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Where are we? Where are we going?

Last few weeks: regression estimation and inference with one and two indepen-
dent variables

This week: the general regression model with arbitrary covariates

Next few weeks: what to do when the regression assumptions go wrong

Nunn & Wantchekon

Are there long-term, persistent effects of slave trade on Africans today?

Basic idea: compare levels of interpersonal trust (Y;) across different levels of
historical slave exports for a respondent’s ethnic group

Problem: ethnic groups and respondents might differ in their interpersonal
trust in ways that correlate with the severity of slavery

One solution: try to control for relevant differences between groups via multiple
regression:
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II1. Estimating Equations and Empirical Results
A. OLS Estimates

We begin by estimating the relationship between the number of slaves that were
taken from an individual’s ethnic group and the individual’s current level of trust.
Our baseline estimating equation is:

(1) trust,, 4. = @, + Bslave exports, + X, .. T +X;. 2+ X.® + €4,

where i indexes individuals, e ethnic groups, d districts, and ¢ countries. The vari-
able trust; , ; . denotes one of our five measures of trust, which vary across individu-
als. o, denotes country fixed effects, which are included to capture country-specific
factors, such as government regulations, that may affect trust (e.g., Philippe Aghion
et al. 2010; Aghion, Algan, and Cahuc 2008). slave exports, is a measure of the
number of slaves taken from ethnic group e during the slave trade. (We discuss this
variable in more detail below.) Our coefficient of interest is 3, the estimated relation-
ship between the slave exports of an individual’s ethnic group and the individual’s
current level of trust.

« Our goal: Be able to understand what’s we're saying in this equation.

nunn <- foreign::read.dta(”Nunn_Wantchekon_AER_2011.dta”)

mod <- Im(trust_neighbors ~ exports + age + male + urban_dum + malaria_ecology, data = nunn)

summary (mod)

##

## Call:

## Im(formula = trust_neighbors ~ exports + age + male + urban_dum +
## malaria_ecology, data = nunn)

it

## Residuals:

## Min 1Q Median 30 Max

## -2.5954 -0.7491 0.1440 0.8735 1.9964

it

## Coefficients:

## Estimate Std. Error t value Pr(>|t])

## (Intercept) 1.503e+00 2.183e-02 68.844 <2e-16 **xx*
## exports -1.021e-03 4.094e-05 -24.935 <2e-16 #**x%
## age 5.045e-03 4.724e-04 10.680 <2e-16 #**x%

## male 2.784e-02 1.382e-02 2.015 0.0439 *
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Residual standard error: 0.9778 on 20319 degrees of freedom

Multiple R-squared:
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0.06039,
F-statistic: 261.2 on 5 and 20319 DF,

Adjusted R-squared:

0.06016

p-value: < 2.2e-16
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Why matrices and vectors?

« Here’s one way to write the full multiple regression model:

Yi = Bo+xaf1 +xppfo + - + Tik fr +

« Notation is going to get needlessly messy as we add variables.

MATRIX ALGEBRA REVIEW
Matrices and vectors

o A matrix is just a rectangular array of numbers. We say that a matrix isn x K
(“n by K7) if it has n rows and K columns.
» Uppercase bold denotes a matrix:

aip aiz - a1K

az; a2 -+ A2K
A =

apl QAnp2 - GpK

« We will often need to refer to some generic entry (or cell) of a matrix and we
can do this with a;;, where this is the entry in row 7 and column k.

o There is nothing special about these matrices. They are basically just like spread-
sheets in Excel or the like. It’s a way to group numbers.

Examples of matrices

« One example of a matrix that we'll use a lot is the design matrix, which has a
column of ones, and then each of the subsequent columns is each independent
variable in the regression.

1 exports; age; male;

< _ 1 exports, age, maley

1 exports, age, male,

head(model.matrix(mod), 20)



