Gov 2000 - 8. Regression with Two Independent Variables

Matthew Blackwell

Harvard University mblackwell@gov.harvard.edu

Where are we? Where are we going?

- Last week: we learned about how to calculate a simple (bivariate) linear regression, what the properties of OLS was in this case, and how to do inference for regression parameters (slopes and intercepts).
- This week: we're going to think about how to model and estimate relationships between variables conditional on a third variable.
- Next week: generalize the entire regression model to the matrix framework and be very general.

WHY DO WE WANT TO ADD VARIABLES TO THE REGRESSION?

Berkeley gender bias

- In general, we want to add variables to a regression because relationships between variables in the entire sample might differ from those same relationships within subgroups of the sample.
- Graduate admissions data from Berkeley, 1973 is a famous example of this
- Acceptance rates:
 - Men: 8442 applicants, 44% admission rate

- Women: 4321 applicants, 35% admission rate
- Evidence of discrimination toward women in admissions?
- What about within departments?

	Men		Women	
Dept	Applied	Admitted	Applied	Admitted
A	825	62%	108	82%
В	560	63%	25	68%
С	325	37%	593	34%
D	417	33%	375	35%
Е	191	28%	393	24%
D	373	6%	341	7%

- Within departments, women do somewhat better than men! Women apply to more challenging departments.
- Message: overall relationships (admissions and gender) might be different or the opposite of the same relationship conditional on a third variable (department)

- Overall a positive relationship between Y_i and X_i here
- But within levels of Z_i , the opposite
- We call this Simpson's paradox or the Yue-Simpson effect

Basic idea

• Before our goal was to estimate the mean of *Y* (the dependent variable) as a function of some independent variable, *X*:

$\mathbb{E}[Y_i|X_i]$

- We learned how to do for this for binary and categorical X's with simple means.
- For continuous *X*'s, we saw that our estimators were too noisy, so we modeled the CEF/regression function with a line:

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

• This week, we want to estimate the relationship of two variables, Y_i and X_i , conditional on a third variable, X_i :

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i$$

Once again, these β's are the population parameters we want to estimate. We don't get to observe them.

Why control for another variable

- Descriptive
 - Get a sense for the relationships in the data.
 - Conditional on the number of steps I've taken, does higher activity levels correlate with less weight?
- Predictive
 - We can usually make better predictions about the dependent variable with more information on independent variables.
- Causal
 - Block potential **confounding**, which is when *X* doesn't cause *Y*, but only appears to because a third variable *Z* causally affects both of them.

Broad points to make

- 1. Slopes go from being predicted differences to predicted differences conditional on the other independent variable/covariate
- 2. OLS with two covariates is still just minimizing the sum of the squared residuals

- 3. OLS with two covariates is equivalent to two OLS regressions with 1 covariate each
- 4. Small adjustments to OLS assumptions and inference when adding a covariate
- 5. Adding or omitting variables in a regression can affect the bias and the variance of OLS

What we won't cover in lecture

- 1. The formula for the regression coefficients/slopes with more than 1 independent variable (we'll cover this with matrices in the coming weeks)
- 2. Proofs on the properties of OLS with 2 covariates (again, we'll tackle the fully general cases in future weeks)
- 3. The second covariate being a function of the first, such as:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_1^2 + u_i$$

We'll get to this in future weeks too.

4. Goodness of fit for these regressions (we'll get to this as well)

ADDING A BINARY VARIABLE

Example

```
ajr <- foreign::read.dta("ajr.dta")</pre>
```

```
plot(ajr$avexpr, ajr$logpgp95, xlab = "Strength of Property Rights", ylab = "Log GDP per capita",
    pch = 19, bty = "n", col = ifelse(ajr$africa == 1, "indianred", "dodgerblue"))
```


Strength of Property Rights

Basics

- Let Z_i be Bernoulli/binary ($Z_i = 1$ or $Z_i = 0$)
- Here we'll use $Z_i = 1$ to indicate that i is an African country.
- Old model:

