
Gov 2000: 9. Multiple
Regression in Matrix Form

Matthew Blackwell
November 19, 2015

1 / 62

1. Matrix algebra review

2. Matrix Operations

3. Writing the linear model more compactly

4. A bit more about matrices

5. OLS in matrix form

6. OLS inference in matrix form

2 / 62

Where are we? Where are we
going?

• Last few weeks: regression estimation and inference with one
and two independent variables, varying effects

• This week: the general regression model with arbitrary
covariates

• Next week: what happens when assumptions are wrong

3 / 62

Nunn & Wantchekon

• Are there long-term, persistent effects of slave trade on
Africans today?

• Basic idea: compare levels of interpersonal trust (𝑌𝑖) across
different levels of historical slave exports for a respondent’s
ethnic group

• Problem: ethnic groups and respondents might differ in their
interpersonal trust in ways that correlate with the severity of
slave exports

• One solution: try to control for relevant differences between
groups via multiple regression

4 / 62

Nunn & Wantchekon

• Whaaaaa? Bold letter, quotation marks, what is this?
• Today’s goal is to decipher this type of writing

5 / 62

Multiple Regression in R
nunn <- foreign::read.dta("Nunn_Wantchekon_AER_2011.dta")
mod <- lm(trust_neighbors ~ exports + age + male + urban_dum

+ malaria_ecology, data = nunn)
summary(mod)

##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.5030370 0.0218325 68.84 <2e-16 ***
exports -0.0010208 0.0000409 -24.94 <2e-16 ***
age 0.0050447 0.0004724 10.68 <2e-16 ***
male 0.0278369 0.0138163 2.01 0.044 *
urban_dum -0.2738719 0.0143549 -19.08 <2e-16 ***
malaria_ecology 0.0194106 0.0008712 22.28 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 0.978 on 20319 degrees of freedom
(1497 observations deleted due to missingness)
Multiple R-squared: 0.0604, Adjusted R-squared: 0.0602
F-statistic: 261 on 5 and 20319 DF, p-value: <2e-16

6 / 62

Why matrices and vectors?

7 / 62

8 / 62

Why matrices and vectors?

• Here’s one way to write the full multiple regression model:

𝑦𝑖 = 𝛽0 + 𝑥𝑖1𝛽1 + 𝑥𝑖2𝛽2 + ⋯ + 𝑥𝑖𝑘𝛽𝑘 + 𝑢𝑖

• Notation is going to get needlessly messy as we add variables
• Matrices are clean, but they are like a foreign language
• You need to build intuitions over a long period of time

9 / 62

Quick note about interpretation

𝑦𝑖 = 𝛽0 + 𝑥𝑖1𝛽1 + 𝑥𝑖2𝛽2 + ⋯ + 𝑥𝑖𝑘𝛽𝑘 + 𝑢𝑖

• In this model, 𝛽1 is the effect of a one-unit change in 𝑥𝑖1
conditional on all other 𝑥𝑖𝑗.

• Jargon “partial effect,” “ceteris paribus,” “all else equal,”
“conditional on the covariates,” etc

10 / 62

1/ Matrix algebra
review

11 / 62

Matrices and vectors

• A matrix is just a rectangular array of numbers.
• We say that a matrix is 𝑛 × 𝑘 (“𝑛 by 𝑘”) if it has 𝑛 rows and 𝑘

columns.
• Uppercase bold denotes a matrix:

𝐀 =
⎡⎢⎢⎢
⎣

𝑎11 𝑎12 ⋯ 𝑎1𝑘
𝑎21 𝑎22 ⋯ 𝑎2𝑘
⋮ ⋮ ⋱ ⋮

𝑎𝑛1 𝑎𝑛2 ⋯ 𝑎𝑛𝑘

⎤⎥⎥⎥
⎦

• Generic entry: 𝑎𝑖𝑗 where this is the entry in row 𝑖 and column 𝑗
• If you’ve used Excel, you’ve seen matrices.