#i# (Intercept) exports age male urban_dum malaria_ecology
## 1 1 854.9581 40 Q Q 28.14704
## 2 1 854.9581 25 1 0 28.14704
## 3 1 854.9581 38 1 1 28.14704
## 4 1 854.9581 37 Q 1 28.14704
## 5 1 854.9581 31 1 Q 28.14704
## 6 1 854.9581 45 Q Q 28.14704
## 7 1 854.9581 20 1 Q 28.14704
## 8 1 854.9581 31 Q Q 28.14704
## 9 1 854.9581 24 1 Q 28.14704
## 10 1 854.9581 52 Q Q 28.14704
## 11 1 854.9581 29 1 [ 28.14704
## 12 1 854.9581 18 Q Q 28.14704
## 13 1 854.9581 50 1 0 28.14704
## 14 1 854.9581 35 Q Q 28.14704
## 15 1 854.9581 47 1 Q 28.14704
## 16 1 854.9581 29 Q Q 28.14704
## 17 1 854.9581 21 1 Q 28.14704
## 18 1 854.9581 23 Q Q 28.14704
## 19 1 854.9581 25 1 Q 28.14704
## 20 1 854.9581 29 Q Q 28.14704

dim(model.matrix(mod))
## [1] 20325 6

Vectors

« A vector is just a matrix with only one row or one column.

« A row vector is a vector with only one row, sometimes called a 1 x K vector:

O’.:[Oél Qy Qg - OzK]

e A column vector is a vector with one column and more than one row. Here is
an x 1vector:
Y1

Y2
y:

Yn



o Unless otherwise stated, we'll assume that a vector is column vector and vectors
will be written with lowercase bold lettering (b)
Vector examples

+ One really common vector that we will work with are individual variables, such
as the dependent variable, which we will represent as y:

a1

Y2
y fry

Yn

Vectors in R

« We can always get a column or row vector from a data frame or matrix in R
using the usual subset rules. Note, though, that R always prints a vector in row
form, even if it is a column in the original data:

model.matrix(mod)[1,]

# (Intercept) exports age male
## 1.00000 854.95807 40.00000 0.00000
## urban_dum malaria_ecology
## 0.00000 28.14704

head(nunn$trust_neighbors)

#[11330011

» Gotcha In R, vectors aren’t the same as matrices. If try to use dim() on a vector,
R is confused:

dim(nunn$trust_neighbors)

## NULL

o Vectors in Rare special constructs and you have to use length() to see how many
entries there are in the vector:



length(nunn$trust_neighbors)

## [1] 21822

* You can convert vectors to be matrices using as.matrix() (with one row or one
column, like our definition), but beware that R assumes all vectors are column
vectors:

dim(as.matrix(nunn$trust_neighbors))
## [1] 21822 1

Transpose

« There are many operations we'll do on vectors and matrices, but one is very
fundamental: the transpose.

o The transpose of a matrix A is the matrix created by switching the rows and
columns of the data and is denoted A’. That is, the kth column becomes the
kth row.

q11
Q= g ¢ Q’ _ { q11 421 q31 }
g31 432 P2 432

o If Aisj X k,then A’ willbe k x j.

Transposing vectors

o Transposing will turn a £ x 1 column vector into a 1 X k row vector and vice
versa:

N W o=

w=[13 2 —5]



Transposing in R

a <- matrix(1:6, ncol = 3, nrow = 2)

a

## (110,21 0,31
# [1,] L 3 5
## [2,] 2 4 6

t(a)

#H [,11[,21
## [1,] 1 2
## [2,] 3 4
## [3,] 5 6

Write matrices as vectors

« Sometimes it will be easier to refer to matrices as a group of column or row
vectors:

o As a row vector:
!
A — ail aiz a3z | _ | a4
- - !
a1 @22 a3 ay
o with row vectors a/} = [ a1 a r =
1 11 a2 a1z | a a1 a2 G23

o Or we can define it in terms of column vectors:

bi1 bi2
B=| by by |=[b1 bz]
b31 b3z

where b; and by represent the columns of B.

« It should be clear what is what: matrices defined by column will be written
horizontally, whereas matrices defined by row will be written vertically with
transposes.

« Also, we'll use k and j as subscripts for columns of a matrix: x; or xj, whereas
i and ¢ will be used for rows x;,.



Addition and subtraction

o How do we add or subtract matrices and vectors?

o First, the matrices/vectors need to be comformable, meaning that the dimen-
sions have to be the same.

e Let A and B both be 2 x 2 matrices. Then, let C = A + B, where we add each
cell together:

a1l a2 bir b2 a1 +bi1 a1z + b2 11 C12
A+B = - = = =C
{ a1 o2 } { ba1  bao } [ ag1 +bo1  aze + ba2 ] { C21  Co2 }

Scalar multiplication

o A scalar is just a single number: you can think of it sort of like a 1 by 1 matrix.

