Gov 2000 - 9. Multiple Regression: Interactions, F-tests, and Nonlinearities

Matthew Blackwell

November 10, 2015

1. Interactions

- 2. Nonlinear functional forms
- 3. Tests of multiple hypotheses

Where are we? Where are we going?

- Last few weeks: adding one variable to the bivariate regression
- This week: effects that vary between groups and other loose ends
- Next week: regression in full matrix form, formulas for all coefficients and SEs.

1/ Interactions

Two binary covariates

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i$$

- Social pressure experiment:
 - $Y_i = 1$ for voted
 - $X_i = 1$ for neighbors treatment, $X_i = 0$ for civil duty mailer
 - $Z_i = 1$ for female, $Z_i = 0$ for male
- Parameters:
 - β_0 : average turnout for males in the control group.
 - β_1 : effect of neighbors treatment conditional on gender.
 - β₂: average difference in turnout between women and men conditional on treatment.
- β₁ averages across the effect for men and the effect for women.

Interactions

- How to allow to estimate the effect of neighbors for men and women separately?
- 1. Subset the data to men and women and run separate regressions.
 - No way to assess whether or not the effects are different from one another.
- 2. Include an interaction between the treatment and gender:
 - Add a third covariate that is $X_i \times Z_i$:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + \beta_3 X_i Z_i + u_i$$

• $X_i \times Z_i = 1$ for treated females $(X_i = 1 \text{ and } Z_i = 1)$, 0 otherwise

Binary interactions

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + \beta_3 X_i Z_i + u_i$$

• β_1 is the effect of treatment for men $(Z_i = 0)$:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 \times 0 + \beta_3 X_i \times 0 + u_i$$
$$= \beta_0 + \beta_1 X_i + u_i$$

• $\beta_1 + \beta_3$ is the effect of treatment for women $(Z_i = 1)$:

$$Y_i = \beta_0 + \beta_1 \times X_i + \beta_2 \times 1 + \beta_3 X_i \times 1 + u_i$$
$$= (\beta_0 + \beta_1) + (\beta_1 + \beta_3) \times X_i + u_i$$

• β_3 is the difference in effects between women and men.

Hypothesis tests

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i + \widehat{\beta}_3 X_i Z_i$$

• Due to sampling variation, men and women will never have the exact same effect.

• $\rightsquigarrow \widehat{\beta}_3$ not exactly equal to 0 even if $\beta_3 = 0$.

- But how do we asses if the differences in the effects are "big enough" for us to say that the effect varies systematically by gender?
- We can test whether or not the effects for the two groups are different by testing the null hypothesis H₀: β₃ = 0

$$\frac{\widehat{\beta}_3}{\widehat{SE}[\widehat{\beta}_3]}$$

Social pressure example

summary(lm(voted ~ treat * female, data = social))

##						
##	Coefficients:					
##		Estimate S	td. Error t	value Pr	~(> t)	
##	(Intercept)	0.32274	0.00343	93.97 <	< 2e-16	***
##	treat	0.06180	0.00486	12.72 <	< 2e-16	***
##	female	-0.01640	0.00486	-3.38 @	0.00073	***
##	<pre>treat:female</pre>	0.00321	0.00687	0.47 0	0.63990	
##						
##	Signif. codes	: 0 '***'	0.001 '**'	0.01 '*'	0.05 '	.'0.1''1
##						
##	Residual stan	dard error	: 0.475 on	76415 deg	grees of	freedom
##	Multiple R-sq	uared: 0.	00469, A	djusted F	R-square	d: 0.00465
##	F-statistic:	120 on 3	and 76415 D	F, p-val	lue: <2e	-16

A note on linearity

• The linearity assumption says we can write Y_i as a linear function of the parameters:

 $Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + \beta_3 X_i Z_i + u_i$

- Linearity allows us to extrapolate to combinations of the covariates we don't observe.
- Linearity is usually violated when non-continuous outcomes (binary/categorical), but is satisfied in saturated models.
- A saturated model is one with discrete covariates and as many parameters as there are combinations of the covariates.
 - Same as estimating separate means for each combination of the covariates.
 - ▶ No extrapolation ~→ linearity holds by construction.