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i$$

- The concern might be that AJR are picking up an "African effect" if African countries have low incomes and weak property rights due to, say, a different type of colonialism.
- We include Z_i in the model to make sure that we are comparing differences in property rights within African countries and within non-African countries, not between these two groups.
- New model:

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i$$

Two lines in one regression

- How can we interpret this model?
- One quick way is to notice that this equation with two covariates is actually just two different lines: one for when $Z_i = 1$ and one for when $Z_i = 0$
- When $Z_i = 0$:

$$\widehat{Y}_{i} = \widehat{\beta}_{0} + \widehat{\beta}_{1}X_{1i} + \widehat{\beta}_{2}Z_{i}$$
$$= \widehat{\beta}_{0} + \widehat{\beta}_{1}X_{1i} + \widehat{\beta}_{2} \times 0$$
$$= \widehat{\beta}_{0} + \widehat{\beta}_{1}X_{1i}$$

• When $Z_i = 1$:

$$\widehat{Y}_{i} = \widehat{\beta}_{0} + \widehat{\beta}_{1}X_{1i} + \widehat{\beta}_{2}Z_{i}$$
$$= \widehat{\beta}_{0} + \widehat{\beta}_{1}X_{1i} + \widehat{\beta}_{2} \times 1$$
$$= (\widehat{\beta}_{0} + \widehat{\beta}_{2}) + \widehat{\beta}_{1}X_{1i}$$

• This will make the interpretation of these estimates easier.

AJR model

• Let's see an example with the AJR data:

```
ajr.mod <- lm(logpgp95 ~ avexpr + africa, data = ajr)</pre>
summary(ajr.mod)
##
## Call:
## lm(formula = logpgp95 ~ avexpr + africa, data = ajr)
##
## Residuals:
##
       Min
                1Q Median
                                   30
                                           Max
## -1.83855 -0.28403 0.09149 0.37135 1.19757
##
## Coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.65556 0.31344 18.043 < 2e-16 ***
              0.42416 0.03971 10.681 < 2e-16 ***
## avexpr
## africa
              -0.87844 0.14707 -5.973 3.03e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6253 on 108 degrees of freedom
## (52 observations deleted due to missingness)
## Multiple R-squared: 0.7078, Adjusted R-squared: 0.7024
## F-statistic: 130.8 on 2 and 108 DF, p-value: < 2.2e-16
```

Example interpretation of the coefficients

• Let's review what we've seen so far:

	Intercept for X_i	Slope for X_i
Non-African country ($Z_i = 0$)	\widehat{eta}_0	\widehat{eta}_1
African country ($Z_i = 1$)	$\widehat{\beta}_0 + \widehat{\beta}_2$	\widehat{eta}_1

• In this example, we have:

$$\widehat{Y}_i = 5.656 + 0.424 \times X_i + -0.878 \times Z_i$$

- We can read these as:
 - $\hat{\beta}_0$: average log income for non-African country ($Z_i = 0$) with property rights measured at 0 is 5.656

- $\hat{\beta}_1$: A one-unit change in property rights is associated with a 0.424 increase in average log incomes for two African countries
- $\hat{\beta}_1$: A one-unit change in property rights is associated with a 0.424 increase in average log incomes for two non-African countries
- $\hat{\beta}_2$: there is a -0.878 average difference in log income per capita between African and non-African counties **conditional on** property rights

General interpretation of the coefficients

- $\widehat{\beta}_0$: average value of Y_i when both X_i and Z_i are equal to o
- β
 ₁: A one-unit change in X_i is associated with a β
 ₁-unit change in Y_i conditional on Z_i
- $\widehat{\beta}_2$: average difference in Y_i between $Z_i = 1$ group and $Z_i = 0$ group conditional on X_i

