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Where are we? Where are we going?

• Last week: we learned about how to calculate a simple (bivariate) linear regres-
sion, what the properties of OLS was in this case, and how to do inference for
regression parameters (slopes and intercepts).

• This week: we’re going to think about how to model and estimate relationships
between variables conditional on a third variable.

• Next week: generalize the entire regressionmodel to thematrix framework and
be very general.

why do we want to add variables to the regression?
Berkeley gender bias

• In general, we want to add variables to a regression because relationships be-
tween variables in the entire sample might differ from those same relationships
within subgroups of the sample.

• Graduate admissions data from Berkeley, 1973 is a famous example of this
• Acceptance rates:

– Men: 8442 applicants, 44% admission rate
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– Women: 4321 applicants, 35% admission rate

• Evidence of discrimination toward women in admissions?
• What about within departments?

Men Women
Dept Applied Admitted Applied Admitted
A 825 62% 108 82%
B 560 63% 25 68%
C 325 37% 593 34%
D 417 33% 375 35%
E 191 28% 393 24%
D 373 6% 341 7%

• Within departments, women do somewhat better than men! Women apply to
more challenging departments.

• Message: overall relationships (admissions and gender) might be different or
the opposite of the same relationship conditional on a third variable (depart-
ment)

Simpson’s paradox
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• Overall a positive relationship between Yi and Xi here
• But within levels of Zi, the opposite
• We call this Simpson’s paradox or the Yue-Simpson effect
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Basic idea

• Before our goal was to estimate the mean of Y (the dependent variable) as a
function of some independent variable, X :

E[Yi|Xi]

• We learned how to do for this for binary and categoricalX ’s with simplemeans.
• For continuous X ’s, we saw that our estimators were too noisy, so we modeled

the CEF/regression function with a line:

Yi = β0 + β1Xi + ui

• This week, we want to estimate the relationship of two variables, Yi and Xi,
conditional on a third variable, Xi:

Yi = β0 + β1Xi + β2Zi + ui

• Once again, these β’s are the population parameters we want to estimate. We
don’t get to observe them.

Why control for another variable

• Descriptive

– Get a sense for the relationships in the data.
– Conditional on the number of steps I’ve taken, does higher activity levels

correlate with less weight?

• Predictive

– We can usuallymake better predictions about the dependent variable with
more information on independent variables.

• Causal

– Block potential confounding, which is whenX doesn’t cause Y , but only
appears to because a third variable Z causally affects both of them.

Broad points to make

1. Slopes go from being predicted differences to predicted differences conditional
on the other independent variable/covariate

2. OLSwith two covariates is still justminimizing the sumof the squared residuals
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3. OLS with two covariates is equivalent to two OLS regressions with 1 covariate
each

4. Small adjustments to OLS assumptions and inference when adding a covariate
5. Adding or omitting variables in a regression can affect the bias and the variance

of OLS

What we won’t cover in lecture

1. The formula for the regression coefficients/slopeswithmore than 1 independent
variable (we’ll cover this with matrices in the coming weeks)

2. Proofs on the properties of OLS with 2 covariates (again, we’ll tackle the fully
general cases in future weeks)

3. The second covariate being a function of the first, such as:

Y = β0 + β1X1 + β2X
2
1 + ui

We’ll get to this in future weeks too.
4. Goodness of fit for these regressions (we’ll get to this as well)

adding a binary variable
Example

ajr <- foreign::read.dta(”ajr.dta”)

plot(ajr$avexpr, ajr$logpgp95, xlab = ”Strength of Property Rights”, ylab = ”Log GDP per capita”,

pch = 19, bty = ”n”, col = ifelse(ajr$africa == 1, ”indianred”, ”dodgerblue”))
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Basics

• Let Zi be Bernoulli/binary (Zi = 1 or Zi = 0)
• Here we’ll use Zi = 1 to indicate that i is an African country.
• Old model:

Ŷi = β̂0 + β̂1Xi

• The concern might be that AJR are picking up an “African effect” if African
countries have low incomes and weak property rights due to, say, a different
type of colonialism.

