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Repeated measurements

• Up until now, we have assumed that there was either a
completely randomized experiment or a randomized
experiment within levels of 𝑋𝑖 that gave us exogeneous
variation in the treatment.

• Today we’re going to look to another possible source of
variation: repeated measurements on the same unit over time.

• What if selection on the observables doesn’t hold, but do have
repeated measurements. Can we use this to identify and
estimate effects?

• Message: simply having panel data does not identify an effect,
but it does allow us to rely on different identifying
assumptions.
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Basic Idea

• The basic idea is that ignorability doesn’t hold, conditional on
the observed covariates, 𝑌𝑖𝑡(𝑑)��ZZ⟂⟂𝐷𝑖𝑡 |𝑋𝑖𝑡, but ignorability might
hold conditional on some unobserved, time-constant, variable:

𝑌𝑖𝑡(𝑑) ⟂⟂ 𝐷𝑖𝑡 |𝑋𝑖𝑡 , 𝑈𝑖.

• Within units, effects are identified.
• This is because, even if 𝑈𝑖 is unobserved, it is held constant

within a unit.
• Thus, by performing analyses within the units, we can control

for this unobserved heterogeneity.
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Motivation

• Relationship between democracy and infant mortality?
• Compare levels of democracy with levels of infant mortality,

but…
• Democratic countries are different from non-democracies in

ways that we can’t measure?
▶ they are richer or developed earlier
▶ provide benefits more efficiently
▶ posses some cultural trait correlated with better health

outcomes
• If we have data on countries over time, can we make any

progress in spite of these problems?
5 / 48



Ross data

ross <- foreign::read.dta(”ross-democracy.dta”)

head(ross[, c(”cty_name”, ”year”, ”democracy”, ”infmort_unicef”)])

## cty_name year democracy infmort_unicef

## 1 Afghanistan 1965 0 230

## 2 Afghanistan 1966 0 NA

## 3 Afghanistan 1967 0 NA

## 4 Afghanistan 1968 0 NA

## 5 Afghanistan 1969 0 NA

## 6 Afghanistan 1970 0 215
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Pooled OLS with Ross data

pooled.mod <- lm(log(kidmort_unicef) ~ democracy + log(GDPcur),

data = ross)

summary(pooled.mod)

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 9.7640 0.3449 28.3 <2e-16 ***

## democracy -0.9552 0.0698 -13.7 <2e-16 ***

## log(GDPcur) -0.2283 0.0155 -14.8 <2e-16 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 0.8 on 646 degrees of freedom

## (5773 observations deleted due to missingness)

## Multiple R-squared: 0.504, Adjusted R-squared: 0.503

## F-statistic: 329 on 2 and 646 DF, p-value: <2e-16
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Note about terminology

• Generally, we talk about panel data and time-series
cross-sectional data in political science.

• Panel data: small 𝑇 , large 𝑁
▶ The NES panel is like this: 2000 respondent asked questions at

various points in time over the course of an election (or
multiple elections).

• TSCS data: high 𝑇 , low medium 𝑁 .
▶ U.S. states over time
▶ Western European countries over time.

• For the most part, the issues of causality are the same for
these two types of data, so I will refer to them both as panel
data.

• But estimation is a different issue. Different estimators work
differently under either data types.
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1/ Fixed effects
estimators
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Notation

• Units 𝑖 = 1, … , 𝑁
• Time periods 𝑡 = 1, … , 𝑇 with 𝑇 ≥ 2,
• 𝑌𝑖𝑡, 𝐷𝑖𝑡 are the outcome and treatment for unit 𝑖 in period 𝑡

We have a set of covariates in each period, as well,
• Covariates 𝑋𝑖𝑡, causally “prior” to 𝐷𝑖𝑡.

𝐷𝑡

𝑋𝑡

𝑌𝑡

• 𝑈𝑖 = unobserved, time-invariant unit effects (causally prior to
everything)

• History of some variable: 𝐷𝑖𝑡 = (𝐷1, … , 𝐷𝑡).
• Entire history: 𝐷𝑖 = 𝐷𝑖𝑇
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Assumptions

• Potential outcomes: 𝑌𝑖𝑡(1) = 𝑌𝑖𝑡(𝑑𝑡 = 1) is the potential
outcome for unit 𝑖 at time 𝑡 if they were treated at time 𝑡.