Adding a binary variable, visually

```
ajr.mod <- lm(logpgp95 ~ avexpr + africa, data = ajr)</pre>
plot(ajr$avexpr, ajr$logpgp95, xlab = "Strength of Property Rights", ylab = "Log GDP per capita",
    pch = 19, bty = "n", col = ifelse(ajr$africa == 1, "indianred", "dodgerblue"),
    xlim = c(-1, 10), ylim = c(4, 11))
abline(a = coef(ajr.mod)[1], b = coef(ajr.mod)[2], col = "dodgerblue", lwd = 3)
abline(a = coef(ajr.mod)[1] + coef(ajr.mod)[3], b = coef(ajr.mod)[2], col = "indianred",
    1wd = 3)
abline(v = 0, col = "grey60", lty = 2)
points(x = 0, y = coef(ajr.mod)[1], pch = 19, cex = 1.25)
text(x = 0, y = coef(ajr.mod)[1] + 0.1, expression(widehat(beta)[0]), pos = 2,
    cex = 1.25)
points(x = 0, y = coef(ajr.mod)[1] + coef(ajr.mod)[3], pch = 19, cex = 1.25)
text(x = 0, y = coef(ajr.mod)[1] + coef(ajr.mod)[3] - 0.3, expression(widehat(beta)[0] +
    widehat(beta)[2]), pos = 4, cex = 1.25)
arrows(x0 = 3, x1 = 3, y0 = coef(ajr.mod)[1] + 3 * coef(ajr.mod)[2], y1 = coef(ajr.mod)[1] +
    3 * coef(ajr.mod)[2] + coef(ajr.mod)[3], length = 0.1, lwd = 3)
text(x = 2.9, y = coef(ajr.mod)[1] + 3 * coef(ajr.mod)[2] + 0.75 * coef(ajr.mod)[3],
    expression(widehat(beta)[2]), cex = 1.25, pos = 2)
text(x = 1, y = 10.5, bquote(widehat(beta)[0] == .(round(coef(ajr.mod)[1], 3))),
    pos = 4, cex = 1.25)
text(x = 1, y = 10, bquote(widehat(beta)[1] == .(round(coef(ajr.mod)[2], 3))),
    pos = 4, cex = 1.25)
```


text(x = 1, y = 9.5, bquote(widehat(beta)[2] == .(round(coef(ajr.mod)[3], 3))),

Strength of Property Rights

ADDING A CONTINUOUS VARIABLE

Basics

- Now suppose that Z_i is continuous, such as the mean temperature in that country.
- We might want to include this if geographic factors might influence the kinds of political institutions and average incomes (through health issues like malaria).
- Old model:

pos = 4, cex = 1.25)

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i$$

• New model:

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i$$

AJR model, revisited

```
ajr.mod2 <- lm(logpgp95 ~ avexpr + meantemp, data = ajr)</pre>
summary(ajr.mod2)
##
## Call:
## lm(formula = logpgp95 ~ avexpr + meantemp, data = ajr)
##
## Residuals:
      Min 1Q Median
##
                               3Q
                                     Max
## -1.7330 -0.4112 0.1191 0.4398 1.3044
##
## Coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.80627 0.75184 9.053 1.27e-12 ***
             0.40568 0.06397 6.342 3.94e-08 ***
## avexpr
## meantemp -0.06025 0.01940 -3.105 0.00296 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6435 on 57 degrees of freedom
   (103 observations deleted due to missingness)
##
## Multiple R-squared: 0.6155, Adjusted R-squared: 0.602
## F-statistic: 45.62 on 2 and 57 DF, p-value: 1.481e-12
```

Interpretation

• With a continuous Z_i , we can have more than two values that it can take on:

	Intercept for X_i	Slope for X_i
$Z_i = 0$ °C	\widehat{eta}_0	\widehat{eta}_1
$Z_i = 21 ^{\circ}\mathrm{C}$	$\widehat{\beta}_0 + \widehat{\beta}_2 \times 21$	\widehat{eta}_1
$Z_i = 24 ^{\circ}\mathrm{C}$	$\widehat{\beta}_0 + \widehat{\beta}_2 \times 24$	\widehat{eta}_1
$Z_i = 26 ^{\circ}\mathrm{C}$	$\widehat{\beta}_0 + \widehat{\beta}_2 \times 26$	\widehat{eta}_1
^		
$Y_i = 6.806 +$	$0.406 \times X_i + -0.$	$.06 \times Z_i$

• β_0 : average log income for a country with property rights measured at 0 and a mean temperature of 0 is 6.806

- $\hat{\beta}_1$: A one-unit change in property rights is associated with a 0.406 change in average log incomes conditional on a country's mean temperature
- $\hat{\beta}_2$: A one-degree increase in mean temperature is associated with a -0.06 change in average log incomes conditional on strength of property rights

General interpretation

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i$$

- The coefficient $\hat{\beta}_1$ measures how the predicted outcome varies in X_i for a fixed value of Z_i .
- The coefficient β₂ measures how the predicted outcome varies in Z_i for a fixed value of X_i.