12 / 62

Examples of matrices

• One example of a matrix that we’ll use a lot is the design
matrix, which has a column of ones, and then each of the
subsequent columns is each independent variable in the
regression.

𝐗 =
⎡⎢⎢⎢
⎣

1 exports1 age1 male1
1 exports2 age2 male2
⋮ ⋮ ⋮ ⋮
1 exports𝑛 age𝑛 male𝑛

⎤⎥⎥⎥
⎦

13 / 62

Design matrix in R

head(model.matrix(mod), 8)

(Intercept) exports age male urban_dum malaria_ecology
1 1 855 40 0 0 28.15
2 1 855 25 1 0 28.15
3 1 855 38 1 1 28.15
4 1 855 37 0 1 28.15
5 1 855 31 1 0 28.15
6 1 855 45 0 0 28.15
7 1 855 20 1 0 28.15
8 1 855 31 0 0 28.15

dim(model.matrix(mod))

[1] 20325 6

14 / 62

Vectors

• A vector is just a matrix with only one row or one column.
• A row vector is a vector with only one row, sometimes called a

1 × 𝑘 vector:

𝜶 = [𝛼1 𝛼2 𝛼3 ⋯ 𝛼𝑘]

• A column vector is a vector with one column and more than
one row. Here is a 𝑛 × 1 vector:

𝐲 =
⎡⎢⎢⎢
⎣

𝑦1
𝑦2
⋮

𝑦𝑛

⎤⎥⎥⎥
⎦

• Convention we’ll assume that a vector is column vector and
vectors will be written with lowercase bold lettering (𝐛)

15 / 62

Vector examples

• One really common vector that we will work with are
individual variables, such as the dependent variable, which we
will represent as 𝐲:

𝐲 =
⎡⎢⎢⎢
⎣

𝑦1
𝑦2
⋮

𝑦𝑛

⎤⎥⎥⎥
⎦

16 / 62

Vectors in R
• Vectors can come from subsets of matrices:

model.matrix(mod)[1,]

(Intercept) exports age male
1.00 854.96 40.00 0.00
urban_dum malaria_ecology
0.00 28.15

• Note, though, that R always prints a vector in row form, even
if it is a column in the original data:

head(nunn$trust_neighbors)

[1] 3 3 0 0 1 1

17 / 62

2/ Matrix
Operations

18 / 62

Transpose

• The transpose of a matrix 𝐀 is the matrix created by
switching the rows and columns of the data and is denoted 𝐀′.

• 𝑘th column of 𝐀 becomes the 𝑘th row of 𝐀′:

𝐀 = ⎡⎢⎢
⎣

𝑎11 𝑎12
𝑎21 𝑎22
𝑎31 𝑎32

⎤⎥⎥
⎦

𝐀′ = [𝑎11 𝑎21 𝑎31
𝑎12 𝑎22 𝑎32

]

• If 𝐀 is 𝑛 × 𝑘, then 𝐀′ will be 𝑘 × 𝑛.
• Also written 𝐀𝐓

19 / 62

Transposing vectors

• Transposing will turn a 𝑘 × 1 column vector into a 1 × 𝑘 row
vector and vice versa:

𝜔 =
⎡⎢⎢⎢
⎣

1
3
2

−5

⎤⎥⎥⎥
⎦

𝜔′ = [1 3 2 −5]

20 / 62

Transposing in R

a <- matrix(1:6, ncol = 3, nrow = 2)
a

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

t(a)

[,1] [,2]
[1,] 1 2
[2,] 3 4
[3,] 5 6

21 / 62

Write matrices as vectors
• A matrix is just a collection of vectors (row or column)
• As a row vector:

𝐀 = [𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23

] = [𝐚′
1

𝐚′
2

]

with row vectors
𝐚′

1 = [𝑎11 𝑎12 𝑎13] 𝐚′
2 = [𝑎21 𝑎22 𝑎23]

