Gov 2000 - 8. Regression with Two Independent Variables

Matthew Blackwell

November 3, 2015

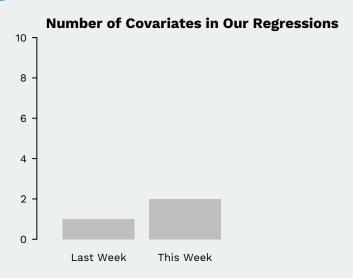
- 1. Why add variables to the regression?
- 2. Adding a binary variable
- 3. Adding a continuous variable
- 4. OLS mechanics with 2 variables
- 5. OLS assumptions & inference with 2 variables
- 6. Omitted Variable Bias
- 7. Multicollinearity

Announcements

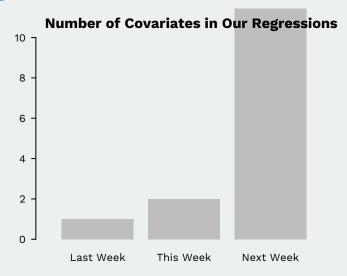
- Midterm:
 - Mean: 23 out of 30 (rescaled for 1000/2000)
 - ▶ SD: 5.84
 - Excellent job! We're really happy with scores!
 - Grades coming this week
- Matrix algebra (Wooldridge, Appendix D)

Where are we? Where are we going?

Where are we? Where are we going?



Where are we? Where are we going?



1/ Why add variables to the regression?

Berkeley gender bias

- Graduate admissions data from Berkeley, 1973
- Acceptance rates:
 - ▶ Men: 8442 applicants, 44% admission rate
 - ▶ Women: 4321 applicants, 35% admission rate
- Evidence of discrimination toward women in admissions?
- This is a marginal relationship
- What about the conditional relationship within departments?

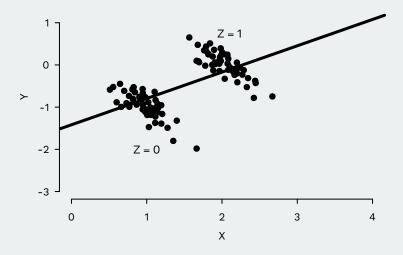
Berkeley gender bias, II

Within departments:

	Men		Women	
Dept	Applied	Admitted	Applied	Admitted
A	825	62%	108	82%
В	560	63%	25	68%
C	325	37%	593	34%
D	417	33%	375	35%
Е	191	28%	393	24%
F	373	6%	341	7%

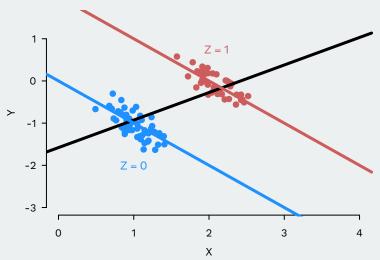
- Within departments, women do somewhat better than men!
- Women apply to more challenging departments.
- Marginal relationships (admissions and gender) ≠ conditional relationship given third variable (department)

Simpson's paradox



• Overall a positive relationship between Y_i and X_i here

Simpson's paradox



- Overall a positive relationship between Y_i and X_i here
- But within levels of Z_i , the opposite

Basic idea

 Old goal: estimate the mean of Y as a function of some independent variable, X:

$$\mathbb{E}[Y_i|X_i]$$

 For continuous X's, we modeled the CEF/regression function with a line:

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

 New goal: estimate the relationship of two variables, Y_i and X_i, conditional on a third variable, Z_i:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i$$

• β 's are the population parameters we want to estimate

Why control for another variable

Descriptive

- Get a sense for the relationships in the data.
- ► Conditional on the number of steps I've taken, does higher activity levels correlate with less weight?

Predictive

▶ We can usually make better predictions about the dependent variable with more information on independent variables.

Causal

- ▶ Block potential confounding, which is when *X* doesn't cause *Y*, but only appears to because a third variable *Z* causally affects both of them.
- $\triangleright X_i$: ice cream sales on day i
- \triangleright Y_i : drowning deaths on day i
- \triangleright Z_i : ??