MECHANICS AND PARTIALING OUT REGRESSION

Fitted values and residuals

- Notice that we assumed that we have estimators for the various values here. But where did they come from?
- To answer this, we first need to redefine some terms from simple linear regression.
- Fitted values for $i = 1, \ldots, n$:

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i$$

• Residuals for $i = 1, \ldots, n$:

$$\widehat{u}_i = Y_i - \widehat{Y}_i$$

Least squares is still least squares

- How do we estimate $\hat{\beta}_0$, $\hat{\beta}_1$, and $\hat{\beta}_2$?
- Minimize the sum of the squared residuals, just like before:

$$(\widehat{\beta}_0, \widehat{\beta}_1, \widehat{\beta}_2) = \operatorname*{arg\,min}_{b_0, b_1, b_2} \sum_{i=1}^n (Y_i - b_0 - b_1 X_i - b_2 Z_i)^2$$

- Not super-useful to derive these formulas, but you can do the calculus yourself if you're so inclined.
- We'll see the general version of this in the coming weeks

Estimating OLS using two steps

- We're not going to explicitly write out the OLS formulas for the two-covariate case, but there is a simple, intuitive way to do this using only simple/bivariate linear regression.
- Suppose we have the following model:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i$$

• We can write the OLS estimator for β_1 as:

$$\widehat{\beta}_1 = \frac{\sum_{i=1}^n \widehat{r}_{xz,i} Y_i}{\sum_{i=1}^n \widehat{r}_{xz,i}^2}$$

- This is just the equation for a estimated slope in a bivariate regression where $\hat{r}_{xz,i}$ is the only covariate
- Here, $\hat{r}_{xz,i}$ are the residuals of a regression of X_i on Z_i :

$$X_i = \delta_0 + \delta_1 Z_i + r_{xz,i}$$
$$\hat{r}_{xz,i} = X_i - \hat{\delta}_0 + \hat{\delta}_1 Z_i$$

- That is, we treat X_i as the dependent variable and Z_i as the independent variable and calculate the residuals from that regression.
- Then if we stick those residuals into a regression with Y_i as the outcome:

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 \widehat{r}_{xz,i}$$

• This will give us identical estimates for $\hat{\beta}_1$ to when we run the full regression:

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i$$

Regression property rights on mean temperature

- Let's show this with the AJR data. First we are going to regress the property rights variable, X_i , on the mean temperature variable, Z_i .
- Here we have to add an argument to the lm() function that tells R to exclude the missing values from the regression, but keep them in the residuals and fitted values. This is useful because we are going to create a new variable for the residuals and if R were to drop the missing values from the residuals, the columns wouldn't align properly.

```
## when missing data exists, need the na.action in order to place residuals
## or fitted values back into the data
ajr.first <- lm(avexpr ~ meantemp, data = ajr, na.action = na.exclude)
summary(ajr.first)</pre>
```

```
##
## Call:
## lm(formula = avexpr ~ meantemp, data = ajr, na.action = na.exclude)
##
## Residuals:
##
      Min 1Q Median
                              3Q
                                     Max
## -2.9770 -0.8888 -0.0350 0.8887 3.3993
##
## Coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.95678 0.82015 12.140 < 2e-16 ***
## meantemp -0.14900 0.03469 -4.295 6.73e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.321 on 58 degrees of freedom
##
    (103 observations deleted due to missingness)
## Multiple R-squared: 0.2413, Adjusted R-squared: 0.2282
## F-statistic: 18.45 on 1 and 58 DF, p-value: 6.733e-05
```