Saturated bivariate regression

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

• If X_i is binary:

$$\begin{split} E[Y_i|X_i &= 0] = \beta_0 \\ E[Y_i|X_i &= 1] &= \beta_0 + \beta_1 \end{split}$$

- Model is saturated: β_1 is the difference in CEFs between $X_i = 1$ and $X_i = 0$.
 - No extrapolation, no linearity assumption.
- Compare this to when *X_i* is continuous:

$$E[Y_i|X_i = x] = \beta_0 + \beta_1 \times x$$
$$E[Y_i|X_i = x+1] = \beta_0 + \beta_1 \times (x+1)$$

 Linearity assumes the effect (β₁) is constant across values of X_i.

Saturated model example

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + \beta_3 X_i Z_i + u_i$$

 Four possible values of X_i and Z_i, four possible values of E[Y_i|X_i, Z_i]:

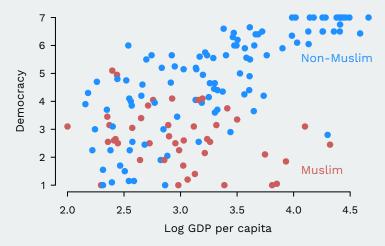
$$\begin{split} E[Y_i|X_i &= 0, Z_i = 0] = \beta_0 \\ E[Y_i|X_i &= 1, Z_i = 0] = \beta_0 + \beta_1 \\ E[Y_i|X_i &= 0, Z_i = 1] = \beta_0 + \beta_2 \\ E[Y_i|X_i &= 1, Z_i = 1] = \beta_0 + \beta_1 + \beta_2 + \beta_3 \end{split}$$

- With binary covariates, including all interactions saturates the model.
- ~ OK to use this model with a binary outcome.

One continuous, one binary covariate

- How do interactions work when a variable is continuous?
- Data comes from Fish (2002), "Islam and Authoritarianism."
- Basic relationship: does more economic development lead to more democracy?
- We measure economic development with log GDP per capita
- We measure democracy with a Freedom House score, 1 (less free) to 7 (more free)

Let's see the data



• Fish argues that Muslim countries are less likely to be democratic no matter their economic development

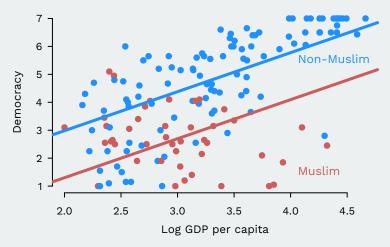
Controlling for religion

 muslim that is 1 when Islam is the largest religion in a country and 0 otherwise

mod <- lm(fhrev ~ income + muslim, data = FishData)
summary(mod)</pre>

##							
##	Coefficients	S:					
##		Estimate Std.	Error t	value	Pr(> t)		
##	(Intercept)	0.189	0.556	0.34	0.73		
##	income	1.397	0.163	8.58	1.3e-14	***	
##	muslim	-1.683	0.238	-7.07	5.8e-11	***	
##							
##	Signif. code	es: 0 '***' 0	.001 '**	' 0.01	'*' 0.05	'.' 0.1	''1
##							
##	Residual sta	andard error: '	1.28 on	146 deg	grees of f	freedom	
##	Multiple R-s	squared: 0.52	2, Adju	sted R-	-squared:	0.515	
##	F-statistic:	: 79.6 on 2 and	d 146 DF	, p-va	alue: <2e-	-16	

Plotting the lines



- But the regression is a poor fit for Muslim countries
- Can we allow for different slopes for each group?