Plan of attack

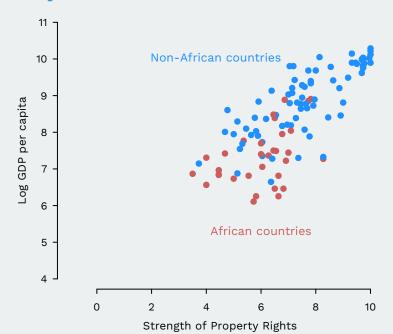
- 1. Adding a binary Z_i
- 2. Adding a continuous Z_i
- 3. Mechanics of OLS with 2 covariates
- 4. OLS assumptions with 2 covariates:
 - Omitted variable bias
 - Multicollinearity

What we won't cover in lecture

- 1. The OLS formulas for 2 covariates
- 2. Proofs
- 3. The second covariate being a function of the first: $Z_i = X_i^2$
- 4. Goodness of fit

2/ Adding a binary variable

Example



Basics

Ye olde model:

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i$$

- $Z_i = 1$ to indicate that i is an African country
- $Z_i = 0$ to indicate that i is an non-African country
- Concern: AJR might be picking up an "African effect":
 - African countries might have low incomes and weak property rights
 - ▶ "Control for" country being in Africa or not to remove this
 - ▶ Effects are now within Africa or within non-Africa, not betwen
- New model:

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i$$

AJR model

Let's see an example with the AJR data:

```
ajr.mod <- lm(logpgp95 ~ avexpr + africa, data = ajr) summary(ajr.mod)
```

```
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 5.6556 0.3134 18.04 <2e-16 ***
## avexpr 0.4242 0.0397 10.68 <2e-16 ***
## africa -0.8784 0.1471 -5.97 3e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.625 on 108 degrees of freedom
##
    (52 observations deleted due to missingness)
## Multiple R-squared: 0.708, Adjusted R-squared: 0.702
## F-statistic: 131 on 2 and 108 DF, p-value: <2e-16
```

Two lines, one regression

- How can we interpret this model?
- Plug in two possible values for Z_i and rearrange
- When $Z_i = 0$:

$$\begin{split} \widehat{Y}_i &= \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i \\ &= \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 \times 0 \\ &= \widehat{\beta}_0 + \widehat{\beta}_1 X_i \end{split}$$

• When $Z_i = 1$:

$$\begin{split} \widehat{Y}_i &= \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i \\ &= \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 \times 1 \\ &= (\widehat{\beta}_0 + \widehat{\beta}_2) + \widehat{\beta}_1 X_i \end{split}$$

Two different intercepts, same slope

Interpretation of the coefficients

Let's review what we've seen so far:

$$\begin{array}{c|cccc} & \operatorname{Intercept\ for}\ X_i & \operatorname{Slope\ for}\ X_i \\ \operatorname{Non-African\ country\ } (Z_i = 0) & \widehat{\beta}_0 & \widehat{\beta}_1 \\ \operatorname{African\ country\ } (Z_i = 1) & \widehat{\beta}_0 + \widehat{\beta}_2 & \widehat{\beta}_1 \end{array}$$

In this example, we have:

$$\widehat{Y}_i = 5.656 + 0.424 \times X_i - 0.878 \times Z_i$$

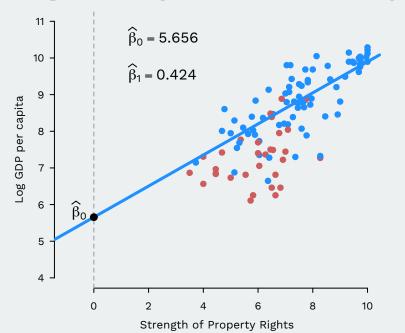
- We can read these as:
 - $\widehat{\beta}_0$: average log income for non-African country $(Z_i = 0)$ with property rights measured at 0 is 5.656
 - $\widehat{\beta}_1$: A one-unit increase in property rights is associated with a 0.424 increase in average log incomes for two African countries (or for two non-African countries)
 - ▶ $\widehat{\beta}_2$: there is a -0.878 average difference in log income per capita between African and non-African counties conditional on property rights