• Next, we store the residuals from this regression using the residuals() function in R. Again, the na.exclude option in the lm() call allows us to do this without errors.

```
## store the residuals
ajr$avexpr.res <- residuals(ajr.first)</pre>
```

Regression of log income on the residuals

• Now we compare the estimated slope for property rights from the regression on the residuals to the regression on the original variables:

coef(lm(logpgp95 ~ avexpr.res, data = ajr))

```
## (Intercept) avexpr.res
## 8.0542783 0.4056757
coef(lm(logpgp95 ~ avexpr + meantemp, data = ajr))
## (Intercept) avexpr meantemp
## 6.80627375 0.40567575 -0.06024937
```

- Notice how the estimated coefficient for property rights is the same in both.
- But also notice how the intercept is off. This won't be the main way we calculate OLS coefficients, but it's sometimes useful for intuition.
- It's especially useful for producing scatterplots, since this is more difficult when you have more than one explanatory variable.

Residual/partial regression plot

• We can plot the relationship between property rights and income conditional on temperature by plotting income against the same residuals.

plot(x = ajr\$avexpr.res, y = ajr\$logpgp95, pch = 19, col = "grey60", bty = "n", xlab = "Residuals(Property Right ~ Mean Temperature)", ylab = "Log GDP per capita", las = 1)

abline(lm(logpgp95 ~ avexpr.res, data = ajr), col = "indianred", lwd = 3)

Residuals(Property Right ~ Mean Temperature)

OLS ASSUMPTIONS & INFERENCE WITH 2 VARIABLES

OLS assumptions for unbiasedness

- When we have more than one independent variable, we need the following assumptions in order for OLS to be unbiased:
- 1. Linearity

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i$$

- 2. Random/iid sample
- 3. No perfect collinearity
- 4. Zero conditional mean error

$$\mathbb{E}[u_i|X_i, Z_i] = 0$$

No perfect collinearity

• The "no perfect collinearity" is only truly new-sounding assumption. Notice that it replaces "variation in *X_i*."

Assumption 3 - (a) No independent variable is constant in the sample and (b) there are no exactly linear relationships among the independent variables.

- The first part here, (a), is just the same as in the bivariate regression. Both X_i and Z_i have to vary.
- The second part is new. It says that Z_i cannot be a deterministic, linear function of X_i . This rules out any function like this:

$$Z_i = a + bX_i$$

• Notice how this is linear (equation of a line) and there is no error, so it is deterministic. What's the correlation between Z_i and X_i ? 1!

Perfect collinearity example (I)

- Simple example:
 - $X_i = 1$ if a country is **not** in Africa and o otherwise.
 - $Z_i = 1$ if a country is in Africa and o otherwise.
- But, clearly we have the following:

$$Z_i = 1 - X_i$$

- These two variables are perfectly collinear.
- What about the following:

-
$$X_i$$
 = property rights
- $Z_i = X_i^2$

- Do we have to worry about collinearity here?
- No! Because while Z_i is a deterministic function of X_i , it is not a linear function of X_i .

R and perfect collinearity

• R, Stata, et al will drop one of the variables if there is perfect collinearity:

```
ajr$nonafrica <- 1 - ajr$africa
summary(lm(logpgp95 ~ africa + nonafrica, data = ajr))
##
## Call:
## lm(formula = logpgp95 ~ africa + nonafrica, data = ajr)
##
## Residuals:
##
       Min
                  1Q Median
                                    3Q
                                            Max
## -2.06999 -0.64783 -0.04867 0.72114 1.69849
##
## Coefficients: (1 not defined because of singularities)
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 8.71638
                          0.08991 96.941 < 2e-16 ***
             -1.36119
                          0.16306 -8.348 4.87e-14 ***
## africa
## nonafrica
                    NA
                               NA
                                       NA
                                                NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9125 on 146 degrees of freedom
##
    (15 observations deleted due to missingness)
## Multiple R-squared: 0.3231, Adjusted R-squared: 0.3184
## F-statistic: 69.68 on 1 and 146 DF, p-value: 4.87e-14
```

Perfect collinearity example (II)