« When we multiply a scalar by a matrix, we just multiply each element/cell by
that scalar:

al; a1z a X ayp aXaiz
aA =« =
as1 Q92 a X a1 O« X ag2

The linear model with new notation

« Remember that we wrote the linear model as the following foralli € [1,...,n]:

Yi = Bo + 281 + 22 + u;

« Imagine we had an n of 4. We could write out each formula:

y1 = Bo+x181 + 2182 +ur  (unit 1)
ya = Bo + x251 + 2202 + u2  (unit 2)
y3 = Bo + x381 + 2352 + u3 (unit 3)
ys = Bo + 2481 + 242 + us  (unit 4)

o We can write this as:
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n 1 | 21 U1
Y2 1 T2 29 U
— + + +
" 1 Bo . B1 . B2 s
Ya 1 T4 24 Uy

« Hopefully it’s clear in this notation that the column vector of the outcomes is a
linear combination of the independent variables and the error, with the 5 coef-
ficients acting as the weights.

« Can we write this in a more compact form? Yes! Let X and 3 be the following:

1 r1 =1 BO
1 zy 2
X =, 2720 B =|h
(4%3) I3 23 (3x1) Bo
1 Ty Z4

Matrix multiplication by a vector

» We will define multiplication of a matrix by a vector in the following way:

1 T 21
1 xT9 z9

=X
| Bt |t L, | Pe=XB
1 Ty Z4

« Thus, multiplication of a matrix by a vector is just the linear combination of the
columns of the matrix with the vector elements as weights/coeflicients.

o And the left-hand side here only uses scalars times vectors, which is easy!

o In general, let’s say that we have a n X K matrix A and a K x 1 column vector
b (notice that the number of columns of the matrix is the same as the number
of rows of the vector)

o Let aj be the kth column of A. Then we can write:

(C ):Ab:b1a1+b2a2+~-+bKaK
nx1
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Back to regression

o Thus, now let X be the n x (K + 1) matrix of independent variables and 3 be
the (K + 1) x 1 column vector of coefficients. Then:

XB = Po+ Pix1 + Paxo + - + PrXK
« Thus, we can compactly write the linear model as the following:

y =XB+ u
(nx1) (nx1)

Matrix multiplication

o What if, instead of a column vector b, we have a matrix B with dimensions
K x M.

» How do we do multiplication like so C = AB?
« Each column of the new matrix is just matrix by vector multiplication:

C= [Cl Co s CM] Cr = Abk
o Thus, each column of C is a linear combination of the columns of A.

Special multiplications

« The inner product of a two column vectors a and b (of equal dimension, K x 1)
is just the transpose of the first multiplied by the second:

a'b = a1by + agbo + - + axbi

o This is a special case of the stuff above since a’ is a matrix with K columns and
just 1 row, so the “columns” of a’ are just scalars.

« Example: let’s say that we have a vector of residuals, U, then the inner product
of the residuals is:
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n
)~ o~ o~ o~ o~ o~ o~ ~2
uu=ujuy +ugus + - + uply, = g Uu;

i=1

o It’s just the sum of the squared residuals!

o We can use the inner product to define matrix multiplication. Let C = AB,
then
Cij = a;;bj = ailblj + aigbgj + -+ aiKbKj

Special matrices and jargon

e lisann x 1 column vector of ones (a “ones vector”):

n
Ux=1xz+1xz+ - +1xz= 2
i=1

« A square matrix is one with equal numbers of rows and columns.

o The diagonal of a square matrix are the values in which the row number is equal
to the column number: a1y or ag9, etc.

air a2 a3
A= axn ax» a3
a3r as2 ass

« To get the diagonal of a matrix in R, use the diag() function:

b <- matrix(1:4, nrow = 2, ncol = 2)
b

#it [,11[,2]
## [1,] 1 3
# [2,] 2 4

diag(b)

# [111 4

« The identity matrix, I is a square matrix, with 1s along the diagonal and os
everywhere else.
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100
I=|10 10
0 01
+ The identity matrix multiplied by any matrix just returns the matrix: AI = A.