▶ Here we focus on contemporaneous effects,
𝑌𝑖𝑡(𝑑𝑡 = 1) − 𝑌𝑖𝑡(𝑑𝑡 = 0)

▶ Harder when including lags of treatment, 𝑌𝑖𝑡(𝑑𝑡 = 1, 𝑑𝑡−1 = 1)

• Consistency for each time period:

𝑌𝑖𝑡 = 𝑌𝑖𝑡(1)𝐷𝑖𝑡 + 𝑌𝑖𝑡(0)(1 − 𝐷𝑖𝑡)

• Strict ignorability: potential outcomes are independent of
the entire history of treatment conditional on the history of
covariates and the time-constant heterogeneity:

𝑌𝑖𝑡(𝑑) ⟂⟂ 𝐷𝑖|𝑋 𝑖, 𝑈𝑖
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Basic linear fixed-effects model

• Assume that the CEF for the mean potential outcome under
control is:

𝔼[𝑌𝑖𝑡(0)|𝑋 𝑖, 𝑈𝑖] = 𝑋′
𝑖𝑡𝛽 + 𝑈𝑖

• And then assume a constant treatment effects:

𝔼[𝑌𝑖𝑡(1)|𝑋 𝑖, 𝑈𝑖] = 𝔼[𝑌𝑖𝑡(0)|𝑋 𝑖, 𝑈𝑖] + 𝜏

• With consistency and strict ignorability, we can write this as a
CEF of the observed outcome:

𝔼[𝑌𝑖𝑡 |𝑋 𝑖, 𝐷𝑖, 𝑈𝑖] = 𝑋′
𝑖𝑡𝛽 + 𝜏𝐷𝑖𝑡 + 𝑈𝑖
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Relating to traditional models

• We can now write the observed outcomes in a traditional
regression format:

𝑌𝑖𝑡 = 𝑋′
𝑖𝑡𝛽 + 𝜏𝐷𝑖𝑡 + 𝑈𝑖 + 𝜀𝑖𝑡

• Here, the error is similar to what we had for regression:

𝜀𝑖𝑡 ≡ 𝑌𝑖𝑡(0) − 𝔼[𝑌𝑖𝑡(0)|𝑋 𝑖, 𝑈𝑖]

• In traditional FE models, we skip potential outcomes and rely
on a strict exogeneity assumption:

𝔼[𝜀𝑖𝑡 |𝑋 𝑖, 𝐷𝑖, 𝑈𝑖] = 0
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Strict ignorability vs strict exogeneity

𝑌𝑖𝑡(𝑑) ⟂⟂ 𝐷𝑖|𝑋 𝑖, 𝑈𝑖

• Easy to show to that strict ignorability implies strict
exogeneity:

𝔼[𝜀𝑖𝑡 |𝑋 𝑖, 𝐷𝑖, 𝑈𝑖] = 𝔼 [(𝑌𝑖𝑡(0) − 𝔼[𝑌𝑖𝑡(0)|𝑋 𝑖, 𝑈𝑖]) |𝑋 𝑖, 𝐷𝑖, 𝑈𝑖]
= 𝔼[𝑌𝑖𝑡(0)|𝑋𝑖, 𝐷𝑖, 𝑈𝑖] − 𝔼[𝑌𝑖𝑡(0)|𝑋𝑖, 𝑈𝑖]
= 𝔼[𝑌𝑖𝑡(0)|𝑋𝑖, 𝑈𝑖] − 𝔼[𝑌𝑖𝑡(0)|𝑋𝑖𝑇 , 𝑈𝑖]
= 0
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Fixed-effects within estimator

• Define the “within” model:

(𝑌𝑖𝑡 − 𝑌 𝑖) = (𝑋𝑖𝑡 − 𝑋 𝑖)′𝛽 + 𝜏(𝐷𝑖𝑡 − 𝐷𝑖) + (𝜀𝑖𝑡 − 𝜀𝑖)

• Here, let 𝑌 𝑖 be the unit averages. Note that:

𝑌 𝑖 = 𝑋′
𝑖𝛽 + 𝜏𝐷𝑖 + 𝑈𝑖 + 𝜀𝑖

• Logic: since the unobserved effect is constant over time,
subtracting off the mean also subtracts that unobserved effect:

𝑈𝑖 − 1
𝑇

𝑇
∑
𝑡=1

𝑈𝑖 = 𝑈𝑖 − 𝑈𝑖 = 0

• This also demonstrates why the assumption of the fixed
effects being time-constant is so important.