• Or we can define it in terms of column vectors:

𝐁 = ⎡⎢⎢
⎣

𝑏11 𝑏12
𝑏21 𝑏22
𝑏31 𝑏32

⎤⎥⎥
⎦

= [𝐛𝟏 𝐛𝟐]

where 𝐛𝟏 and 𝐛𝟐 represent the columns of 𝐁.
• 𝑗 subscripts columns of a matrix: 𝐱𝑗
• 𝑖 and 𝑡 will be used for rows 𝐱′

𝑖 .
22 / 62

Addition and subtraction

• How do we add or subtract matrices and vectors?
• First, the matrices/vectors need to be comformable, meaning

that the dimensions have to be the same
• Let 𝐀 and 𝐁 both be 2 × 2 matrices. Then, let 𝐂 = 𝐀 + 𝐁,

where we add each cell together:

𝐀 + 𝐁 = [𝑎11 𝑎12
𝑎21 𝑎22

] + [𝑏11 𝑏12
𝑏21 𝑏22

]

= [𝑎11 + 𝑏11 𝑎12 + 𝑏12
𝑎21 + 𝑏21 𝑎22 + 𝑏22

]

= [𝑐11 𝑐12
𝑐21 𝑐22

]

= 𝐂

23 / 62

Scalar multiplication

• A scalar is just a single number: you can think of it sort of
like a 1 by 1 matrix.

• When we multiply a scalar by a matrix, we just multiply each
element/cell by that scalar:

𝛼𝐀 = 𝛼 [𝑎11 𝑎12
𝑎21 𝑎22

] = [𝛼 × 𝑎11 𝛼 × 𝑎12
𝛼 × 𝑎21 𝛼 × 𝑎22

]

24 / 62

3/ Writing the
linear model more
compactly

25 / 62

The linear model with new
notation

• Remember that we wrote the linear model as the following for
all 𝑖 ∈ [1, … , 𝑛]:

𝑦𝑖 = 𝛽0 + 𝑥𝑖𝛽1 + 𝑧𝑖𝛽2 + 𝑢𝑖

• Imagine we had an 𝑛 of 4. We could write out each formula:

𝑦1 = 𝛽0 + 𝑥1𝛽1 + 𝑧1𝛽2 + 𝑢1 (unit 1)
𝑦2 = 𝛽0 + 𝑥2𝛽1 + 𝑧2𝛽2 + 𝑢2 (unit 2)
𝑦3 = 𝛽0 + 𝑥3𝛽1 + 𝑧3𝛽2 + 𝑢3 (unit 3)
𝑦4 = 𝛽0 + 𝑥4𝛽1 + 𝑧4𝛽2 + 𝑢4 (unit 4)

26 / 62

The linear model with new
notation

𝑦1 = 𝛽0 + 𝑥1𝛽1 + 𝑧1𝛽2 + 𝑢1 (unit 1)
𝑦2 = 𝛽0 + 𝑥2𝛽1 + 𝑧2𝛽2 + 𝑢2 (unit 2)
𝑦3 = 𝛽0 + 𝑥3𝛽1 + 𝑧3𝛽2 + 𝑢3 (unit 3)
𝑦4 = 𝛽0 + 𝑥4𝛽1 + 𝑧4𝛽2 + 𝑢4 (unit 4)

• We can write this as:

⎡⎢⎢⎢
⎣

𝑦1
𝑦2
𝑦3
𝑦4

⎤⎥⎥⎥
⎦

=
⎡⎢⎢⎢
⎣

1
1
1
1

⎤⎥⎥⎥
⎦

𝛽0 +
⎡⎢⎢⎢
⎣

𝑥1
𝑥2
𝑥3
𝑥4

⎤⎥⎥⎥
⎦

𝛽1 +
⎡⎢⎢⎢
⎣

𝑧1
𝑧2
𝑧3
𝑧4

⎤⎥⎥⎥
⎦

𝛽2 +
⎡⎢⎢⎢
⎣

𝑢1
𝑢2
𝑢3
𝑢4

⎤⎥⎥⎥
⎦

• Outcome is a linear combination of the the 𝐱, 𝐳, and 𝐮 vectors

27 / 62

Grouping things into matrices

• Can we write this in a more compact form? Yes! Let 𝐗 and 𝜷
be the following:

𝐗
(4×3)

=
⎡⎢⎢⎢
⎣

1 𝑥1 𝑧1
1 𝑥2 𝑧2
1 𝑥3 𝑧3
1 𝑥4 𝑧4

⎤⎥⎥⎥
⎦

𝜷
(3×1)

= ⎡⎢⎢
⎣

𝛽0
𝛽1
𝛽2

⎤⎥⎥
⎦

28 / 62

Matrix multiplication by a vector

• We can write this more compactly as a matrix
(post-)multiplied by a vector:

⎡⎢⎢⎢
⎣

1
1
1
1

⎤⎥⎥⎥
⎦

𝛽0 +
⎡⎢⎢⎢
⎣

𝑥1
𝑥2
𝑥3
𝑥4

⎤⎥⎥⎥
⎦

𝛽1 +
⎡⎢⎢⎢
⎣

𝑧1
𝑧2
𝑧3
𝑧4

⎤⎥⎥⎥
⎦

𝛽2 = 𝐗𝜷

• Multiplication of a matrix by a vector is just the linear
combination of the columns of the matrix with the vector
elements as weights/coefficients.

• And the left-hand side here only uses scalars times vectors,
which is easy!

29 / 62

General matrix by vector
multiplication

• 𝐀 is a 𝑛 × 𝑘 matrix
• 𝐛 is a 𝑘 × 1 column vector
• Columns of 𝐀 have to match rows of 𝐛
• Let 𝐚𝑗 be the 𝑗th column of 𝐴. Then we can write:

𝐜
(𝑛×1)

= 𝐀𝐛 = 𝑏1𝐚1 + 𝑏2𝐚2 + ⋯ + 𝑏𝑘𝐚𝑘

• 𝐜 is linear combination of the columns of 𝐀

30 / 62

Back to regression
• 𝐗 is the 𝑛 × (𝑘 + 1) design matrix of independent variables
• 𝜷 be the (𝑘 + 1) × 1 column vector of coefficients.
• 𝐗𝜷 will be 𝑛 × 1:

𝐗𝜷 = 𝛽0 + 𝛽1𝐱1 + 𝛽2𝐱2 + ⋯ + 𝛽𝑘𝐱𝑘

• Thus, we can compactly write the linear model as the
following:

𝐲
(𝑛×1)

= 𝐗𝜷
(𝑛×1)

+ 𝐮
(𝑛×1)

• We can also write this at the individual level, where 𝐱′
𝑖 is the

𝑖th row of 𝐗:
𝑦𝑖 = 𝐱′

𝑖𝜷 + 𝑢𝑖

31 / 62

4/ A bit more
about matrices

32 / 62

Matrix multiplication

• What if, instead of a column vector 𝑏, we have a matrix 𝐁
with dimensions 𝑘 × 𝑚.

• How do we do multiplication like so 𝐂 = 𝐀𝐁?
• Each column of the new matrix is just matrix by vector

multiplication:

𝐂 = [𝐜1 𝐜2 ⋯ 𝐜𝑚] 𝐜𝑗 = 𝐀𝐛𝑗

• Thus, each column of 𝐂 is a linear combination of the
columns of 𝐀.

33 / 62

Special multiplications

• The inner product of a two column vectors 𝐚 and 𝐛 (of equal
dimension, 𝑘 × 1):

𝐚′𝐛 = 𝑎1𝑏1 + 𝑎2𝑏2 + ⋯ + 𝑎𝑘𝑏𝑘

• Special case of above: 𝐚′ is a matrix with 𝑘 columns and just
1 row, so the “columns” of 𝐚′ are just scalars.