• We include Zi in the model to make sure that we are comparing differences in
property rights within African countries and within non-African countries, not
between these two groups.

• New model:
Ŷi = β̂0 + β̂1Xi + β̂2Zi

Two lines in one regression

• How can we interpret this model?

• One quick way is to notice that this equation with two covariates is actually just
two different lines: one for when Zi = 1 and one for when Zi = 0

• When Zi = 0:
Ŷi = β̂0 + β̂1X1i + β̂2Zi

= β̂0 + β̂1X1i + β̂2 × 0

= β̂0 + β̂1X1i

• When Zi = 1:
Ŷi = β̂0 + β̂1X1i + β̂2Zi

= β̂0 + β̂1X1i + β̂2 × 1

= (β̂0 + β̂2) + β̂1X1i

• This will make the interpretation of these estimates easier.

AJR model

• Let’s see an example with the AJR data:
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ajr.mod <- lm(logpgp95 ~ avexpr + africa, data = ajr)

summary(ajr.mod)

##

## Call:

## lm(formula = logpgp95 ~ avexpr + africa, data = ajr)

##

## Residuals:

## Min 1Q Median 3Q Max

## -1.83855 -0.28403 0.09149 0.37135 1.19757

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 5.65556 0.31344 18.043 < 2e-16 ***

## avexpr 0.42416 0.03971 10.681 < 2e-16 ***

## africa -0.87844 0.14707 -5.973 3.03e-08 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 0.6253 on 108 degrees of freedom

## (52 observations deleted due to missingness)

## Multiple R-squared: 0.7078, Adjusted R-squared: 0.7024

## F-statistic: 130.8 on 2 and 108 DF, p-value: < 2.2e-16

Example interpretation of the coefficients

• Let’s review what we’ve seen so far:

Intercept for Xi Slope for Xi

Non-African country (Zi = 0) β̂0 β̂1
African country (Zi = 1) β̂0 + β̂2 β̂1

• In this example, we have:

Ŷi = 5.656 + 0.424×Xi +−0.878× Zi

• We can read these as:

– β̂0: average log income for non-African country (Zi = 0) with property
rights measured at 0 is 5.656
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– β̂1: A one-unit change in property rights is associated with a 0.424 in-
crease in average log incomes for two African countries

– β̂1: A one-unit change in property rights is associated with a 0.424 in-
crease in average log incomes for two non-African countries

– β̂2: there is a -0.878 average difference in log income per capita between
African and non-African counties conditional on property rights

General interpretation of the coefficients

• β̂0: average value of Yi when both Xi and Zi are equal to 0
• β̂1: A one-unit change in Xi is associated with a β̂1-unit change in Yi condi-
tional on Zi

• β̂2: average difference in Yi between Zi = 1 group and Zi = 0 group condi-
tional onXi

Adding a binary variable, visually

ajr.mod <- lm(logpgp95 ~ avexpr + africa, data = ajr)

plot(ajr$avexpr, ajr$logpgp95, xlab = ”Strength of Property Rights”, ylab = ”Log GDP per capita”,

pch = 19, bty = ”n”, col = ifelse(ajr$africa == 1, ”indianred”, ”dodgerblue”),

xlim = c(-1, 10), ylim = c(4, 11))

abline(a = coef(ajr.mod)[1], b = coef(ajr.mod)[2], col = ”dodgerblue”, lwd = 3)

abline(a = coef(ajr.mod)[1] + coef(ajr.mod)[3], b = coef(ajr.mod)[2], col = ”indianred”,

lwd = 3)

abline(v = 0, col = ”grey60”, lty = 2)

points(x = 0, y = coef(ajr.mod)[1], pch = 19, cex = 1.25)

text(x = 0, y = coef(ajr.mod)[1] + 0.1, expression(widehat(beta)[0]), pos = 2,

cex = 1.25)

points(x = 0, y = coef(ajr.mod)[1] + coef(ajr.mod)[3], pch = 19, cex = 1.25)

text(x = 0, y = coef(ajr.mod)[1] + coef(ajr.mod)[3] - 0.3, expression(widehat(beta)[0] +

widehat(beta)[2]), pos = 4, cex = 1.25)

arrows(x0 = 3, x1 = 3, y0 = coef(ajr.mod)[1] + 3 * coef(ajr.mod)[2], y1 = coef(ajr.mod)[1] +