15 / 48



Within Estimator

• Let ̈𝑍𝑖𝑡 = 𝑍𝑖𝑡 − 𝑍 𝑖 be the time-demeaned version of 𝑍𝑖𝑡. Then
the FE model is:

̈𝑌𝑖𝑡 = ̈𝑋′
𝑖𝑡𝛽 + 𝜏�̈�𝑖𝑡 + ̈𝜀𝑖𝑡

• Within/FE estimator, �̂�𝐹𝐸:
pooled OLS estimator ̈𝑌𝑖𝑡 on ̈𝑋𝑖𝑡 and �̈�𝑖𝑡

• Only uses time variation within each cross section.
• Full rank: rank[∑𝑇

𝑡=1 𝔼[ ̈𝑋𝑖𝑡 ̈𝑋′
𝑖𝑡]] = 𝐾

▶ Basically: no variables that are constant over time. Why?
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Fixed effects with Ross data
library(plm)

fe.mod <- plm(log(kidmort_unicef) ~ democracy + log(GDPcur), data = ross,

index = c(”id”, ”year”), model = ”within”)

summary(fe.mod)

## Oneway (individual) effect Within Model

##

## Call:

## plm(formula = log(kidmort_unicef) ~ democracy + log(GDPcur),

## data = ross, model = ”within”, index = c(”id”, ”year”))

##

## Unbalanced Panel: n=166, T=1-7, N=649

##

## Residuals :

## Min. 1st Qu. Median 3rd Qu. Max.

## -0.70500 -0.11700 0.00628 0.12200 0.75700

##

## Coefficients :

## Estimate Std. Error t-value Pr(>|t|)

## democracy -0.1432 0.0335 -4.28 0.000023 ***

## log(GDPcur) -0.3752 0.0113 -33.12 < 2e-16 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Total Sum of Squares: 81.7

## Residual Sum of Squares: 23

## R-Squared : 0.718

## Adj. R-Squared : 0.532

## F-statistic: 613.481 on 2 and 481 DF, p-value: <2e-16
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Time-constant variables

• Pooled model with a time-constant variable, proportion
Islamic:

library(lmtest)

p.mod <- plm(log(kidmort_unicef) ~ democracy + log(GDPcur) + islam, data = ross,

index = c(”id”, ”year”), model = ”pooling”)

coeftest(p.mod)

##

## t test of coefficients:

##

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 10.30608 0.35952 28.67 < 2e-16 ***

## democracy -0.80234 0.07767 -10.33 < 2e-16 ***

## log(GDPcur) -0.25497 0.01607 -15.87 < 2e-16 ***

## islam 0.00343 0.00091 3.77 0.00018 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Time-constant variables

• FE model, where the islam variable drops out, along with the
intercept:

fe.mod2 <- plm(log(kidmort_unicef) ~ democracy + log(GDPcur) + islam, data = ross,

index = c(”id”, ”year”), model = ”within”)

coeftest(fe.mod2)

##

## t test of coefficients:

##

## Estimate Std. Error t value Pr(>|t|)

## democracy -0.1297 0.0359 -3.62 0.00033 ***

## log(GDPcur) -0.3800 0.0118 -32.07 < 2e-16 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Fixed-effects within estimator

• Informal proof. We have strict exogeneity:

𝔼[𝜀𝑖𝑡 |𝑋 𝑖, 𝐷𝑖, 𝑈𝑖] = 0

• This implies exogeneity of the time-averaged errors:

𝔼[𝜀𝑖|𝑋 𝑖, 𝐷𝑖, 𝑈𝑖] = 1
𝑇

𝑇
∑
𝑡=1

𝔼[𝜀𝑖𝑡 |𝑋 𝑖, 𝐷𝑖, 𝑈𝑖] = 0

• Mean-differenced errors are uncorrelated with the treatment or
regressors from any time period:

𝔼[ ̈𝜀𝑖𝑡 |𝑋 𝑖, 𝐷𝑖, 𝑈𝑖] = 0

• Thus, the mean-differenced treatment and covariates must
also be uncorrelated with the mean-differenced errors:

𝔼[ ̈𝑌𝑖𝑡 |𝑋𝑖, 𝐷𝑖, 𝑈𝑖] = ̈𝑋′
𝑖𝑡𝛽 + 𝜏�̈�𝑖𝑡
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Dummy variable regression

• An alternative way to estimate FE models is using a series of
dummy variables for each unit, 𝑖.