General interpretation of the coefficients

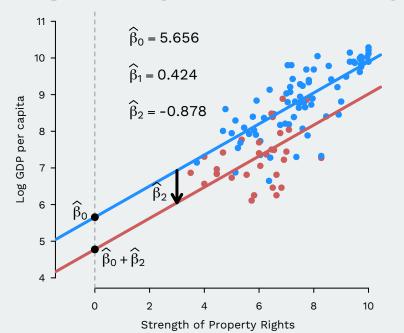
$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i$$

- $\widehat{\beta}_0$: average value of Y_i when both X_i and Z_i are equal to 0
- $\widehat{\beta}_1$: A one-unit increase in X_i is associated with a $\widehat{\beta}_1$ -unit change in Y_i conditional on Z_i
- $\widehat{\beta}_2$: average difference in Y_i between $Z_i=1$ group and $Z_i=0$ group conditional on X_i

Adding a binary variable, visually



Adding a binary variable, visually



3/ Adding a continuous variable

Adding a continuous variable

Ye olde model:

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i$$

- Z_i : mean temperature in country i (continuous)
- Concern: geography is confounding the effect
 - geography might affect political institutions
 - geography might affect average incomes (through diseases like malaria)
- New model:

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i$$

AJR model, revisited

```
ajr.mod2 <- lm(logpgp95 ~ avexpr + meantemp, data = ajr)
summary(ajr.mod2)</pre>
```

```
##
## Coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.8063 0.7518 9.05 1.3e-12 ***
## avexpr 0.4057 0.0640 6.34 3.9e-08 ***
## meantemp -0.0602 0.0194 -3.11 0.003 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.643 on 57 degrees of freedom
##
    (103 observations deleted due to missingness)
## Multiple R-squared: 0.615, Adjusted R-squared: 0.602
## F-statistic: 45.6 on 2 and 57 DF, p-value: 1.48e-12
```

Interpretation with a continuous Z

	Intercept for X_i	Slope for X_i
$Z_i = 0$ °C	$\widehat{\beta}_0$	$\widehat{\beta}_1$
$Z_i = 21 ^{\circ}\text{C}$	$\widehat{\beta}_0 + \widehat{\beta}_2 \times 21$	$\widehat{m{eta}}_1$
$Z_i = 24 ^{\circ}\text{C}$	$\widehat{\beta}_0 + \widehat{\beta}_2 \times 24$	$\widehat{m{eta}}_1$
$Z_i = 26^{\circ}\text{C}$	$\widehat{\beta}_0 + \widehat{\beta}_2 \times 26$	$\widehat{m{eta}}_1$

In this example we have:

$$\widehat{Y}_i = 6.806 + 0.406 \times X_i - 0.06 \times Z_i$$

- $\widehat{\beta}_0$: average log income for a country with property rights measured at 0 and a mean temperature of 0 is 6.806
- $\widehat{\beta}_1$: A one-unit increase in property rights is associated with a 0.406 change in average log incomes conditional on a country's mean temperature
- $\widehat{\beta}_2$: A one-degree increase in mean temperature is associated with a -0.06 change in average log incomes conditional on strength of property rights

General interpretation

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i$$

- The coefficient $\widehat{\beta}_1$ measures how the predicted outcome varies in X_i for a fixed value of Z_i .
- The coefficient $\widehat{\beta}_2$ measures how the predicted outcome varies in Z_i for a fixed value of X_i .

4/ OLS mechanics with 2 variables

Fitted values and residuals

- Where do we get our hats? $\widehat{\beta}_0, \widehat{\beta}_1, \widehat{\beta}_2$
- To answer this, we first need to redefine some terms from simple linear regression.
- Fitted values for i = 1, ..., n:

$$\widehat{Y}_i = \widehat{\mathbb{E}}[Y_i|X_i,Z_i] = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i$$