+ To create an identity matrix in R, you can also use the diag() function, but this
time just pass it a number instead of a matrix:

diag(3)

#H# [,11 [,2] [,3]
# 01,1 1 0 0
## [2,] 0 1 0
## [3,] 0 0 1

REGRESSION IN MATRIX FORM
Multiple linear regression in matrix form
« Let 3 be the matrix of estimated regression coefficients:
Bo
A

®)
I

B

« Now, then our estimated regression fits will be:

y=Xp3

« It might be helpful to see this again more written out:

i 1@0 + 301151 + 961252 4+t l'lKB/:K
N 2 ~ 180 + w2181 + x2282 + - - - + T2k Bk
y = . = Xﬂ = .

Yn 180 + &n1B1 + TnaBa + - - + Tnx Brc

« Just a tad bit more tidy, I'd say!
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Residuals

» We can easily write the residuals in matrix form:
i=y-Xj

 Our goal as usual is to minimize the sum of the squared residuals, which we

saw earlier we can write:

Wi = (y - XB) (y — XB)

OLS estimator in matrix form

« By finding the values of (3 that minimizes the sum of the squared residuals, we
arrive at the following formula for the OLS estimator:

X'XB3 = X'y

o In order to isolate B, we need to move the X’X term to the other side of the

equals sign.
o We've learned about matrix multiplication, but what about matrix “division”?

Scalar inverses

o What is division in its simplest form? % is the value such that a% =1

« For some algebraic expression: au = b, let’s solve for u:

—au =

QI

e Need a matrix version of this: %

Matrix inverses

« Definition If it exists, the inverse of square matrix A, denoted A1 is the ma-
trix such that A—1A = 1.
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» We can use the inverse to solve (systems of) equations:

Au=>b
A'Au=A"1p
Iu=A"1b
u=A"1

o If the inverse exists, we say that A is invertible or nonsingular.

Back to OLS

o Let’s assume, for now, that the inverse of X’X exists (we’ll come back to this)
« Then we can write the OLS estimator as the following:

B=(X'X)"'X'y
« Memorize this: “x prime x inverse x prime y” sear it into your soul.

OLS by hand in R

o Lets skip the 1m() function and compute the coefficients directly:

« First we need to get the design matrix:

X <- model.matrix(trust_neighbors ~ exports + age + male + urban_dum + malaria_ecology, data = nunn)
dim(X)

## [1] 20325 6

## model.frame always puts the response in the first column

y <- model.frame(trust_neighbors ~ exports + age + male + urban_dum + malaria_ecology, data = nunn)[,1]

## solve() does inverses
## and %*% is matrix multiplication
solve(t(X) %*% X) %*% t(X) %*% y

#i# [,11
## (Intercept) 1.503037046
## exports -0.001020836
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## age 0.005044682
## male 0.027836875
## urban_dum -0.273871917

## malaria_ecology ©.019410561

coef (mod)

## (Intercept) exports age male
#it 1.503037046 -0.001020836 0.005044682 0.027836875
## urban_dum malaria_ecology

#it -0.273871917 0.019410561

Intuition for the OLS in matrix form

« What the intuition here?

« First, note that the “numerator” X'y is roughly composed of the covariances
between the columns of X and y

o Next, the “denominator” X'X is roughly composed of the sample variances and
covariances of variables within X

o Thus, we have something like:

~

B ~ (variance of X) ! (covariance of X & y)

« This is a rough sketch and isn't strictly true, but it can provide intuition.
» We're also sidestepping the issues of what the variance of a matrix is for now.

Most general OLS assumptions

Linearity: y = X3 + u

Random/iid sample: (y;, x}) are a iid sample from the population.
No perfect collinearity: X isan n x (K + 1) matrix with rank K + 1
Zero conditional mean: E[u|X] =0

Homoskedasticity: var(u|X) = o1,

Normality: u|X ~ N(0, 021,)

AN A W DN

No perfect collinearity

o In matrix form: X isann x (K + 1) matrix with rank K + 1
o Definition The rank of a matrix is the maximum number of linearly indepen-
dent columns.
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o If X has rank K + 1, then all of its columns are linearly independent

« ...and none of its columns are linearly dependent = no perfect collinearity
e Xhasrank K +1 — (X'X) is invertible

o Just like variation in X led us to be able to divide by the variance in simple OLS

Expected values of vectors

« The expected value of the vector is just the expected value of its entries.
« Using the zero mean conditional error assumptions:

Efuy | X] 0
S L I L
E[un | X] 0

OLS is unbiased

+ Under matrix assumptions 1-4, OLS is unbiased for 3:
E[8] =B

Variance-covariance matrix of random vectors

+ The homoskedasticity assumption is different: var(u|X) = 021,
« In order to investigate this, we need to know what the variance of a vector is.
« The variance of a vector is actually a matrix:

var(u;)  cov(ug,ug) ... cov(ui,uy)
cov(ug,uy)  var(ug) ... cov(ug,uy)
varju] = %, = :
cov(up,ur) cov(un,ug) ...  var(uy)

« This matrix is symmetric since cov(u;, u;) = cov(u;, u;)

Matrix version of homoskedasticity

« Once again: var(u|X) = oI,
o Visually:
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o2 0 0 0

0 o2 0 0
var[u] = oL, =

0 0 0 o2

« In less matrix notation:
- var(u;) = o2 for all i (constant variance)

- cov(uj, uj) = 0 forall i # j (implied by iid)

Sampling variance for OLS estimates

« Under assumptions 1-5, the sampling variance of the OLS estimator can be writ-
ten in matrix form as the following:

var[B] = o2(X'X) "

o This matrix looks like this:

Bo B Ba B
Bo var[fo]  cov[fo, f1]  cov[Bo,Ba] -+ cov[Bo, BKk]
Br | covlBo, Bi] var[]  cov[f1,Ba] -+ cov[Bi, Bk]
P | cov[Bo, 2]  cov|Bi, o] var | (] -+ cov|fa, BK]
Bic | coviBo, Bx] covlBi,B1] covlBk,Ba] -+ var[Bi]

Inference in the general setting

+ Under assumption 1-5 in large samples:

B =B, N(0,1)
SE[Bk]

« In small samples, under assumptions 1-6,

B — Br ~ b i)
— = n—(K+
SE|B]
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 Thus, under the null of Hy : 5 = 0, we know that
B, e
= = Y ln—(K+
SE[Bk]
o Here, the estimated SEs come from:

(8] = 52(X'X) !
-

2 u'u
Yo —(k+1)

o We can access this estimated covariance matrix in R:

vcov(mod)

i (Intercept) exports age male
## (Intercept) 4.766593e-04 1.163698e-07 -7.956151e-06 -6.675717e-05
## exports 1.163698e-07 1.676040e-09 -3.658689e-10 7.282947e-09
## age -7.956151e-06 -3.658689e-10 2.231299e-07 -7.764680e-07
## male -6.675717e-05 7.282947e-09 -7.764680e-07 1.908894e-04
## urban_dum -9.658428e-05 -4.861159e-08 7.107867e-07 -1.711373e-06
## malaria_ecology -6.909410e-06 -2.124140e-08 2.324132e-10 -1.017404e-07
## urban_dum malaria_ecology

## (Intercept) -9.658428e-05 -6.909410e-06

## exports -4.861159e-08 -2.124140e-08

## age 7.107867e-07 2.324132e-10

## male -1.711373e-06  -1.017404e-07

## urban_dum 2.060633e-04 2.723938e-09

## malaria_ecology 2.723938e-09 7.590439e-07

« Note that the diagonal are the variances. So the square root of the diagonal is
are the standard errors:

sqrt(diag(vcov(mod)))

## (Intercept) exports age male
## 2.183253e-02 4.093947e-05 4.723663e-04 1.381627e-02
#i# urban_dum malaria_ecology

## 1.435491e-02 8.712313e-04



coef (summary(mod))[, ”Std. Error”]

#i (Intercept) exports
H## 2.183253e-02 4.093947e-05
## urban_dum malaria_ecology

#i# 1.435491e-02 8.712313e-04

APPENDIX

4.723663e-04

age

Covariance/variance interpretation of matrix OLS

Yi
n YiZi1
X'y = E Yili2
=1
| YiTiK
1 T Ti2
2
n Ti1 ] 241
2
X'X = E Ti2  Ti1Tq2 Tio
i=1

TiKk TiliK Ti2TiK

— nﬂ
C/O\V(yz y Lil )
COV(yi, $i2)

20

male

1.381627e-02

| cov(yi, Tix) |
TiK n nri nTa
Ti1TiK nxy var(z;1) cov(z1, Ti2)
TioTik | ~ | NT2  Cov(Ti2, 1) var(z;2)
TiKTiK nTr cov(Tik,Ti1) Cov(Tik,Ti2)

NT K
Cov(xi1, Tik
Y \
cov(Ti2, Tik

\73.\1'(1‘1}()
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