• Let 𝑊𝑘
𝑖𝑡 = 1 if 𝑘 = 𝑖 and 𝑊𝑘

𝑖𝑡 = 0 otherwise for all 𝑘 ∈ 1, … , 𝑁 .
• 𝑊𝑖𝑡 = (𝑊1

𝑖𝑡 , … , 𝑊𝑁
𝑖𝑡 ) is the dummy variable vector.

• Least Squares Dummy Variable (LSDV) estimator:
pooled OLS regression 𝑌𝑖𝑡 on 𝑋𝑖𝑡, 𝐷𝑖𝑡, and 𝑊𝑖𝑡.

• Algebraically equivalent to the within estimator for estimates.
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SE issues

• Let 𝜺𝑖 be the (𝑇 × 1) vector of errors of the FE model.
• Panel homoskedasticity:

𝔼[𝜺𝑖𝜺′
𝑖] = 𝜎2𝜀𝐈𝑇

• Here, 𝐈𝑇 is a diagonal matrix with 𝑇 rows and columns and so
basically:

▶ Homoskedasticity: 𝕍[𝜀𝑖𝑡 |𝑋 𝑖, 𝐷𝑖, 𝑈𝑖] = 𝜎2𝜀
▶ No serial correlation: Cov[𝜀𝑖𝑡 , 𝜀𝑖𝑠|𝑋𝑖, 𝐷𝑖, 𝑈𝑖] = 0 when 𝑡 ≠ 𝑠

• ⇝ FE via within/LSDV are efficient estimators.
• Robust/sandwich SEs available via the usual formulas.
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Within vs LSDV

• Within estimator and LSDV give exactly the same estimates,
but SEs will differ slightly.

• SEs from vanilla OLS on the within estimator will be slightly
off due to incorrect degrees of freedom.

▶ OLS doesn’t account for you calculating the time-means.
▶ Smart software (plm() in R, areg in Stata) will correct.

• LSDV estimator gets the correct SEs because time-means are
calculated by OLS ⇝ correct degrees of freedom.

▶ Downside: can be computationally demanding
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Example with Ross data

library(lmtest)

lsdv.mod <- lm(log(kidmort_unicef) ~ democracy + log(GDPcur) + as.factor(id),

data = ross)

coeftest(lsdv.mod)[1:6, ]

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 13.76 0.266 51.8 1.0e-198

## democracy -0.14 0.033 -4.3 2.3e-05

## log(GDPcur) -0.38 0.011 -33.1 3.5e-126

## as.factor(id)AGO 0.30 0.168 1.8 7.4e-02

## as.factor(id)ALB -1.93 0.190 -10.2 4.4e-22

## as.factor(id)ARE -1.88 0.170 -11.0 2.4e-25

coeftest(fe.mod)[1:2, ]

## Estimate Std. Error t value Pr(>|t|)

## democracy -0.14 0.033 -4.3 2.3e-05

## log(GDPcur) -0.38 0.011 -33.1 3.5e-126
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First differences

• Because the 𝑈𝑖 are time-fixed, first-differences are an
alternative to mean-differences.

• For some variable, 𝑍𝑖𝑡, let Δ𝑍𝑖𝑡 = 𝑍𝑖𝑡 − 𝑍𝑖,𝑡−1
• The first difference model is the following:

Δ𝑌𝑖𝑡 = Δ𝑋′
𝑖𝑡𝛽 + 𝜏Δ𝐷𝑖𝑡 + Δ𝜀𝑖𝑡

• This follows from the fact that Δ𝑈𝑖 = 0
• By the same logic as above, strict ignorability implies strict

exogeneity which implies 𝔼[Δ𝜀𝑖𝑡 |𝑋 𝑖, 𝐷𝑖, 𝑈𝑖 = 0], so

𝔼[Δ𝑌𝑖𝑡 |𝑋 𝑖, 𝐷𝑖, 𝑈𝑖] = Δ𝑋′
𝑖𝑡𝛽 + 𝜏Δ𝐷𝑖𝑡
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First differences estimation

• First differences estimator: pooled OLS regression of Δ𝑌𝑖𝑡 on
Δ𝑋𝑖𝑡 and Δ𝐷𝑖𝑡.