34 / 62

Sum of the squared residuals

• Example: let’s say that we have a vector of residuals, �̂�, then
the inner product of the residuals is:

�̂�′�̂� = [̂𝑢1 ̂𝑢2 ⋯ ̂𝑢𝑛]
⎡⎢⎢⎢
⎣

̂𝑢1
̂𝑢2
⋮
̂𝑢𝑛

⎤⎥⎥⎥
⎦

�̂�′�̂� = ̂𝑢1 ̂𝑢1 + ̂𝑢2 ̂𝑢2 + ⋯ + ̂𝑢𝑛 ̂𝑢𝑛 =
𝑛

∑
𝑖=1

̂𝑢2
𝑖

• It’s just the sum of the squared residuals!

35 / 62

Square matrices and the diagonal

• A square matrix has equal numbers of rows and columns.
• The diagonal of a square matrix are the values 𝑎𝑗𝑗:

𝐀 = ⎡⎢⎢
⎣

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

⎤⎥⎥
⎦

• The identity matrix, 𝐈 is a square matrix, with 1s along the
diagonal and 0s everywhere else.

𝐈 = ⎡⎢⎢
⎣

1 0 0
0 1 0
0 0 1

⎤⎥⎥
⎦

• The identity matrix multiplied by any matrix returns the
matrix: 𝐀𝐈 = 𝐀.

36 / 62

Identity matrix
• To get the diagonal of a matrix in R, use the diag() function:

b <- matrix(1:4, nrow = 2, ncol = 2)
b

[,1] [,2]
[1,] 1 3
[2,] 2 4

diag(b)

[1] 1 4

• diag() also creates identity matrices in R:
diag(3)

[,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1

37 / 62

5/ OLS in matrix
form

38 / 62

Multiple linear regression in matrix
form

• Let 𝜷 be the matrix of estimated regression coefficients and �̂�
be the vector of fitted values:

𝜷 =
⎡⎢⎢⎢
⎣

𝛽0
𝛽1
⋮

𝛽𝑘

⎤⎥⎥⎥
⎦

�̂� = 𝐗𝜷

• It might be helpful to see this again more written out:

�̂� =
⎡⎢⎢⎢
⎣

̂𝑦1
̂𝑦2
⋮
̂𝑦𝑛

⎤⎥⎥⎥
⎦

= 𝐗𝜷 =
⎡⎢⎢⎢
⎣

1𝛽0 + 𝑥11𝛽1 + 𝑥12𝛽2 + ⋯ + 𝑥1𝑘𝛽𝑘
1𝛽0 + 𝑥21𝛽1 + 𝑥22𝛽2 + ⋯ + 𝑥2𝑘𝛽𝑘

⋮
1𝛽0 + 𝑥𝑛1𝛽1 + 𝑥𝑛2𝛽2 + ⋯ + 𝑥𝑛𝑘𝛽𝑘

⎤⎥⎥⎥
⎦

39 / 62

Residuals

• We can easily write the residuals in matrix form:

�̂� = 𝐲 − 𝐗𝜷

• Our goal as usual is to minimize the sum of the squared
residuals, which we saw earlier we can write:

�̂�′�̂� = (𝐲 − 𝐗𝜷)′(𝐲 − 𝐗𝜷)

40 / 62

OLS estimator in matrix form

• Goal: minimize the sum of the squared residuals
• Take (matrix) derivatives, set equal to 0 (see Wooldridge for

details)
• Resulting first order conditions:

𝐗′(𝐲 − 𝐗𝜷) = 0

• Rearranging:
𝐗′𝐗𝜷 = 𝐗′𝐲

• In order to isolate 𝜷, we need to move the 𝐗′𝐗 term to the
other side of the equals sign.

• We’ve learned about matrix multiplication, but what about
matrix “division”?