Interactions with a binary variable

- In this case, $Z_i = 1$ for the country being Muslim
- Interaction term is the product of the two marginal variables of interest:

 $income_i \times mulsim_i$

Here is the model with the interaction term:

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i + \widehat{\beta}_3 X_i Z_i$$

Interactions with R (II)

Easier/better to write the interaction term as first*second:

mod.int <- lm(fhrev ~ income * muslim, data = FishData)
summary(mod.int)</pre>

```
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
                      0.540 -2.50 0.014 *
## (Intercept)
             -1.349
          1.859 0.159 11.70 < 2e-16 ***
## income
## muslim 5.741 1.134 5.06 1.2e-06 ***
## income:muslim -2.427 0.364 -6.66 5.2e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.13 on 145 degrees of freedom
## Multiple R-squared: 0.634, Adjusted R-squared: 0.626
## F-statistic: 83.6 on 3 and 145 DF, p-value: <2e-16
```

Data matrix with interactions

head(model.matrix(mod.int))

##		(Intercept)	income	muslim	<pre>income:muslim</pre>
##	1	1	2.925	1	2.925
##	2	1	3.214	1	3.214
##	3	1	2.824	0	0.000
##	4	1	3.762	0	0.000
##	5	1	3.188	0	0.000
##	6	1	4.436	0	0.000

Two lines in one regression

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i + \widehat{\beta}_3 X_i Z_i$$

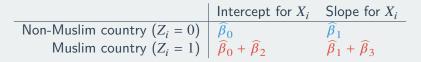
• When $Z_i = 0$:

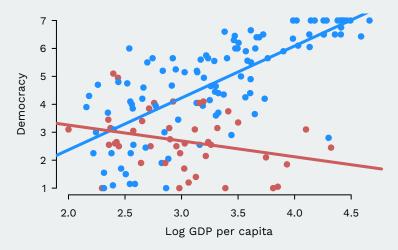
$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i$$

• When $Z_i = 1$:

$$\widehat{Y}_i = (\widehat{\beta}_0 + \widehat{\beta}_2) + (\widehat{\beta}_1 + \widehat{\beta}_3) X_i$$

Graphing interactions





Interpretation of the coefficients

- β_0 : average value of Y_i when both X_i and Z_i are equal to 0
- β₁: a one-unit change in X_i is associated with a β₁-unit change in Y_i when Z_i = 0
 - ▶ Model not saturated! Linearity in *X_i*!
- β₂: average difference in Y_i between Z_i = 1 group and Z_i = 0 group when X_i = 0
- β_3 : change in the effect of X_i on Y_i between $Z_i = 1$ group and $Z_i = 0$

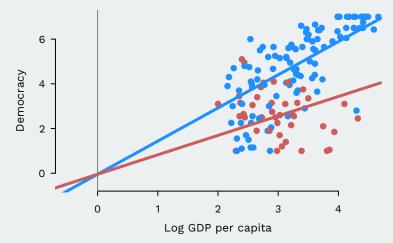
Lower order terms

- Always include the marginal effects (sometimes called the lower order terms)
- Imagine we omitted the lower order term for muslim:

```
wrong.mod <- lm(fhrev ~ income + income:muslim, data = FishData)
summary(wrong.mod)</pre>
```

##	
##	Coefficients:
##	Estimate Std. Error t value Pr(> t)
##	(Intercept) -0.0465 0.5133 -0.09 0.93
##	income 1.4837 0.1520 9.76 < 2e-16 ***
##	income:muslim -0.6137 0.0725 -8.46 2.6e-14 ***
##	
##	Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##	
##	Residual standard error: 1.22 on 146 degrees of freedom
##	Multiple R-squared: 0.569, Adjusted R-squared: 0.563
##	F-statistic: 96.3 on 2 and 146 DF, p-value: <2e-16

Omitting lower order terms



- What's the problem here?
- We've restricted the intercepts to be the same for both models:

Omitting lower order terms

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + 0 \times Z_i + \widehat{\beta}_3 X_i Z_i$$

Intercept for X_i Slope for X_i Non-Muslim country $(Z_i = 0)$ $\widehat{\beta}_0$ $\widehat{\beta}_1$ Muslim country $(Z_i = 1)$ $\widehat{\beta}_0 + 0$ $\widehat{\beta}_1 + \widehat{\beta}_3$

- Implication: no difference between Muslims and non-Muslims when income is 0
- Distorts slope estimates.
- Very rarely justified.