• If Δ𝜀𝑖𝑡 are homoskedastic and without serial correlation, usual
OLS SEs work just fine.

• 𝜀𝑖𝑡 = 𝜀𝑖,𝑡−1 + Δ𝜀𝑖𝑡 implies original errors have serial correlation.
• ⇝ more efficient than FE when there is serial correlation

exists in the errors.
• Robust/sandwich SEs available here too.
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First differences in R
fd.mod <- plm(log(kidmort_unicef) ~ democracy + log(GDPcur), data = ross,

index = c(”id”, ”year”), model = ”fd”)

summary(fd.mod)

## Oneway (individual) effect First-Difference Model

##

## Call:

## plm(formula = log(kidmort_unicef) ~ democracy + log(GDPcur),

## data = ross, model = ”fd”, index = c(”id”, ”year”))

##

## Unbalanced Panel: n=166, T=1-7, N=649

##

## Residuals :

## Min. 1st Qu. Median 3rd Qu. Max.

## -0.9060 -0.0956 0.0468 0.1410 0.3950

##

## Coefficients :

## Estimate Std. Error t-value Pr(>|t|)

## (intercept) -0.1495 0.0113 -13.26 <2e-16 ***

## democracy -0.0449 0.0242 -1.85 0.064 .

## log(GDPcur) -0.1718 0.0138 -12.49 <2e-16 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Total Sum of Squares: 23.5

## Residual Sum of Squares: 17.8

## R-Squared : 0.246

## Adj. R-Squared : 0.244

## F-statistic: 78.1367 on 2 and 480 DF, p-value: <2e-16
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2/ Random effects
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Random effects

𝑌𝑖𝑡 = 𝑋′
𝑖𝑡𝛽 + 𝜏𝐷𝑖𝑡 + 𝑈𝑖 + 𝜀𝑖𝑡

• With fixed effects, we have:

𝔼[𝜀𝑖𝑡 |𝑋 𝑖, 𝐷𝑖, 𝑈𝑖] = 0

• “Random effects” models make an additional assumption:

𝔼[𝑈𝑖|𝑋𝑖, 𝐷𝑖] = 𝔼[𝑈𝑖] = 0

• Unit-level effects are uncorrelated with treatment and
covariates.

• Important: implies that ignorability holds without
conditioning on 𝑈𝑖 ⇝ no unmeasured confounding.
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Why random effects?

• So why do people use random effects? Standard errors!
• Under the RE assumption, we have the following:

𝑌𝑖𝑡 = 𝑋′
𝑖𝑡𝛽 + 𝜏𝐷𝑖𝑡 + 𝜈𝑖

where 𝜈𝑖 = 𝑈𝑖 + 𝜀𝑖𝑡.
• Now, notice that

cov[𝑌𝑖1, 𝑌𝑖2|𝑋 𝑖𝑡 , 𝐷𝑖𝑡] = 𝜎2𝑢

where 𝜎2𝑢 is the variance of the 𝑈𝑖.
• This violates the assumption of no autocorrelation for OLS.

What’s the problem with this?
• Random effects models gets us consistent standard error

estimates.
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Quasi-demeaning

• Random effects models usually transform the data via what is
called quasi-demeaning or partial pooling:

(𝑌𝑖𝑡 − 𝜃𝑌 𝑖) = (𝑋𝑖𝑡 − 𝜃𝑋 𝑖)′𝛽 + 𝜏(𝐷𝑖𝑡 − 𝜃𝐷𝑖) + (𝜈𝑖𝑡 − 𝜃𝜈𝑖)

• Here 𝜃 is between zero and one, where 𝜃 = 0 implies pooled
OLS and 𝜃 = 1 implies fixed effects. Doing some math shows
that

𝜃 = 1 − [𝜎2𝑢/(𝜎2𝑢 + 𝑇𝜎2𝜀)]1/2

• the random effect estimator runs pooled OLS on this model
replacing 𝜃 with an estimate ̂𝜃.
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Example with Ross data
re.mod <- plm(log(kidmort_unicef) ~ democracy + log(GDPcur), data = ross,

index = c(”id”, ”year”), model = ”random”)

coeftest(re.mod)[1:3, ]