41 / 62

Scalar inverses

• What is division in its simplest form? 1𝑎 is the value such that
𝑎1𝑎 = 1:

• For some algebraic expression: 𝑎𝑢 = 𝑏, let’s solve for 𝑢:

1
𝑎𝑎𝑢 = 1

𝑎𝑏

𝑢 = 𝑏
𝑎

• Need a matrix version of this: 1𝑎 .

42 / 62

Matrix inverses

• Definition If it exists, the inverse of square matrix 𝐀, denoted
𝐀−1, is the matrix such that 𝐀−1𝐀 = 𝐈.

• We can use the inverse to solve (systems of) equations:

𝐀𝐮 = 𝐛
𝐀−𝟏𝐀𝐮 = 𝐀−𝟏𝐛

𝐈𝐮 = 𝐀−𝟏𝐛
𝐮 = 𝐀−𝟏𝐛

• If the inverse exists, we say that 𝐀 is invertible or nonsingular.

43 / 62

Back to OLS

• Let’s assume, for now, that the inverse of 𝐗′𝐗 exists (we’ll
come back to this)

• Then we can write the OLS estimator as the following:

𝜷 = (𝐗′𝐗)−1𝐗′𝐲

• Memorize this: “ex prime ex inverse ex prime y” sear it into
your soul.

44 / 62

OLS by hand in R

𝜷 = (𝐗′𝐗)−1𝐗′𝐲

• First we need to get the design matrix and the response:

X <- model.matrix(trust_neighbors ~ exports + age + male
+ urban_dum + malaria_ecology, data = nunn)

dim(X)

[1] 20325 6

model.frame always puts the response in the first column
y <- model.frame(trust_neighbors ~ exports + age + male

+ urban_dum + malaria_ecology, data = nunn)[,1]
length(y)

[1] 20325

45 / 62

OLS by hand in R

𝜷 = (𝐗′𝐗)−1𝐗′𝐲

• Use the solve() for inverses and %*% for matrix
multiplication:

solve(t(X) %*% X) %*% t(X) %*% y

(Intercept) exports age male urban_dum
[1,] 1.503 -0.001021 0.005045 0.02784 -0.2739
malaria_ecology
[1,] 0.01941

coef(mod)

(Intercept) exports age male
1.503037 -0.001021 0.005045 0.027837
urban_dum malaria_ecology
-0.273872 0.019411

46 / 62

Intuition for the OLS in matrix form

𝜷 = (𝐗′𝐗)−1𝐗′𝐲

• What’s the intuition here?
• “Numerator” 𝐗′𝐲: is roughly composed of the covariances

between the columns of 𝐗 and 𝐲
• “Denominator” 𝐗′𝐗 is roughly composed of the sample

variances and covariances of variables within 𝐗
• Thus, we have something like:

𝜷 ≈ (variance of 𝐗)−1(covariance of 𝐗 & 𝐲)

• This is a rough sketch and isn’t strictly true, but it can
provide intuition.

47 / 62

6/ OLS inference
in matrix form

48 / 62

Random vectors

• A random vector is a vector of random variables:

𝐱𝑖 = [𝑥𝑖1
𝑥𝑖2

]

• Here, 𝐱𝑖 is a random vector and 𝑥𝑖1 and 𝑥𝑖2 are random
variables.

• When we talk about the distribution of 𝐱𝑖, we are talking
about the joint distribution of 𝑥𝑖1 and 𝑥𝑖2.

49 / 62

Distribution of random vectors

𝐱𝑖 ∼ (𝔼[𝐱𝑖], 𝕍[𝐱𝑖])

• Expectation of random vectors:

𝔼[𝐱𝑖] = [𝔼[𝑥𝑖1]
𝔼[𝑥𝑖2]]

• Variance of random vectors:

𝕍[𝐱𝑖] = [𝕍[𝑥𝑖1] Cov[𝑥𝑖1, 𝑥𝑖2]
Cov[𝑥𝑖1, 𝑥𝑖2] 𝕍[𝑥𝑖2]]

• Variance of the random vector also called the
variance-covariance matrix.