3 * coef(ajr.mod)[2] + coef(ajr.mod)[3], length = 0.1, lwd = 3)

text(x = 2.9, y = coef(ajr.mod)[1] + 3 * coef(ajr.mod)[2] + 0.75 * coef(ajr.mod)[3],

expression(widehat(beta)[2]), cex = 1.25, pos = 2)

text(x = 1, y = 10.5, bquote(widehat(beta)[0] == .(round(coef(ajr.mod)[1], 3))),

pos = 4, cex = 1.25)

text(x = 1, y = 10, bquote(widehat(beta)[1] == .(round(coef(ajr.mod)[2], 3))),

pos = 4, cex = 1.25)
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text(x = 1, y = 9.5, bquote(widehat(beta)[2] == .(round(coef(ajr.mod)[3], 3))),

pos = 4, cex = 1.25)
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β1 = 0.424
β2 = -0.878

adding a continuous variable
Basics

• Now suppose thatZi is continuous, such as themean temperature in that coun-
try.

• Wemight want to include this if geographic factorsmight influence the kinds of
political institutions and average incomes (through health issues like malaria).

• Old model:
Ŷi = β̂0 + β̂1Xi

• New model:
Ŷi = β̂0 + β̂1Xi + β̂2Zi
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AJR model, revisited

ajr.mod2 <- lm(logpgp95 ~ avexpr + meantemp, data = ajr)

summary(ajr.mod2)

##

## Call:

## lm(formula = logpgp95 ~ avexpr + meantemp, data = ajr)

##

## Residuals:

## Min 1Q Median 3Q Max

## -1.7330 -0.4112 0.1191 0.4398 1.3044

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 6.80627 0.75184 9.053 1.27e-12 ***

## avexpr 0.40568 0.06397 6.342 3.94e-08 ***

## meantemp -0.06025 0.01940 -3.105 0.00296 **

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 0.6435 on 57 degrees of freedom

## (103 observations deleted due to missingness)

## Multiple R-squared: 0.6155, Adjusted R-squared: 0.602

## F-statistic: 45.62 on 2 and 57 DF, p-value: 1.481e-12

Interpretation

• With a continuous Zi, we can have more than two values that it can take on:

Intercept for Xi Slope for Xi

Zi = 0 ◦C β̂0 β̂1
Zi = 21 ◦C β̂0 + β̂2 × 21 β̂1
Zi = 24 ◦C β̂0 + β̂2 × 24 β̂1
Zi = 26 ◦C β̂0 + β̂2 × 26 β̂1

Ŷi = 6.806 + 0.406×Xi +−0.06× Zi

• β̂0: average log income for a country with property rights measured at 0 and a
mean temperature of 0 is 6.806
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• β̂1: A one-unit change in property rights is associated with a 0.406 change in
average log incomes conditional on a country’s mean temperature

• β̂2: A one-degree increase inmean temperature is associatedwith a -0.06 change
in average log incomes conditional on strength of property rights

General interpretation

Ŷi = β̂0 + β̂1Xi + β̂2Zi

• The coefficient β̂1 measures how the predicted outcome varies inXi for a fixed
value of Zi.

• The coefficient β̂2 measures how the predicted outcome varies in Zi for a fixed
value of Xi.

mechanics and partialing out regression
Fitted values and residuals

• Notice that we assumed that we have estimators for the various values here. But
where did they come from?

• To answer this, we first need to redefine some terms from simple linear regres-
sion.