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 12.31 0.255 48.3 1.6e-216

## democracy -0.19 0.034 -5.6 2.4e-08

## log(GDPcur) -0.36 0.011 -32.8 1.5e-139

coeftest(fe.mod)[1:2, ]

## Estimate Std. Error t value Pr(>|t|)

## democracy -0.14 0.033 -4.3 2.3e-05

## log(GDPcur) -0.38 0.011 -33.1 3.5e-126

coeftest(pooled.mod)[1:3, ]

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 9.76 0.345 28 2.9e-115

## democracy -0.96 0.070 -14 1.2e-37

## log(GDPcur) -0.23 0.015 -15 1.2e-42

• More general random effects models using lmer() from the
lme4 package
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Hausman tests

• Can we test the assumption that 𝔼[𝑈𝑖|𝑋 𝑖, 𝐷𝑖] = 𝔼[𝑈𝑖]?
▶ If true (and all the RE assumptions hold), then RE and FE are

consistent, but RE is efficient.
▶ If false, then RE is inconsistent, but FE is consistent.

• A Hausman test uses these facts to develop a hypothesis test
of the assumption:

▶ If FE and RE estimates are similar ⇝ assumption plausible.
▶ If FE and RE very different ⇝ assumption perhaps not

plausible.
• Limitations:

1. We must maintain strict exogeneity for null and alternative.
2. Must maintain that 𝑈𝑖 is homoskedastic (not required for FE)
3. Limited to comparing coefficients on variables that vary in 𝑖

and 𝑡.
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Calculate the Hausman test

• Let 𝑆𝐸[�̂�𝐹𝐸] and 𝑆𝐸[�̂�𝑅𝐸] be the estimated SEs of the
estimators.

▶ Under the null that RE is correct, 𝑆𝐸[�̂�𝐹𝐸] > 𝑆𝐸[�̂�𝑅𝐸]

• Hausman test statistic:

𝐻 = �̂�𝐹𝐸 − �̂�𝑅𝐸

(𝑆𝐸[�̂�𝐹𝐸]2 − 𝑆𝐸[�̂�𝑅𝐸]2)1/2

• Under the null hypothesis that RE is correct, 𝐻 is
asymptotically normal.

• When �̂�𝐹𝐸 and �̂�𝑅𝐸 are very different relative to their
uncertainty, 𝐻 will be big in absolute value and we will reject
the null.
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Hausman test in R

phtest(fe.mod, re.mod)

##

## Hausman Test

##

## data: log(kidmort_unicef) ~ democracy + log(GDPcur)

## chisq = 70, df = 2, p-value = 8.041e-16

## alternative hypothesis: one model is inconsistent
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3/ Fixed effects with
heterogeneous
treatment effects
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Potential outcomes in the general
setting

• Let’s allow for heterogenerous treatment effects:

𝜏𝑖𝑡 = 𝑌𝑖𝑡(1) − 𝑌𝑖𝑡(0)

• Keeping the old linearity in 𝑋𝑖𝑡 assumption:

𝑌𝑖𝑡 = 𝑋′
𝑖𝑡𝛽 + 𝜏𝑖𝑡𝐷𝑖𝑡 + 𝑈𝑖 + 𝜀𝑖𝑡

• Add and substract 𝜏𝐷𝑖𝑡, where 𝜏 = 𝔼[𝜏𝑖𝑡]:

𝑌𝑖𝑡 = 𝑋′
𝑖𝑡𝛽 + 𝜏𝐷𝑖𝑡 + 𝑈𝑖 + 𝜂𝑖𝑡

• Where the combined error is:

𝜂𝑖𝑡 = (𝜏𝑖𝑡 − 𝜏)𝐷𝑖𝑡⏟⏟⏟⏟⏟
non-constant effects

+ 𝑌𝑖𝑡(0) − 𝐸[𝑌𝑖𝑡(0)|𝑋 𝑖, 𝑈𝑖]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
typical errors, 𝜀𝑖𝑡
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Assumptions

• Earlier we showed that strict ignorability implied strict
exogeneity for 𝜀𝑖𝑡. What about 𝜂𝑖𝑡?