Interactions with two continuous variables

- Now let Z_i be continuous
- Z_i is the percent growth in GDP per capita from 1975 to 1998
- Is the effect of economic development for rapidly developing countries higher or lower than for stagnant economies?
- We can still define the interaction:

 $income_i \times growth_i$

• And include it in the regression:

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i + \widehat{\beta}_3 X_i Z_i$$

Example of continuous interaction

mod.cont <- lm(fhrev ~ income * growth, data = FishData)
summary(mod.cont)</pre>

##							
##	Coefficients:						
##		Estimate	Std. Error	t value	Pr(> t)		
##	(Intercept)	-0.1066	0.6225	-0.17	0.8643		
##	income	1.2922	0.1941	6.66	5.3e-10	***	
##	growth	-0.6172	0.2383	-2.59	0.0106	*	
##	income:growth	0.2395	0.0753	3.18	0.0018	**	
##							
##	Signif. codes:	0 '***'	' 0.001 '**'	0.01 '*	' 0.05 '.	' 0.1	''1
##							
##	Residual stand	ard error	r: 1.4 on 14	5 degree	s of free	dom	
##	Multiple R-squ	ared: 0.	.433, Adjus	sted R-sc	juared: 0	.422	
##	F-statistic: 3	6.9 on 3	and 145 DF,	p-valu	ie: <2e-16		

Interpretation

• With a continuous Z_i , we can have more than two values that it can take on:

	Intercept for X_i	Slope for X_i
$Z_i = 0$	\widehat{eta}_0	$\widehat{\beta}_1$
$Z_i = 0.5$	$\widehat{\beta}_0 + \widehat{\beta}_2 \times 0.5$	$\widehat{\beta}_1 + \widehat{\beta}_3 \times 0.5$
$Z_i = 1$	$\widehat{\beta}_0 + \widehat{\beta}_2 \times 1$	$\widehat{\beta}_1 + \widehat{\beta}_3 \times 1$
$Z_i = 5$	$\widehat{\beta}_0 + \widehat{\beta}_2 \times 5$	$\widehat{\beta}_1 + \widehat{\beta}_3 \times 5$

General interpretation

Ö

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + \beta_3 X_i Z_i + u_i$$

- $\beta_1 \rightsquigarrow$ how the predicted outcome varies in X_i when $Z_i = 0$.
- $\beta_2 \rightsquigarrow$ how the predicted outcome varies in Z_i when $X_i = 0$
- β₃ → the change in the effect of X_i given a one-unit change in Z_i:

$$\frac{\partial \mathbb{E}[Y_i|X_i, Z_i]}{\partial X_i} = \beta_1 + \beta_3 Z_i$$

 β₃ → the change in the effect of Z_i given a one-unit change in X_i:

$$\frac{\partial \mathbb{E}[Y_i|X_i, Z_i]}{\partial Z_i} = \beta_2 + \beta_3 X_i$$

Standard errors for marginal effects

- What if we want to get a standard error for the effect of X_i at some level of Z_i?
- Marginal effect of X_i at some value Z_i:

$$\frac{\partial \mathbb{E}[\widehat{Y_i|X_i}, Z_i]}{\partial X_i} = \widehat{\beta}_1 + \widehat{\beta}_3 Z_i$$

- We already saw that $\hat{\beta}_1$ is the effect when $Z_i = 0$. What about other values of Z_i ?
- Use the properties of variances:

$$\begin{aligned} \mathsf{Var}\left(\frac{\partial \mathbb{E}[\widehat{Y_i}|\widehat{X}_i, Z_i]}{\partial X_i}\right) &= \mathsf{Var}(\widehat{\beta}_1 + Z_i \widehat{\beta}_3) \\ &= \mathsf{Var}[\widehat{\beta}_1] + Z_i^2 \mathsf{Var}[\widehat{\beta}_3] + 2Z_i \mathsf{Cov}[\widehat{\beta}_1, \widehat{\beta}_3] \end{aligned}$$