• Fitted values for i = 1, . . . , n:

Ŷi = β̂0 + β̂1Xi + β̂2Zi

• Residuals for i = 1, . . . , n:
ûi = Yi − Ŷi

Least squares is still least squares

• How do we estimate β̂0, β̂1, and β̂2?
• Minimize the sum of the squared residuals, just like before:

(β̂0, β̂1, β̂2) = arg min
b0,b1,b2

n∑
i=1

(Yi − b0 − b1Xi − b2Zi)
2

• Not super-useful to derive these formulas, but you can do the calculus yourself
if you’re so inclined.

• We’ll see the general version of this in the coming weeks
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Estimating OLS using two steps

• We’re not going to explicitly write out the OLS formulas for the two-covariate
case, but there is a simple, intuitive way to do this using only simple/bivariate
linear regression.

• Suppose we have the following model:

Yi = β0 + β1Xi + β2Zi + ui

• We can write the OLS estimator for β1 as:

β̂1 =

∑n
i=1 r̂xz,iYi∑n
i=1 r̂

2
xz,i

• This is just the equation for a estimated slope in a bivariate regression where
r̂xz,i is the only covariate

• Here, r̂xz,i are the residuals of a regression of Xi on Zi:

Xi = δ0 + δ1Zi + rxz,i

r̂xz,i = Xi − δ̂0 + δ̂1Zi

• That is, we treatXi as the dependent variable andZi as the independent variable
and calculate the residuals from that regression.

• Then if we stick those residuals into a regression with Yi as the outcome:

Ŷi = β̂0 + β̂1r̂xz,i

• This will give us identical estimates for β̂1 to when we run the full regression:

Ŷi = β̂0 + β̂1Xi + β̂2Zi

Regression property rights on mean temperature

• Let’s show this with the AJR data. First we are going to regress the property
rights variable, Xi, on the mean temperature variable, Zi.

• Here we have to add an argument to the lm() function that tells R to exclude the
missing values from the regression, but keep them in the residuals and fitted
values. This is useful because we are going to create a new variable for the resid-
uals and if R were to drop the missing values from the residuals, the columns
wouldn’t align properly.
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## when missing data exists, need the na.action in order to place residuals

## or fitted values back into the data

ajr.first <- lm(avexpr ~ meantemp, data = ajr, na.action = na.exclude)

summary(ajr.first)

##

## Call:

## lm(formula = avexpr ~ meantemp, data = ajr, na.action = na.exclude)

##

## Residuals:

## Min 1Q Median 3Q Max

## -2.9770 -0.8888 -0.0350 0.8887 3.3993

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 9.95678 0.82015 12.140 < 2e-16 ***

## meantemp -0.14900 0.03469 -4.295 6.73e-05 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 1.321 on 58 degrees of freedom

## (103 observations deleted due to missingness)

## Multiple R-squared: 0.2413, Adjusted R-squared: 0.2282

## F-statistic: 18.45 on 1 and 58 DF, p-value: 6.733e-05

• Next, we store the residuals from this regression using the residuals() function
in R. Again, the na.exclude option in the lm() call allows us to do this without
errors.

## store the residuals

ajr$avexpr.res <- residuals(ajr.first)

Regression of log income on the residuals

• Nowwe compare the estimated slope for property rights from the regression on
the residuals to the regression on the original variables:

coef(lm(logpgp95 ~ avexpr.res, data = ajr))
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## (Intercept) avexpr.res

## 8.0542783 0.4056757

coef(lm(logpgp95 ~ avexpr + meantemp, data = ajr))

## (Intercept) avexpr meantemp

## 6.80627375 0.40567575 -0.06024937

• Notice how the estimated coefficient for property rights is the same in both.
• But also notice how the intercept is off. This won’t be the main way we calculate

OLS coefficients, but it’s sometimes useful for intuition.
• It’s especially useful for producing scatterplots, since this is more difficult when

you have more than one explanatory variable.