𝔼[𝜂𝑖𝑡 |𝑋 𝑖, 𝐷𝑖, 𝑈𝑖] = 0

• Since 𝜂𝑖𝑡 = (𝜏𝑖𝑡 − 𝜏)𝐷𝑖𝑡 + 𝜀𝑖𝑡 and we showed that
𝔼[𝜀𝑖𝑡 |𝑋𝑖, 𝐷𝑖, 𝑈𝑖] = 0, it suffices to show:

𝔼[(𝜏𝑖𝑡 − 𝜏)𝐷𝑖𝑡 |𝑋 𝑖, 𝐷𝑖, 𝑈𝑖] = 0
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Non-constant effects errors

• How does the non-constant effect error work here?

𝔼[(𝜏𝑖𝑡 − 𝜏)𝐷𝑖𝑡 |𝑋𝑖, 𝐷𝑖, 𝑈𝑖] = 𝐷𝑖𝑡(𝔼[𝜏𝑖𝑡 − 𝜏|𝑋 𝑖, 𝐷𝑖, 𝑈𝑖])
= 𝐷𝑖𝑡(𝔼[𝜏𝑖𝑡 |𝑋 𝑖, 𝐷𝑖, 𝑈𝑖] − 𝜏)
= 𝐷𝑖𝑡(𝔼[𝜏𝑖𝑡 |𝑋 𝑖, 𝑈𝑖] − 𝜏)
= 𝐷𝑖𝑡(𝔼[𝜏𝑖𝑡 |𝑋 𝑖, 𝑈𝑖] − 𝔼[𝜏𝑖𝑡])

• Thus, we can see that the combined error will only satisfy the
strict exogeneity assumption of fixed effects when

𝐸[𝜏𝑖𝑡 |𝑋 𝑖, 𝑈𝑖] = 𝐸[𝜏𝑖𝑡]

• This is when the treatment effects are independent of the unit
effects and the covariates.

39 / 48



Regression bias?

• We’ve seen this before: it’s a general problem with regression
and varying treatment effects.

𝜂𝑖𝑡 = 𝐷𝑖𝑡(𝜏𝑖𝑡 − 𝜏)⏟⏟⏟⏟⏟
non-constant effects

+ 𝑌𝑖𝑡(0) − 𝐸[𝑌𝑖𝑡(0)|𝑋 𝑖, 𝑈𝑖]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
typical errors

• Generally the issue here is that non-constant effects induce
correlation between the treatment and the error term.

• Distinct from confounding bias since we could, in principle,
estimate 𝐸[𝜏𝑖𝑡 |𝑋 𝑖, 𝑈𝑖] to then calculate 𝐸[𝜏𝑖𝑡]

• Overall ATE still nonparametrically identified, even if the FE
regression doesn’t estimate it.
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Strict exogeneity/ignorability

𝑌𝑖𝑡(𝑑) ⟂⟂ 𝐷𝑖|𝑋 𝑖, 𝑈𝑖

• Strict ignorability is very strong.
• Rules out the following:

▶ 𝐷𝑖𝑡 affects 𝑌𝑖𝑡 which then affects 𝐷𝑖,𝑡+1
▶ Basically, any feedback between treatment and the outcome

• Can we weaken this? Yes! Sequential ignorability:

𝑌𝑖𝑡(𝑑) ⟂⟂ 𝐷𝑖𝑡 |𝑋 𝑖𝑡 , 𝐷𝑖,𝑡−1, 𝑈𝑖

• Note here that the we only condition up to 𝑡 so that the errors
can be correlated with future 𝐷𝑖,𝑡+1 and so on.

• This implies sequential exogeneity of the errors:

𝔼[𝜀𝑖𝑡 |𝑋𝑖𝑡 , 𝐷𝑖𝑡 , 𝑈𝑖] = 0.
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Strict ignorability example

• Example: economic interdependence between countries
(𝐷𝑖𝑡 = 1 if county-dyad 𝑖 is interdependent in period 𝑡) and
conflict severity (𝑌𝑖𝑡) between countries.