Standard errors for marginal effects

 Get the entries from the vcov() function (more on this next week):

```
## SE of effect of income at muslime = 1
var.inter <- vcov(mod.int)["income","income"] +
    1^2 * vcov(mod.int)["income:muslim","income:muslim"] +
    2 * 1 * vcov(mod.int)["income","income:muslim"]
sqrt(var.inter)</pre>
```

[1] 0.3277

SE when muslim = 0
sqrt(vcov(mod.cont)["income", "income"])

[1] 0.1941

Recentering for interaction terms

- $\beta_1 \rightsquigarrow$ how the predicted outcome varies in X_i when $Z_i = 0$.
- A trick for getting R to calculate the standard errors for you is to recenter the variable so that 0 corresponds to the value you want to estimate.
- With binary Z_i , replace Z_i with $1 Z_i$:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 (1 - Z_i) + \beta_3 X_i (1 - Z_i) + u_i$$

- Now, β
 ₁ is the slope on X_i when 1 − Z_i = 0, or, rearranging, when Z_i = 1.
- We "trick" R into calculating the standard errors for us

Recentering in R

Use the I() syntax:

summary(lm(fhrev ~ income * I(1 - muslim), data = FishData))

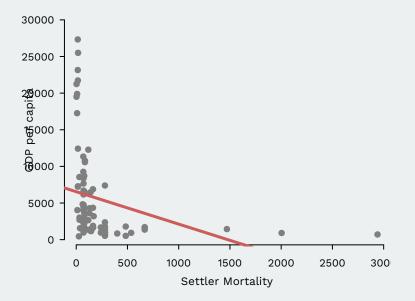
##							
##	Coefficients:						
##	l	Estimate	Std.	Error 1	t value	Pr(> t)	
##	(Intercept)	4.392		0.997	4.41	2.0e-05	***
##	income	-0.568		0.328	-1.73	0.085	
##	I(1 - muslim)	-5.741		1.134	-5.06	1.2e-06	***
##	<pre>income:I(1 - muslim)</pre>	2.427		0.364	6.66	5.2e-10	***
##							
##	Signif. codes: 0 '**	*' 0.001	'**'	0.01 '>	*' 0.05	'.' 0.1	''1
##							
##	Residual standard erro	or: 1.13	on 14	45 degre	ees of f	freedom	
##	Multiple R-squared:	0.634, A	Adjust	ted R-so	quared:	0.626	
##	F-statistic: 83.6 on	3 and 145	5 DF,	p-valu	ue: <2e-	-16	

2/ Nonlinear functional forms

Logs of random variables

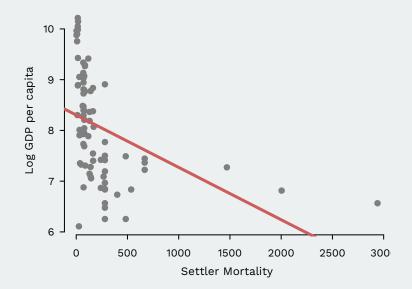
- We can account for non-linearity in X_i in a couple of ways
- One way: transform X_i or Y_i using the natural logarithm
- Useful when X_i or Y_i are positive and right-skewed
- Changes the interpretation of β₁:
 - ► Regress $\log(Y_i)$ on $X_i \rightarrow 100 \times \beta_1 \approx$ percentage increase in Y_i associated with a one-unit increase in X_i
 - ► Regress $\log(Y_i)$ on $\log(X_i) \rightarrow \beta_1 \approx$ percentage increase in Y_i associated with a one percent increase in X_i
 - Only useful for small increments, not for discrete r.v

Raw scales



Log scale for Settler mortality

Log scale for GDP



Log scale for both

Logging variables

Handy chart for interpreting logged variables:

Model	Equation	β_1 Interpretation
Level-Level	$Y = \beta_0 + \beta_1 X$	1-unit $\Delta X \rightsquigarrow \beta_1 \Delta Y$
Log-Level	$\log(Y) = \beta_0 + \beta_1 X$	1-unit $\Delta X \rightsquigarrow 100 \times \beta_1 \% \Delta Y$
Level-Log	$Y = \beta_0 + \beta_1 \log(X)$	$1\% \Delta X \rightsquigarrow (\beta_1/100) \Delta Y$
Log-Log	$\log(Y) = \beta_0 + \beta_1 \log(X)$	1% $\Delta X \rightsquigarrow \beta_1 \% \Delta Y$

Adding a squared term

- Another approach: model relationship as a polynomial
- Add a polynomial of X_i to account for the non-linearity:

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 X_i^2$$

Similar to an "interaction" with itself: marginal effect of X_i varies as a function of X_i:

$$\frac{\partial \mathbb{E}[Y_i|X_i]}{\partial X_i} = \beta_1 + \beta_2 X_i$$

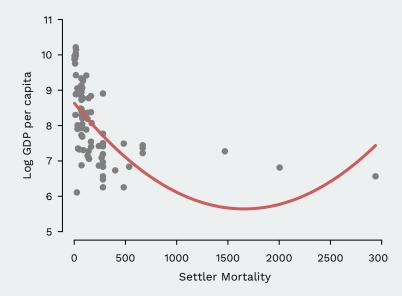
Adding a squared term in R

```
quad.mod <- lm(logpgp95 ~ raw.mort + I(raw.mort^2), data = ajr)
summary(quad.mod)</pre>
```

##							
##	Coefficients:						
##		Estimate	Std. Error	t value	Pr(> t)		
##	(Intercept)	8.639495953	0.137819111	62.69	< 2e-16	***	
##	raw.mort	-0.003615763	0.000663785	-5.45	0.0000058	***	
##	I(raw.mort^2)	0.000001091	0.00000262	4.16	0.00008194	***	
##							
##	Signif. codes:	0 '***' 0.00	01 '**' 0.01	'*' 0.05	5 '.' 0.1 '	'1	
##							
##	# Residual standard error: 0.884 on 78 degrees of freedom						
##	<pre># (82 observations deleted due to missingness)</pre>						
##	# Multiple R-squared: 0.321, Adjusted R-squared: 0.304						
##	F-statistic: 1	8.4 on 2 and 3	78 DF, p-val	ue: 0.00	0000276		

Non-linear functional form

Plotting the results (see handout for R code):



3/ Tests of multiple hypotheses

Review of t-tests

Null hypothesis:

$$H_0:\beta_k=0$$

Alternative hypothesis:

$$H_A:\beta_k\neq 0$$

Test statistic (t-statistic):

$$t = \frac{\widehat{\beta}_k}{\widehat{SE}[\widehat{\beta}_k]}$$

- N(0,1) distribution in large samples (under Assumptions 1-5)
- t_{n-(k+1)} distribution under Assumptions 1-6 (when errors are conditionally Normal)

Joint null hypotheses

What about more complicated null hypotheses?

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + \beta_3 X_i Z_i$$

- Here we might want to test whether X_i belongs in the regression at all
- But that null hypothesis involves 2 parameters:

$$H_0: \beta_1 = 0 \text{ and } \beta_3 = 0$$

The alternative hypothesis:

$$H_A: \beta_1 \neq 0 \text{ or } \beta_3 \neq 0$$

- How can we test this null hypothesis?
- We will compare the predictive power of the model under the null and the model under the alternative

Unrestricted model

Unrestricted model (alternative is true):

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + \beta_3 X_i Z_i$$

Estimates:

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i + \widehat{\beta}_3 X_i Z_i$$