Residual/partial regression plot

• We can plot the relationship between property rights and income conditional
on temperature by plotting income against the same residuals.

plot(x = ajr$avexpr.res, y = ajr$logpgp95, pch = 19, col = ”grey60”, bty = ”n”,

xlab = ”Residuals(Property Right ~ Mean Temperature)”, ylab = ”Log GDP per capita”,

las = 1)

abline(lm(logpgp95 ~ avexpr.res, data = ajr), col = ”indianred”, lwd = 3)
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ols assumptions & inference with 2 variables
OLS assumptions for unbiasedness

• When we have more than one independent variable, we need the following as-
sumptions in order for OLS to be unbiased:

1. Linearity
Yi = β0 + β1Xi + β2Zi + ui

2. Random/iid sample
3. No perfect collinearity
4. Zero conditional mean error

E[ui|Xi, Zi] = 0

No perfect collinearity

• The “no perfect collinearity” is only truly new-sounding assumption. Notice
that it replaces “variation in Xi.”

Assumption 3 - (a) No independent variable is constant in the sample and (b) there
are no exactly linear relationships among the independent variables.

• The first part here, (a), is just the same as in the bivariate regression. Both Xi

and Zi have to vary.
• The second part is new. It says thatZi cannot be a deterministic, linear function

of Xi. This rules out any function like this:

Zi = a+ bXi

• Notice how this is linear (equation of a line) and there is no error, so it is deter-
ministic. What’s the correlation between Zi and Xi? 1!

Perfect collinearity example (I)

• Simple example:

– Xi = 1 if a country is not in Africa and 0 otherwise.
– Zi = 1 if a country is in Africa and 0 otherwise.

• But, clearly we have the following:

Zi = 1−Xi
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• These two variables are perfectly collinear.
• What about the following:

– Xi = property rights
– Zi = X2

i

• Do we have to worry about collinearity here?
• No! Because whileZi is a deterministic function ofXi, it is not a linear function

of Xi.

R and perfect collinearity

• R, Stata, et al will drop one of the variables if there is perfect collinearity:

ajr$nonafrica <- 1 - ajr$africa

summary(lm(logpgp95 ~ africa + nonafrica, data = ajr))

##

## Call:

## lm(formula = logpgp95 ~ africa + nonafrica, data = ajr)

##

## Residuals:

## Min 1Q Median 3Q Max

## -2.06999 -0.64783 -0.04867 0.72114 1.69849

##

## Coefficients: (1 not defined because of singularities)

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 8.71638 0.08991 96.941 < 2e-16 ***

## africa -1.36119 0.16306 -8.348 4.87e-14 ***

## nonafrica NA NA NA NA

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 0.9125 on 146 degrees of freedom

## (15 observations deleted due to missingness)

## Multiple R-squared: 0.3231, Adjusted R-squared: 0.3184

## F-statistic: 69.68 on 1 and 146 DF, p-value: 4.87e-14

Perfect collinearity example (II)

• Simple example:
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– Xi = mean temperature in Celsius
– Zi = 1.8Xi + 32 (mean temperature in Fahrenheit)

ajr$meantemp.f <- 1.8 * ajr$meantemp + 32

coef(lm(logpgp95 ~ meantemp + meantemp.f, data = ajr))

## (Intercept) meantemp meantemp.f

## 10.8454999 -0.1206948 NA

OLS assumptions for large-sample inference

• For large-sample inference and calculating SEswithmore than one independent
variable, we just need the two-variable version of the Gauss-Markov assump-
tions:

1. Linearity
Yi = β0 + β1Xi + β2Zi + ui

2. Random/iid sample
3. No perfect collinearity
4. Zero conditional mean error

E[ui|Xi, Zi] = 0

5. Homoskedasticity
var[ui|Xi, Zi] = σ2

u

Inference with two independent variables in large samples

• Let’s say that you have your OLS estimate β̂1
• Furthermore, you have an estimate of the standard error for that coefficient,
ŜE[β̂1]. We haven’t said how we’re going to calculate those yet, but R gives
them to you and we’ll get to that shortly.