• Residuals for i = 1, ..., n:

$$\widehat{u}_i = Y_i - \widehat{Y}_i$$

Least squares is still least squares

- How do we estimate $\widehat{\beta}_0$, $\widehat{\beta}_1$, and $\widehat{\beta}_2$?
- Minimize the sum of the squared residuals, just like before:

$$(\widehat{\beta}_0, \widehat{\beta}_1, \widehat{\beta}_2) = \underset{b_0, b_1, b_2}{\arg\min} \sum_{i=1}^n (Y_i - b_0 - b_1 X_i - b_2 Z_i)^2$$

 The calculus is the same as last week, with 3 partial derivatives instead of 2

OLS estimator recipe using two steps

- No explicit OLS formulas this week, but a recipe instead
- "Partialling out" OLS recipe:
 - 1. Run regression of X_i on Z_i :

$$\widehat{X}_i = \widehat{\mathbb{E}}[X_i|Z_i] = \widehat{\delta}_0 + \widehat{\delta}_1 Z_i$$

2. Calculate residuals from this regression:

$$\widehat{r}_{xz,i} = X_i - \widehat{X}_i$$

3. Run a simple regression of Y_i on residuals, $\hat{r}_{xz,i}$:

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 \widehat{r}_{xz,i}$$

• Estimate of $\widehat{\beta}_1$ will be the same as running:

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i$$

First regression

• Regress X_i on Z_i :

```
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.9568 0.8202 12.1 < 2e-16 ***
## meantemp -0.1490 0.0347 -4.3 0.000067 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.32 on 58 degrees of freedom
## (103 observations deleted due to missingness)
## Multiple R-squared: 0.241, Adjusted R-squared: 0.228
## F-statistic: 18.4 on 1 and 58 DF, p-value: 0.0000673
```

Regression of log income on the residuals

Save residuals:

6.80627

##

```
## store the residuals
ajr$avexpr.res <- residuals(ajr.first)</pre>
```

Now we compare the estimated slopes:

(Intercept) avexpr meantemp

0.40568 -0.06025

```
coef(lm(logpgp95 ~ avexpr.res, data = ajr))

## (Intercept) avexpr.res
## 8.0543 0.4057

coef(lm(logpgp95 ~ avexpr + meantemp, data = ajr))
```

Residual/partial regression plot

 Can plot the conditional relationship between property rights and income given temperature:

5/ OLS assumptions & inference with 2 variables

OLS assumptions for unbiasedness

- Last week we made Assumptions 1-4 for unbiasedness of OLS:
 - 1. Linearity
 - 2. Random/iid sample
 - 3. Variation in X_i
 - 4. Zero conditional mean error: $\mathbb{E}[u_i|X_i]=0$
- Small modification to these with 2 covariates:
 - 1. Linearity

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i$$

- 2. Random/iid sample
- 3. No perfect collinearity
- 4. Zero conditional mean error

$$\mathbb{E}[u_i|X_i,Z_i]=0$$

New assumption

Assumption 3: No perfect collinearity

- (1) No independent variable is constant in the sample and (2) there are no exactly linear relationships among the independent variables.
 - Two components
 - 1. Both X_i and Z_i have to vary.
 - 2. Z_i cannot be a deterministic, linear function of X_i .
 - Part 2 rules out anything of the form:

$$Z_i = a + bX_i$$

- Notice how this is linear (equation of a line) and there is no error, so it is deterministic.
- What's the correlation between Z_i and X_i? 1!

Perfect collinearity example (I)

- Simple example:
 - $ightharpoonup X_i = 1$ if a country is **not** in Africa and 0 otherwise.
 - $ightharpoonup Z_i = 1$ if a country **is** in Africa and 0 otherwise.
- But, clearly we have the following:

$$Z_i = 1 - X_i$$

- These two variables are perfectly collinear.
- What about the following:
 - $ightharpoonup X_i = \text{property rights}$
 - $ightharpoonup Z_i = X_i^2$
- Do we have to worry about collinearity here?
- No! Because while Z_i is a deterministic function of X_i, it is a nonlinear function of X_i.