• Simple example:

```
- X_i = mean temperature in Celsius
- Z_i = 1.8X_i + 32 (mean temperature in Fahrenheit)
```

```
ajr$meantemp.f <- 1.8 * ajr$meantemp + 32
coef(lm(logpgp95 ~ meantemp + meantemp.f, data = ajr))
## (Intercept) meantemp meantemp.f</pre>
```

10.8454999 -0.1206948 NA

OLS assumptions for large-sample inference

- For large-sample inference and calculating SEs with more than one independent variable, we just need the two-variable version of the Gauss-Markov assumptions:
- 1. Linearity

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i$$

- 2. Random/iid sample
- 3. No perfect collinearity
- 4. Zero conditional mean error

$$\mathbb{E}[u_i|X_i, Z_i] = 0$$

5. Homoskedasticity

$$\operatorname{var}[u_i|X_i, Z_i] = \sigma_u^2$$

Inference with two independent variables in large samples

- Let's say that you have your OLS estimate $\widehat{\beta}_1$
- Furthermore, you have an estimate of the standard error for that coefficient, $\widehat{SE}[\widehat{\beta}_1]$. We haven't said how we're going to calculate those yet, but R gives them to you and we'll get to that shortly.
- Under assumption 1-5, in large samples, we'll have the following:

$$\frac{\widehat{\beta}_1 - \beta_1}{\widehat{SE}[\widehat{\beta}_1]} \sim N(0, 1)$$

• The same holds for the other coefficient:

$$\frac{\widehat{\beta}_2 - \beta_2}{\widehat{SE}[\widehat{\beta}_2]} \sim N(0, 1)$$

- In large samples, nothing changes about inference! Hypothesis test and confidence intervals are exactly the same as in the bivariate case.
- Note that this assumes that the number of independent variables stays fixed and *n* grows.

OLS assumptions for small-sample inference

- For small-sample inference, we need the Gauss-Markov plus Normal errors:
- 1. Linearity

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i$$

- 2. Random/iid sample
- 3. No perfect collinearity
- 4. Zero conditional mean error

$$\mathbb{E}[u_i|X_i, Z_i] = 0$$

5. Homoskedasticity

$$\operatorname{var}[u_i|X_i, Z_i] = \sigma_u^2$$

6. Normal conditional errors

$$u_i \sim N(0, \sigma_u^2)$$

Inference with two independent variables in small samples

• Under assumptions 1-6, we have the following small change to our small-*n* sampling distribution:

$$\frac{\overline{\beta_1 - \beta_1}}{\overline{SE}[\widehat{\beta}_1]} \sim t_{n-3}$$

• The same is true for the other coefficient:

$$\frac{\widehat{\beta}_2 - \beta_2}{\widehat{SE}[\widehat{\beta}_2]} \sim t_{n-3}$$

- Why n-3 degrees of freedom now instead of the n-2 in the simple linear regression case? Well, we've estimated another parameter, so we need to take off another degree of freedom.
- Thus, we need to make small adjustments to the critical values and the t-values for our hypothesis tests and confidence intervals.
- Question What happens to the size of the rejection region for an α -level test of $H_0: \beta_1 = 0$ when we add another independent variable to the model? Does is get larger, smaller, or stay the same?

OMITTED VARIABLE BIAS

Unbiasedness revisited

- Remember that under assumptions 1-4, we get unbiased estimates of the coefficients.
- One question you might ask yourself is the following: what happens if we ignore the second independent variable and just run the simple linear regression with just X_i ?
- Which of the four assumptions might we violate? Zero conditional mean error! Last week we said that for the simple linear regression we assume that:

$$\mathbb{E}[u_i|X_i] = 0$$

Omitted variable bias

• True model:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i$$

- Let's make Assumptions 1-4 about this model. Specifically, we'll say that $\mathbb{E}[u_i|X_i, Z_i] = 0$. Note that this implies that $E[u_i|X_i] = 0$ (the reverse is not true).
- Misspecified model:

$$Y_i = \beta_0 + \beta_1 X_i + u_i^*$$

- Notice here that $u_i^* = \beta_2 Z_i + u_i$, and while we know that $E[u_i|X_i] = 0$, we have made no assumptions about $E[Z_i|X_i]$, so $E[u_i^*|X_i] \neq 0$.
- Intuitively, this is saying that there is correlation between X_i and the misspecified error u_i^* due to the correlation between X_i and Z_i .
- OLS estimates from the misspecified model:

$$\widehat{Y}_i = \widetilde{\beta}_0 + \widetilde{\beta}_1 X_i$$

• Question: will $\mathbb{E}[\tilde{\beta}_1] = \beta_1$? If not, what will be the bias?