• Under assumption 1-5, in large samples, we’ll have the following:

β̂1 − β1

ŜE[β̂1]
∼ N(0, 1)

• The same holds for the other coefficient:

β̂2 − β2

ŜE[β̂2]
∼ N(0, 1)
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• In large samples, nothing changes about inference! Hypothesis test and confi-
dence intervals are exactly the same as in the bivariate case.

• Note that this assumes that the number of independent variables stays fixed and
n grows.

OLS assumptions for small-sample inference

• For small-sample inference, we need the Gauss-Markov plus Normal errors:

1. Linearity
Yi = β0 + β1Xi + β2Zi + ui

2. Random/iid sample
3. No perfect collinearity
4. Zero conditional mean error

E[ui|Xi, Zi] = 0

5. Homoskedasticity
var[ui|Xi, Zi] = σ2

u

6. Normal conditional errors
ui ∼ N(0, σ2

u)

Inference with two independent variables in small samples

• Under assumptions 1-6, we have the following small change to our small-n sam-
pling distribution:

β̂1 − β1

ŜE[β̂1]
∼ tn−3

• The same is true for the other coefficient:

β̂2 − β2

ŜE[β̂2]
∼ tn−3

• Why n − 3 degrees of freedom now instead of the n − 2 in the simple linear
regression case? Well, we’ve estimated another parameter, so we need to take
off another degree of freedom.

• Thus, we need to make small adjustments to the critical values and the t-values
for our hypothesis tests and confidence intervals.

• QuestionWhat happens to the size of the rejection region for an α-level test of
H0 : β1 = 0 when we add another independent variable to the model? Does is
get larger, smaller, or stay the same?



18

omitted variable bias
Unbiasedness revisited

• Remember that under assumptions 1-4, we get unbiased estimates of the coef-
ficients.

• One question youmight ask yourself is the following: what happens if we ignore
the second independent variable and just run the simple linear regression with
just Xi?

• Which of the four assumptions might we violate? Zero conditional mean error!
Last week we said that for the simple linear regression we assume that:

E[ui|Xi] = 0

Omitted variable bias

• True model:
Yi = β0 + β1Xi + β2Zi + ui

• Let’smakeAssumptions 1-4 about thismodel. Specifically, we’ll say thatE[ui|Xi, Zi] =
0. Note that this implies that E[ui|Xi] = 0 (the reverse is not true).

• Misspecified model:
Yi = β0 + β1Xi + u∗i

• Notice here that u∗i = β2Zi + ui, and while we know that E[ui|Xi] = 0, we
have made no assumptions about E[Zi|Xi], so E[u∗i |Xi] ̸= 0.

• Intuitively, this is saying that there is correlation between Xi and the misspeci-
fied error u∗i due to the correlation between Xi and Zi.

• OLS estimates from the misspecified model:

Ŷi = β̃0 + β̃1Xi

• Question: will E[β̃1] = β1? If not, what will be the bias?

Omitted variable bias, derivation

• Simple linear regression parameter:

β̃1 = β1 + β2δ̂1

• Where the δ̂1 is the coefficient on Xi from a regression of Zi on Xi:

Zi = δ0 + δ1Xi + vi
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• Remember that by OLS, this is just:

δ̂1 =
ĉov(Zi, Xi)

v̂ar(Xi)

• Will be positive when cov(Xi, Zi) > 0 and negative when cov(Xi, Zi) < 0.
Will be 0 when Xi and Zi are independent.

• Let’s take expectations:

E[β̃1] = E[β1 + β2δ̂1]

= β1 + β2E[δ̂1]
= β1 + β2δ1

• Thus, we can calculate the bias here:

Bias(β̃1) = E[β̃1]− β1 = β2δ1

• In other words:

omitted variable bias = (effect of Zi on Yi)× (effect of Xi on Zi)

Omitted variable bias, summary

cov(Xi, Zi) > 0 cov(Xi, Zi) < 0 cov(Xi, Zi) = 0

β2 > 0 Positive bias Negative Bias No bias
β2 < 0 Negative bias Positive Bias No bias
β2 = 0 No bias No bias No bias

Including irrelevant variables

• What if we do the opposite? Include an irrelevant variable? Do we have bias in
this case?