SSR from unrestricted model:

$$SSR_u = \sum_{i=1}^n (Y_i - \widehat{Y}_i)^2$$

Restricted model

Restricted model (null is true):

$$\begin{split} Y_i &= \beta_0 + \beta_1 X_i + \beta_2 Z_i + \beta_3 X_i Z_i \\ &= \beta_0 + 0 \times X_i + \beta_2 Z_i + 0 \times X_i Z_i \\ Y_i &= \beta_0 + \beta_2 Z_i \end{split}$$

Estimates:

$$\widetilde{Y}_i = \widetilde{\beta}_0 + \widetilde{\beta}_1 Z_i$$

SSR from restricted model model:

$$SSR_r = \sum_{i=1}^n (Y_i - \widetilde{Y}_i)^2$$

- If the null is true, then SSR_r and SSR_u should only be different due to sampling variation.
- The bigger the reduction in the prediction errors between SSR_r and SSR_u, the less plausible is the null hypothesis.

F statistic

$$F = \frac{(SSR_r - SSR_u)/q}{SSR_u/(n-k-1)}$$

- $(SSR_r SSR_u)$: the increase in the variation in the residuals when we remove those β s
- q = number of restrictions (numerator degrees of freedom)
- n k 1: denominator/unrestricted degrees of freedom
- Intuition:

increase in prediction error original prediction error

• Each of these is scaled by the degrees of freedom

F statistic in R

ur.mod <- lm(fhrev ~ income * growth, data = FishData)
r.mod <- lm(fhrev ~ growth, data = FishData)
anova(r.mod, ur.mod)</pre>

```
## Analysis of Variance Table
##
## Model 1: fhrev ~ growth
## Model 2: fhrev ~ income * growth
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 147 452
## 2 145 284 2 168 42.9 2.3e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '
```

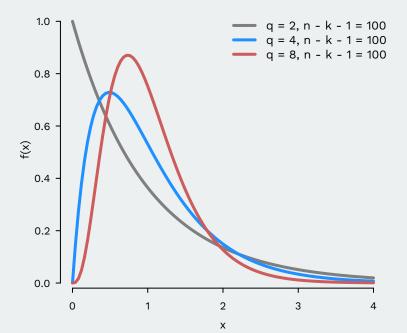
The F test

- What is the null distribution of this F statistic?
 - Assumptions 1-5 + large sample: F statistic has an approximately F distribution
 - Assumptions 1-6 (Normality): F statistic has an exact F distribution
 - Very similar to the t-test
- Either way, under the null:

$$\frac{(SSR_r-SSR_u)/q}{SSR_u/(n-k-1)} \sim F_{q,n-(k+1)}$$

- The F distribution tells us how much of a relative increase in the SSR we should expect if we were to add irrelevant variables to the model.
- Compare our observed F-statistic to the distribution under the null.

F distribution



F-test steps

- 1. Choose a Type I error rate, α .
 - Same interpretation as always: the proportion of false positives you are willing to accept
- 2. Calculate the rejection region for the test (one-sided)
 - Rejection region is the region F > c such that $\mathbb{P}(F > c) = \alpha$
 - We can get this from R using the qf() function:

qf(0.05, 2, 100, lower.tail = FALSE)

[1] 3.087

3. Reject if observed statistic is bigger than critical value

F-test p-values

- We might also want to calculate p-values.
- Probability of observing an F-statistic this large or larger given the null hypothesis is true.
- This is just the proportion of the distribution above the observed F-statistic.
- We can calculate this in R using the pf() function:

pf(5.2, 2, 100, lower.tail = FALSE)

[1] 0.007105

F statistic for all variables

- "The" F-test: tests the null of all coefficients except the intercept being 0.
- In that case, the restricted model is just:

$$Y_i = \beta_0 + u_i$$

- And the estimate here would just be sample mean $(\widehat{\beta}_0 = \overline{Y})$
- The SSR_r then would just be the sampling variation in Y:

$$SSR_f = \sum_{i=1}^n (Y_i - \overline{Y})^2$$

Often reported with regression output.