Omitted variable bias, derivation

• Simple linear regression parameter:

$$\tilde{\beta}_1 = \beta_1 + \beta_2 \tilde{\delta}_1$$

• Where the $\hat{\delta}_1$ is the coefficient on X_i from a regression of Z_i on X_i :

$$Z_i = \delta_0 + \delta_1 X_i + v_i$$

• Remember that by OLS, this is just:

$$\widehat{\delta}_1 = \frac{\widehat{\operatorname{cov}}(Z_i, X_i)}{\widehat{\operatorname{var}}(X_i)}$$

- Will be positive when $cov(X_i, Z_i) > 0$ and negative when $cov(X_i, Z_i) < 0$. Will be 0 when X_i and Z_i are independent.
- Let's take expectations:

$$\mathbb{E}[\tilde{\beta}_1] = \mathbb{E}[\beta_1 + \beta_2 \hat{\delta}_1]$$
$$= \beta_1 + \beta_2 \mathbb{E}[\hat{\delta}_1]$$
$$= \beta_1 + \beta_2 \delta_1$$

• Thus, we can calculate the bias here:

$$\operatorname{Bias}(\tilde{\beta}_1) = \mathbb{E}[\tilde{\beta}_1] - \beta_1 = \beta_2 \delta_1$$

• In other words:

omitted variable bias = (effect of
$$Z_i$$
 on Y_i) × (effect of X_i on Z_i)

Omitted variable bias, summary

	$\operatorname{cov}(X_i, Z_i) > 0$	$\operatorname{cov}(X_i, Z_i) < 0$	$\operatorname{cov}(X_i, Z_i) = 0$
$\beta_2 > 0$	Positive bias	Negative Bias	No bias
$\beta_2 < 0$	Negative bias	Positive Bias	No bias
$\beta_2 = 0$	No bias	No bias	No bias

Including irrelevant variables

- What if we do the opposite? Include an irrelevant variable? Do we have bias in this case?
- What would it mean for Z_i to be an irrelevant variable? Basically, that we have

$$Y_i = \beta_0 + \beta_1 X_i + 0 \times Z_i + u_i$$

• So in this case, the true value of $\beta_2 = 0$. But under Assumptions 1-4, OLS is unbiased for all the parameters:

$$\mathbb{E}[\hat{\beta}_0] = \beta_0$$
$$\mathbb{E}[\hat{\beta}_1] = \beta_1$$
$$\mathbb{E}[\hat{\beta}_2] = 0$$

• Including an irrelevant variable will increase the standard errors for $\hat{\beta}_1$.

MULTICOLLINEARITY

Sampling variance for simple linear regression

• Under simple linear regression, we found that the distribution of the slope was the following:

$$\operatorname{var}(\widehat{eta}_1) = rac{\sigma_u^2}{\sum_{i=1}^n (X_i - \overline{X})^2}$$

- Factors affecting the standard errors (the square root of these sampling variances):
 - The error variance (higher conditional variance of Y_i leads to bigger SEs)
 - The variance of X_i (lower variation in X_i leads to bigger SEs)

Sampling variation for linear regression with two covariates

• Regression with an additional independent variable:

$$\operatorname{var}(\widehat{\beta}_1) = \frac{\sigma_u^2}{(1 - R_1^2) \sum_{i=1}^n (X_i - \overline{X})^2}$$

• Here, R_1^2 is the R^2 from the regression of X_i on Z_i :

$$\widehat{X}_i = \widehat{\delta}_0 + \widehat{\delta}_1 Z_i$$

- Factors now affecting the standard errors:
 - The error variance (higher conditional variance of Y_i leads to bigger SEs)
 - The variance of X_i (lower variation in X_i leads to bigger SEs)
 - The strength of the relationship betwee X_i and Z_i (stronger relationships mean higher R_1^2 and thus bigger SEs)
- What happens with perfect collinearity? $R_1^2 = 1$ and the variances are infinite.