• What would it mean for Zi to be an irrelevant variable? Basically, that we have

Yi = β0 + β1Xi + 0× Zi + ui

• So in this case, the true value of β2 = 0. But under Assumptions 1-4, OLS is
unbiased for all the parameters:

E[β̂0] = β0

E[β̂1] = β1

E[β̂2] = 0

• Including an irrelevant variable will increase the standard errors for β̂1.



20

multicollinearity
Sampling variance for simple linear regression

• Under simple linear regression, we found that the distribution of the slope was
the following:

var(β̂1) =
σ2
u∑n

i=1(Xi −X)2

• Factors affecting the standard errors (the square root of these sampling vari-
ances):

– The error variance (higher conditional variance of Yi leads to bigger SEs)
– The variance of Xi (lower variation in Xi leads to bigger SEs)

Sampling variation for linear regression with two covariates

• Regression with an additional independent variable:

var(β̂1) =
σ2
u

(1−R2
1)
∑n

i=1(Xi −X)2

• Here, R2
1 is the R2 from the regression of Xi on Zi:

X̂i = δ̂0 + δ̂1Zi

• Factors now affecting the standard errors:

– The error variance (higher conditional variance of Yi leads to bigger SEs)
– The variance of Xi (lower variation in Xi leads to bigger SEs)
– The strength of the relationship betwee Xi and Zi (stronger relationships

mean higher R2
1 and thus bigger SEs)

• What happens with perfect collinearity? R2
1 = 1 and the variances are infinite.

Multicollinearity

• Definition Multicollinearity is defined to be high, but not perfect, correlation
between two independent variables in a regression.

• With multicollinearity, we’ll have R2
1 ≈ 1, but not exactly.

• The stronger the relationship betweenXi and Zi, the closer theR2
1 will be to 1,

and the higher the SEs will be:

var(β̂1) =
σ2
u

(1−R2
1)
∑n

i=1(Xi −X)2

• Given the symmetry, it will also increase var(β̂2) as well.
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Intuition for multicollinearity

• Remember that we can calculate the regression coefficient for Xi by first run-
ning a regression of Xi on Zi and using the residuals from that regression as
the independent variable:

Ŷi = β̂0 + β̂1r̂xz,i

• But when Zi and Xi have a strong relationship, then the residuals will be very
small—we explain away a lot of the variation in Xi through Zi.

• And we know that when the independent variable (here the residuals, r̂xz,i) has
low variance, then the standard errors of the estimator will increase.

• Basically, there is less residual variation left inXi after “partialling out” the effect
of Zi

Effects of multicollinearity

• No effect on the bias of OLS.
• Only increases the standard errors.
• Really just a sample size problem:

– IfXi and Zi are extremely highly correlated, you’re going to need a much
bigger sample to accurately differentiate between their effects.
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appendix
Deriving the formula for the misspecified coefficient

• Here we’ll use ĉov to mean the sample covariance, and v̂ar to be the sample
variance.

β̃1 =
ĉov(Yi, Xi)

v̂ar(Xi)
(OLS formulas)

=
ĉov(β0 + β1Xi + β2Zi + ui, Xi)

v̂ar(Xi)
(Linearity in correct model)

=
ĉov(β0, Xi)

v̂ar(Xi)
+

ĉov(β1Xi, Xi)

v̂ar(Xi)
+

ĉov(β2Zi, Xi)

v̂ar(Xi)
+

ĉov(ui, Xi)

v̂ar(Xi)
(covariance properties)

= 0 +
ĉov(β1Xi, Xi)

v̂ar(Xi)
+

ĉov(β2Zi, Xi)

v̂ar(Xi)
+ 0 (zero mean error)

= β1
v̂ar(Xi)

v̂ar(Xi)
+ β2

ĉov(Zi, Xi)

v̂ar(Xi)
(properties of covariance)

= β1 + β2
ĉov(Zi, Xi)

v̂ar(Xi)

= β1 + β2δ̂1 (OLS formulas)
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