar(xi2) · · · ĉov(xi2, xiK)
...

...
...

. . .
...

nxK ĉov(xiK , xi1) ĉov(xiK , xi2) · · · v̂ar(xiK)


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