Multicollinearity

- **Definition** Multicollinearity is defined to be high, but not perfect, correlation between two independent variables in a regression.
- With multicollinearity, we'll have $R_1^2 \approx 1$, but not exactly.
- The stronger the relationship between X_i and Z_i , the closer the R_1^2 will be to 1, and the higher the SEs will be:

$$\operatorname{var}(\widehat{\beta}_1) = \frac{\sigma_u^2}{(1 - R_1^2) \sum_{i=1}^n (X_i - \overline{X})^2}$$

• Given the symmetry, it will also increase $var(\hat{\beta}_2)$ as well.

Intuition for multicollinearity

• Remember that we can calculate the regression coefficient for X_i by first running a regression of X_i on Z_i and using the residuals from that regression as the independent variable:

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 \widehat{r}_{xz,i}$$

- But when Z_i and X_i have a strong relationship, then the residuals will be very small—we explain away a lot of the variation in X_i through Z_i .
- And we know that when the independent variable (here the residuals, $\hat{r}_{xz,i}$) has low variance, then the standard errors of the estimator will increase.
- Basically, there is less residual variation left in X_i after "partialling out" the effect of \mathbb{Z}_i

Effects of multicollinearity

- No effect on the bias of OLS.
- Only increases the standard errors.
- Really just a sample size problem:
 - If X_i and Z_i are extremely highly correlated, you're going to need a much bigger sample to accurately differentiate between their effects.

APPENDIX

Deriving the formula for the misspecified coefficient

- Here we'll use $\widehat{\text{cov}}$ to mean the sample covariance, and $\widehat{\text{var}}$ to be the sample variance.

$$\begin{split} \tilde{\beta}_{1} &= \frac{\widehat{\operatorname{cov}}(Y_{i}, X_{i})}{\widehat{\operatorname{var}}(X_{i})} & (\text{OLS formulas}) \\ &= \frac{\widehat{\operatorname{cov}}(\beta_{0} + \beta_{1}X_{i} + \beta_{2}Z_{i} + u_{i}, X_{i})}{\widehat{\operatorname{var}}(X_{i})} & (\text{Linearity in correct model}) \\ &= \frac{\widehat{\operatorname{cov}}(\beta_{0}, X_{i})}{\widehat{\operatorname{var}}(X_{i})} + \frac{\widehat{\operatorname{cov}}(\beta_{1}X_{i}, X_{i})}{\widehat{\operatorname{var}}(X_{i})} + \frac{\widehat{\operatorname{cov}}(\beta_{2}Z_{i}, X_{i})}{\widehat{\operatorname{var}}(X_{i})} + \frac{\widehat{\operatorname{cov}}(\beta_{1}X_{i}, X_{i})}{\widehat{\operatorname{var}}(X_{i})} & (\text{covariance properties}) \\ &= 0 + \frac{\widehat{\operatorname{cov}}(\beta_{1}X_{i}, X_{i})}{\widehat{\operatorname{var}}(X_{i})} + \frac{\widehat{\operatorname{cov}}(\beta_{2}Z_{i}, X_{i})}{\widehat{\operatorname{var}}(X_{i})} + 0 & (\text{zero mean error}) \\ &= \beta_{1} + \frac{\widehat{\operatorname{var}}(X_{i})}{\widehat{\operatorname{var}}(X_{i})} + \beta_{2} \frac{\widehat{\operatorname{cov}}(Z_{i}, X_{i})}{\widehat{\operatorname{var}}(X_{i})} & (\text{properties of covariance}) \\ &= \beta_{1} + \beta_{2} \frac{\widehat{\operatorname{cov}}(Z_{i}, X_{i})}{\widehat{\operatorname{var}}(X_{i})} & (\text{OLS formulas}) \end{split}$$