Example of F-test for all variables

summary(ur.mod)

##							
##	Coefficients:						
##		Estimate	Std. Error	t value	Pr(> t)		
##	(Intercept)	-0.1066	0.6225	-0.17	0.8643		
##	income	1.2922	0.1941	6.66	5.3e-10	***	
##	growth	-0.6172	0.2383	-2.59	0.0106	*	
##	income:growth	0.2395	0.0753	3.18	0.0018	**	
##							
##	Signif. codes	: 0 '***'	' 0.001 '**	' 0.01 ';	k' 0.05 '.	' 0.1	''1
##							
##	Residual stand	dard error	r: 1.4 on 14	45 degree	es of free	dom	
##	Multiple R-squ	Jared: 0.	.433, Adjus	sted R-so	quared: 0	.422	
##	F-statistic:	36.9 on 3	and 145 DF	, p-valu	ue: <2e-16	5	

Connection to t tests

- What about an F-test with just one coefficient equal to zero? $H_0: \beta_1 = 0$
- We already can do this with an t-test. Is there a connection to the F-test?
- The F-statistic for a single restriction is just the square of the t-statistic:

$$F = t^2 = \left(\frac{\widehat{\beta}_1}{\widehat{SE}[\widehat{\beta}_1]}\right)^2$$

Multiple testing

- If we test all of the coefficients separately with a t-test, then we should expect that 5% of them will be significant just due to random chance.
- Illustration: randomly draw 21 variables, and run a regression of the first variable on the rest.
- By design, no effect of any variable on any other, but when we run the regression:

Multiple test example

noise <- data.frame(matrix(rnorm(2100), nrow = 100, ncol = 21))
summary(lm(noise))</pre>

##

Coefficients:

ππ	coerricient	5.				
##		Estimate	Std. Error	t value	Pr(> t)	
##	(Intercept)	-0.028039	0.113820	-0.25	0.8061	
##	X2	-0.150390	0.112181	-1.34	0.1839	
##	X3	0.079158	0.095028	0.83	0.4074	
##	X4	-0.071742	0.104579	-0.69	0.4947	
##	X5	0.172078	0.114002	1.51	0.1352	
##	X6	0.080852	0.108341	0.75	0.4577	
##	X7	0.102913	0.114156	0.90	0.3701	
##	X8	-0.321053	0.120673	-2.66	0.0094	**
##			0.107983			
##	X10	0.180105	0.126443	1.42	0.1583	
##	X11	0.166386	0.110947	1.50	0.1377	
##	X12	0.008011	0.103766	0.08	0.9387	
##	X13	0.000212	0.103785	0.00	0.9984	
##	X14	-0.065969	0.112214	-0.59	0.5583	
##	X15	-0.129654	0.111575	-1.16	0.2487	
##	X16	-0.054446	0.125140	-0.44	0.6647	
##	X17	0.004335	0.112012	0.04	0.9692	
##	X18	-0.080796	0.109853	-0.74	0.4642	
##	X19	-0.085806	0.118553	-0.72	0.4713	
##	X20	-0.186006	0.104560	-1.78	0.0791	
##	X21	0.002111	0.108118	0.02	0.9845	
##	Signif. cod	es: 0 '***	*' 0.001 '**	¢'0.01	'*' 0.05	'.' 0.1 ''
##						
##	Residual st	andard erro	or: 0.999 or	n 79 degi	rees of fr	reedom
	Multiple R-					
##	F-statistic	: 0.993 on	20 and 79 [DF, p−va	alue: 0.48	3

Multiple testing gives false positives

- Notice that out of 20 variables, one of the variables is significant at the 0.05 level (in fact, at the 0.01 level).
- But this is exactly what we expect: 1/20 = 0.05 of the tests are false positives at the 0.05 level
- Also note that 2/20 = 0.1 are significant at the 0.1 level. Totally expected!
- But notice the F-statistic: the variables are not jointly significant

Wrap up

- Interactions: allows us to see how the effect of one variable changes as a function of another
- F-tests: allows us to test the effect of multiple variables at the same time
- Non-linearity: logs and polynomials can make the linearity assumption more plausible
- Next time: regression in full matrix form