• These describe the joint distribution of 𝐱𝑖

50 / 62

Most general OLS assumptions

1. Linearity: 𝐲 = 𝐗𝜷 + 𝐮
2. Random/iid sample: (𝑦𝑖, 𝐱′

𝑖) are a iid sample from the
population.

3. No perfect collinearity: 𝐗 is an 𝑛 × (𝑘 + 1) matrix with rank
𝑘 + 1

4. Zero conditional mean: 𝔼[𝐮|𝐗] = 𝟎
5. Homoskedasticity: var(𝐮|𝐗) = 𝜎2𝑢𝐈𝑛
6. Normality: 𝐮|𝐗 ∼ 𝑁(𝟎, 𝜎2𝑢𝐈𝑛)

51 / 62

No perfect collinearity

• In matrix form: 𝐗 is an 𝑛 × (𝑘 + 1) matrix with rank 𝑘 + 1
• Definition The rank of a matrix is the maximum number of

linearly independent columns.
• If 𝐗 has rank 𝑘 + 1, then all of its columns are linearly

independent
• …and none of its columns are linearly dependent ⟹ no

perfect collinearity
• 𝐗 has rank 𝑘 + 1⇝ (𝐗′𝐗) is invertible
• Just like variation in 𝑋𝑖 led us to be able to divide by the

variance in simple OLS

52 / 62

Zero conditional mean error

• Using the zero mean conditional error assumptions:

𝔼[𝐮|𝐗] =
⎡⎢⎢⎢
⎣

𝔼[𝑢1|𝐗]
𝔼[𝑢2|𝐗]

⋮
𝔼[𝑢𝑛|𝐗]

⎤⎥⎥⎥
⎦

=
⎡⎢⎢⎢
⎣

0
0
⋮
0

⎤⎥⎥⎥
⎦

= 𝟎

53 / 62

OLS is unbiased

• Under matrix assumptions 1-4, OLS is unbiased for 𝜷:

𝔼[𝜷] = 𝜷

54 / 62

Variance-covariance matrix

• The homoskedasticity assumption is different:

var(𝐮|𝐗) = 𝜎2𝑢𝐈𝑛

• In order to investigate this, we need to know what the
variance of a vector is.

• The variance of a vector is actually a matrix:

var[𝐮] = Σ𝑢 =
⎡⎢⎢⎢
⎣

var(𝑢1) cov(𝑢1, 𝑢2) … cov(𝑢1, 𝑢𝑛)
cov(𝑢2, 𝑢1) var(𝑢2) … cov(𝑢2, 𝑢𝑛)

⋮ ⋱
cov(𝑢𝑛, 𝑢1) cov(𝑢𝑛, 𝑢2) … var(𝑢𝑛)

⎤⎥⎥⎥
⎦

• This matrix is symmetric since cov(𝑢𝑖, 𝑢𝑗) = cov(𝑢𝑖, 𝑢𝑗)

55 / 62

Matrix version of
homoskedasticity

• Once again: var(𝐮|𝐗) = 𝜎2𝑢𝐈𝑛
• 𝐈𝑛 is the 𝑛 × 𝑛 identity matrix
• Visually:

var[𝐮] = 𝜎2𝑢𝐈𝑛 =
⎡⎢⎢⎢
⎣

𝜎2𝑢 0 0 … 0
0 𝜎2𝑢 0 … 0

⋮
0 0 0 … 𝜎2𝑢

⎤⎥⎥⎥
⎦

• In less matrix notation:
▶ var(𝑢𝑖) = 𝜎2𝑢 for all 𝑖 (constant variance)
▶ cov(𝑢𝑖, 𝑢𝑗) = 0 for all 𝑖 ≠ 𝑗 (implied by iid)