R and perfect collinearity

 R, Stata, et al will drop one of the variables if there is perfect collinearity:

```
ajr$nonafrica <- 1 - ajr$africa
summary(lm(logpgp95 ~ africa + nonafrica, data = ajr))
```

```
##
## Coefficients: (1 not defined because of singularities)
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.7164 0.0899 96.94 < 2e-16 ***
## africa -1.3612 0.1631 -8.35 4.9e-14 ***
## nonafrica
                   NA
                             NA
                                     NA
                                             NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.913 on 146 degrees of freedom
##
    (15 observations deleted due to missingness)
## Multiple R-squared: 0.323, Adjusted R-squared: 0.318
## F-statistic: 69.7 on 1 and 146 DF, p-value: 4.87e-14
```

Perfect collinearity example (II)

- Another example:
 - X_i = mean temperature in Celsius
 - $ightharpoonup Z_i = 1.8X_i + 32$ (mean temperature in Fahrenheit)

```
ajr$meantemp.f <- 1.8 * ajr$meantemp + 32
coef(lm(logpgp95 ~ meantemp + meantemp.f, data = ajr))</pre>
```

```
## (Intercept) meantemp meantemp.f
## 10.8455 -0.1207 NA
```

OLS assumptions for large-sample inference

- For large-sample inference and calculating SEs, we need the two-variable version of the Gauss-Markov assumptions:
- 1. Linearity

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i$$

- 2. Random/iid sample
- 3. No perfect collinearity
- 4. Zero conditional mean error

$$\mathbb{E}[u_i|X_i,Z_i]=0$$

5. Homoskedasticity

$$var[u_i|X_i,Z_i] = \sigma_u^2$$

Large-sample inference with 2 covariates

- We have our OLS estimate $\widehat{\beta}_1$ and an estimated SE: $\widehat{SE}[\widehat{\beta}_1]$.
- Under assumption 1-5, in large samples, we'll have the following:

$$\frac{\widehat{\beta}_1 - \beta_1}{\widehat{SE}[\widehat{\beta}_1]} \sim N(0, 1)$$

• The same holds for the other coefficient:

$$\frac{\widehat{\beta}_2 - \beta_2}{\widehat{SE}[\widehat{\beta}_2]} \sim N(0, 1)$$

- Inference is exactly the same in large samples!
- Hypothesis tests and CIs are good to go
- The SE's will change, though

OLS assumptions for small-sample inference

- For small-sample inference, we need the Gauss-Markov plus Normal errors:
- 1. Linearity

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i$$

- 2. Random/iid sample
- 3. No perfect collinearity
- 4. Zero conditional mean error

$$\mathbb{E}[u_i|X_i,Z_i]=0$$

Homoskedasticity

$$var[u_i|X_i,Z_i] = \sigma_u^2$$

6. Normal conditional errors

$$u_i \sim N(0, \sigma_u^2)$$

Small-sample inference with 2 covariates

 Under assumptions 1-6, we have the following small change to our small-n sampling distribution:

$$\frac{\widehat{\beta}_1 - \beta_1}{\widehat{SE}[\widehat{\beta}_1]} \sim t_{n-3}$$

• The same is true for the other coefficient:

$$\frac{\widehat{\beta}_2 - \beta_2}{\widehat{SE}[\widehat{\beta}_2]} \sim t_{n-3}$$

- Why n 3?
 - We've estimated another parameter, so we need to take off another degree of freedom.
- small adjustments to the critical values and the t-values for our hypothesis tests and confidence intervals.

6/ Omitted Variable Bias

Unbiasedness revisited

True model:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i$$

- Assumptions 1-4 ⇒ we get unbiased estimates of the coefficients
- What happens if we ignore the Z_i and just run the simple linear regression with just X_i?
- Misspecified model:

$$Y_i = \beta_0 + \beta_1 X_i + u_i^*$$
 $u_i^* = \beta_2 Z_i + u_i$

OLS estimates from the misspecified model:

$$\widehat{Y}_i = \widetilde{\beta}_0 + \widetilde{\beta}_1 X_i$$

Omitted variable bias

$$Y_i = \beta_0 + \beta_1 X_i + u_i^*$$
 $u_i^* = \beta_2 Z_i + u_i$

- Which of the four assumptions might we violate?
 - Zero conditional mean error!
 - ▶ $E[u_i^*|X_i] \neq 0$ because $E[Z_i|X_i]$ might not be zero (show on the board, Blackwell)
- Intuition Correlation between X_i and Z_i → correlation between X_i and the misspecified error u^{*}_i
- Question: will $\mathbb{E}[\tilde{\beta}_1] = \beta_1$? If not, what will be the bias?