• Strict ignorability assumption implies shocks to conflict
severity at 𝑡 uncorrelated with:

▶ future values of conflict severity
▶ economic interdendence
▶ any other time-varying covariate
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Lagged dependent variables

𝑌𝑖𝑡 = 𝛽𝑌𝑖,𝑡−1 + 𝜏𝐷𝑖𝑡 + 𝑈𝑖 + 𝜀𝑖𝑡

• Fixed effects models with lagged dependent variables is much
harder.

• Easiest to see with first differences:

(𝑌𝑖𝑡 − 𝑌𝑖,𝑡−1) = 𝛽(𝑌𝑖,𝑡−1 − 𝑌𝑖,𝑡−2) + 𝜏(𝐷𝑖𝑡 − 𝐷𝑖,𝑡−1) + (𝜀𝑖𝑡 − 𝜀𝑖,𝑡−1)

• Obviously, 𝑌𝑖,𝑡−1 is correlated with the 𝜀𝑖,𝑡−1.
• This is sometimes called a dynamic panel model, where we

can’t rely on the exogeneity assumption alone.
• ⇝ need an instrumental variable approach (coming up in a

few weeks).
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4/ Cumulative effects
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Contemporaneous vs Cumulative effects

• Another assumption we’ve been making is that there is only a
contemporaneous effect: 𝜏𝐷𝑖𝑡.

• Implicitly or explicitly fixing the past history of the treatment.
• What if we want to estimate the cumulative effects?
• Very difficult, if not impossible with fixed effects models.
• Why?

▶ For cumulative effects, we need to consider the effects of
treatment on time-varying confounders, 𝑋𝑖𝑡(𝑑𝑖,𝑡−1).

▶ Those pathways might be hard to identify
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New notation

• Two-period effects: 𝑌𝑖𝑡(𝑑𝑡−1, 𝑑𝑡)
• New consistency assumption:

𝑌𝑖𝑡 = 𝑌𝑖𝑡(𝐷𝑖,𝑡−1, 𝐷𝑖𝑡)

• In general, we will be interested in average treatment effects:

𝔼[𝑌𝑖𝑡(𝑑𝑡−1, 𝑑𝑡) − 𝑌𝑖𝑡(𝑑∗
𝑡−1, 𝑑∗𝑡 )].

• Let 𝑑 = (𝑑1, … , 𝑑𝑇 ) be one entire history of 𝐷.
• Partial history: 𝑑𝑡 = (𝑑1, … , 𝑑𝑡).
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Fixed effects causal models

• Need a causal model:

𝑌𝑖𝑡(𝑑𝑡−1, 𝑑𝑡) = 𝑋′
𝑖𝑡(𝑑𝑡−1)𝛽𝑐 + 𝜏𝑖,𝑡−1𝑑𝑡−1 + 𝜏𝑖𝑡𝑑𝑡 + 𝑈𝑖 + 𝜀𝑖𝑡

• 𝛽𝑐 have 𝑐 subscript here to denote difference from above fixed
effect regressions.

• Allows for heterogeneous effects in each unit-period.

𝔼[𝑌𝑖𝑡(1, 1) − 𝑌𝑖𝑡(0, 0)] = 𝔼[𝜏𝑖,𝑡−1 + 𝜏𝑖𝑡⏟⏟⏟⏟⏟
direct effects

+ (𝑋𝑖𝑡(1) − 𝑋𝑖𝑡(0))′𝛽𝑐⏟⏟⏟⏟⏟⏟⏟⏟⏟
effect of 𝐷𝑖,𝑡−1 through 𝑋𝑖𝑡

]
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Cumulative effects notes

• Sobel paper shows that under fixed effects-style confounding
can only estimate contemporaneous effect, where 𝑑𝑡−1 is the
same for the comparison:

𝔼[𝑌𝑖𝑡(𝑑𝑡−1, 1) − 𝑌𝑖𝑡(𝑑𝑡−1, 0)] = 𝔼[𝜏𝑖𝑡]

• 𝛽𝑐 is very difficult to identify! Need more restrictions.
• Exception: 𝑋𝑖𝑡 is unaffected by 𝐷𝑖,𝑡−1 so that 𝑋𝑖𝑡(1) = 𝑋𝑖𝑡(0)

and so:

𝔼[𝑌𝑖𝑡(1, 1) − 𝑌𝑖𝑡(0, 0)] = 𝔼[𝜏𝑖,𝑡−1 + 𝜏𝑖𝑡]
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