56 / 62

Sampling variance for OLS
estimates

• Under assumptions 1-5, the sampling variance of the OLS
estimator can be written in matrix form as the following:

var[𝜷] = 𝜎2𝑢(𝐗′𝐗)−1

• This symmetric matrix looks like this:

𝛽0 𝛽1 𝛽2 ⋯ 𝛽𝑘
𝛽0 var[𝛽0] cov[𝛽0, 𝛽1] cov[𝛽0, 𝛽2] ⋯ cov[𝛽0, 𝛽𝑘]
𝛽1 cov[𝛽1, 𝛽0] var[𝛽1] cov[𝛽1, 𝛽2] ⋯ cov[𝛽1, 𝛽𝑘]
𝛽2 cov[𝛽2, 𝛽0] cov[𝛽2, 𝛽1] var[𝛽2] ⋯ cov[𝛽2, 𝛽𝑘]
⋮ ⋮ ⋮ ⋮ ⋱ ⋮

𝛽𝐾 cov[𝛽𝑘, 𝛽0] cov[𝛽𝑘, 𝛽1] cov[𝛽𝑘, 𝛽2] ⋯ var[𝛽𝑘]

57 / 62

Inference in the general setting
• Under assumption 1-5 in large samples:

𝛽𝑗 − 𝛽𝑗
𝑆𝐸[𝛽𝑗]

∼ 𝑁(0, 1)

• In small samples, under assumptions 1-6,
𝛽𝑗 − 𝛽𝑗
𝑆𝐸[𝛽𝑗]

∼ 𝑡𝑛−(𝑘+1)

• Thus, under the null of 𝐻0 ∶ 𝛽𝑗 = 0, we know that
𝛽𝑗

𝑆𝐸[𝛽𝑗]
∼ 𝑡𝑛−(𝑘+1)

• Here, the estimated SEs come from:
v̂ar[𝜷] = �̂�2𝑢(𝐗′𝐗)−1

�̂�2𝑢 = �̂�′�̂�
𝑛 − (𝑘 + 1)

58 / 62

Covariance matrix in R
• We can access this estimated covariance matrix, �̂�2𝑢(𝐗′𝐗)−1,

in R:

vcov(mod)

(Intercept) exports age male
(Intercept) 0.0004766593 1.164e-07 -7.956e-06 -6.676e-05
exports 0.0000001164 1.676e-09 -3.659e-10 7.283e-09
age -0.0000079562 -3.659e-10 2.231e-07 -7.765e-07
male -0.0000667572 7.283e-09 -7.765e-07 1.909e-04
urban_dum -0.0000965843 -4.861e-08 7.108e-07 -1.711e-06
malaria_ecology -0.0000069094 -2.124e-08 2.324e-10 -1.017e-07
urban_dum malaria_ecology
(Intercept) -9.658e-05 -6.909e-06
exports -4.861e-08 -2.124e-08
age 7.108e-07 2.324e-10
male -1.711e-06 -1.017e-07
urban_dum 2.061e-04 2.724e-09
malaria_ecology 2.724e-09 7.590e-07

59 / 62

Standard errors from the
covariance matrix

• Note that the diagonal are the variances. So the square root
of the diagonal is are the standard errors:

sqrt(diag(vcov(mod)))

(Intercept) exports age male
0.02183253 0.00004094 0.00047237 0.01381627
urban_dum malaria_ecology
0.01435491 0.00087123

coef(summary(mod))[, "Std. Error"]

(Intercept) exports age male
0.02183253 0.00004094 0.00047237 0.01381627
urban_dum malaria_ecology
0.01435491 0.00087123

60 / 62

Nunn & Wantchekon

61 / 62

Wrapping up

• You have the full power of matrices.
• Key to writing the OLS estimator and discussing higher level

concepts in regression and beyond.
• Next week: diagnosing and fixing problems with the linear

model.

62 / 62

	Matrix algebra review
	Matrix Operations
	Writing the linear model more compactly
	A bit more about matrices
	OLS in matrix form
	OLS inference in matrix form