Omitted variable bias, derivation

Bias for the misspecified estimator (derived in notes):

$$\mathsf{Bias}(\tilde{\beta}_1) = \mathbb{E}[\tilde{\beta}_1] - \beta_1 = \beta_2 \delta_1$$

• Where the δ_1 is the coefficient on Z_i from a regression of Z_i on X_i :

$$Z_i = \delta_0 + \delta_1 X_i + e_i$$

In other words:

omitted variable bias = (effect of Z_i on Y_i)×(effect of X_i on Z_i)

Omitted variable bias, summary

Remember that by OLS, the effect of X_i on Z_i is:

$$\delta_1 = \frac{\mathsf{cov}(Z_i, X_i)}{\mathsf{var}(X_i)}$$

• We can summarize the direction of bias like so:

	$cov(X_i, Z_i) > 0$	$cov(X_i, Z_i) < 0$	$cov(X_i, Z_i) = 0$
$\beta_2 > 0$	Positive bias	Negative Bias	No bias
$\beta_2 < 0$	Negative bias	Positive Bias	No bias
$\beta_2 = 0$	No bias	No bias	No bias

Very relevant if Z_i is unobserved for some reason!

Including irrelevant variables

- What if we do the opposite and include an irrelevant variable?
- What would it mean for Z_i to be an irrelevant variable? Basically, that we have

$$Y_i = \beta_0 + \beta_1 X_i + 0 \times Z_i + u_i$$

• So in this case, the true value of $\beta_2 = 0$. But under Assumptions 1-4, OLS is unbiased for all the parameters:

$$\mathbb{E}[\widehat{\beta}_0] = \beta_0$$

$$\mathbb{E}[\widehat{\beta}_1] = \beta_1$$

$$\mathbb{E}[\widehat{\beta}_2] = 0$$

• Including an irrelevant variable will increase the standard errors for $\widehat{\beta}_1$.

7/ Multicollinearity

Sampling variance for bivariate regression

 Under simple linear regression, we found that the sampling variance of the slope was the following:

$$\operatorname{var}(\widehat{\beta}_1) = \frac{\sigma_u^2}{\sum_{i=1}^n (X_i - \overline{X})^2}$$

- Question What do we call the square root of the sampling variance? Standard error!
- Factors affecting the standard errors:
 - The error variance σ_u^2 (higher conditional variance of Y_i leads to bigger SEs)
 - ▶ The total variation in X_i : $\sum_{i=1}^n (X_i \overline{X})^2$ (lower variation in X_i leads to bigger SEs)

Sampling variation with 2 covariates

Regression with an additional independent variable:

$$var(\widehat{\beta}_{1}) = \frac{\sigma_{u}^{2}}{(1 - R_{1}^{2}) \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}$$

• Here, R_1^2 is the R^2 from the regression of X_i on Z_i :

$$\widehat{X}_i = \widehat{\delta}_0 + \widehat{\delta}_1 Z_i$$

- Factors now affecting the standard errors:
 - ► The error variance (higher conditional variance of *Y*_i leads to bigger SEs)
 - ▶ The total variation of X_i (lower variation in X_i leads to bigger SEs)
 - ▶ The strength of the relationship betwee X_i and Z_i (stronger relationships mean higher R_1^2 and thus bigger SEs)
- What happens with perfect collinearity?

Multicollinearity

Definition

Multicollinearity is defined to be high, but not perfect, correlation between two independent variables in a regression.

- With multicollinearity, we'll have $R_1^2 \approx 1$, but not exactly.
- The stronger the relationship between X_i and Z_i, the closer the R₁² will be to 1, and the higher the SEs will be:

$$var(\widehat{\beta}_{1}) = \frac{\sigma_{u}^{2}}{(1 - R_{1}^{2}) \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}$$

• Given the symmetry, it will also increase $var(\widehat{\beta}_2)$ as well.

Intuition for multicollinearity

- Remember the OLS recipe:
 - $ightharpoonup \widehat{\beta}_1$ from regression of Y_i on $\widehat{r}_{xz,i}$
 - $ightharpoonup \hat{r}_{XZ,i}$ are the residuals from the regression of X_i on Z_i
- Estimated coefficient:

$$\widehat{\beta}_{1} = \frac{\sum_{i=1}^{n} \widehat{r}_{xz,i} Y_{i}}{\sum_{i=1}^{n} \widehat{r}_{xz,i}^{2}}$$

- When Z_i and X_i have a strong relationship, then the residuals will have low variation (draw this)
- We explain away a lot of the variation in X_i through Z_i .
- Low variation in an independent variable (here, $\hat{r}_{xz,i}$) \leadsto high SFs
- Basically, there is less residual variation left in X_i after "partialling out" the effect of Z_i

Effects of multicollinearity

- No effect on the bias of OLS.
- Only increases the standard errors.
- Really just a sample size problem:
 - ▶ If *X_i* and *Z_i* are extremely highly correlated, you're going to need a much bigger sample to accurately differentiate between their effects.

Conclusion

- In this brave new world with 2 independent variables:
 - 1. β 's have slightly different interpretations
 - 2. OLS still minimizing the sum of the squared residuals
 - 3. Small adjustments to OLS assumptions and inference
 - Adding or omitting variables in a regression can affect the bias and the variance of OLS
- Remainder of class:
 - 1. Regression in most general glory (matrices)
 - 2. How to diagnose and fix violations of the OLS assumptions

Deriving of the misspecified coefficient

 Here we'll use cov to mean the sample covariance, and var to be the sample variance.

$$\begin{split} \widetilde{\beta}_1 &= \frac{\widehat{\operatorname{cov}}(Y_i, X_i)}{\widehat{\operatorname{var}}(X_i)} \\ &= \frac{\widehat{\operatorname{cov}}(\beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i, X_i)}{\widehat{\operatorname{var}}(X_i)} \\ &= \frac{\widehat{\operatorname{cov}}(\beta_0, X_i)}{\widehat{\operatorname{var}}(X_i)} + \frac{\widehat{\operatorname{cov}}(\beta_1 X_i, X_i)}{\widehat{\operatorname{var}}(X_i)} + \frac{\widehat{\operatorname{cov}}(\beta_2 Z_i, X_i)}{\widehat{\operatorname{var}}(X_i)} + \frac{\widehat{\operatorname{cov}}(u_i, X_i)}{\widehat{\operatorname{var}}(X_i)} \\ &= 0 + \frac{\widehat{\operatorname{cov}}(\beta_1 X_i, X_i)}{\widehat{\operatorname{var}}(X_i)} + \frac{\widehat{\operatorname{cov}}(\beta_2 Z_i, X_i)}{\widehat{\operatorname{var}}(X_i)} + 0 \\ &= \beta_1 \frac{\widehat{\operatorname{var}}(X_i)}{\widehat{\operatorname{var}}(X_i)} + \beta_2 \frac{\widehat{\operatorname{cov}}(Z_i, X_i)}{\widehat{\operatorname{var}}(X_i)} \\ &= \beta_1 + \beta_2 \frac{\widehat{\operatorname{cov}}(Z_i, X_i)}{\widehat{\operatorname{var}}(X_i)} \\ &= \beta_1 + \beta_2 \widehat{\delta}_1 \end{split}$$

Next step

Let's take expectations:

$$\begin{split} \mathbb{E}[\tilde{\beta}_1] &= \mathbb{E}[\beta_1 + \beta_2 \widehat{\delta}_1] \\ &= \beta_1 + \beta_2 \mathbb{E}[\widehat{\delta}_1] \\ &= \beta_1 + \beta_2 \delta_1 \end{split}$$

• Thus, we can calculate the bias here:

$$\mathsf{Bias}(\tilde{\beta}_1) = \mathbb{E}[\tilde{\beta}_1] - \beta_1 = \beta_2 \delta_1$$