Gov 2002: 8. Panel Data

Matthew Blackwell

October 22, 2015

- 1. Fixed effects estimators
- 2. Random effects
- 3. Fixed effects with heterogeneous treatment effects
- 4. Cumulative effects

Repeated measurements

- Up until now, we have assumed that there was either a completely randomized experiment or a randomized experiment within levels of *X_i* that gave us exogeneous variation in the treatment.
- Today we're going to look to another possible source of variation: repeated measurements on the same unit over time.
- What if selection on the observables doesn't hold, but do have repeated measurements. Can we use this to identify and estimate effects?
- Message: simply having panel data does not identify an effect, but it does allow us to rely on different identifying assumptions.

Basic Idea

 The basic idea is that ignorability doesn't hold, conditional on the observed covariates, Y_{it}(d) D_{it}|X_{it}, but ignorability might hold conditional on some unobserved, time-constant, variable:

 $Y_{it}(d) \perp\!\!\!\perp D_{it}|X_{it}, U_i.$

- Within units, effects are identified.
- This is because, even if U_i is unobserved, it is held constant within a unit.
- Thus, by performing analyses within the units, we can control for this unobserved heterogeneity.

Motivation

Is Democracy Good for the Poor?

Michael Ross University of California, Los Angeles

- Relationship between democracy and infant mortality?
- Compare levels of democracy with levels of infant mortality, but...
- Democratic countries are different from non-democracies in ways that we can't measure?
 - they are richer or developed earlier
 - provide benefits more efficiently
 - posses some cultural trait correlated with better health outcomes
- If we have data on countries over time, can we make any progress in spite of these problems?

Ross data

ross <- foreign::read.dta("ross-democracy.dta")
head(ross[, c("cty_name", "year", "democracy", "infmort_unicef")])</pre>

##		cty_name	year	democracy	infmort_unicef
##	1	Afghanistan	1965	0	230
##	2	Afghanistan	1966	0	NA
##	3	Afghanistan	1967	0	NA
##	4	Afghanistan	1968	0	NA
##	5	Afghanistan	1969	0	NA
##	6	Afghanistan	1970	0	215

Pooled OLS with Ross data

##	
##	Coefficients:
##	Estimate Std. Error t value Pr(> t)
##	(Intercept) 9.7640 0.3449 28.3 <2e-16 ***
##	democracy -0.9552 0.0698 -13.7 <2e-16 ***
##	log(GDPcur) -0.2283 0.0155 -14.8 <2e-16 ***
##	
##	Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##	
##	Residual standard error: 0.8 on 646 degrees of freedom
##	(5773 observations deleted due to missingness)
##	Multiple R-squared: 0.504, Adjusted R-squared: 0.503
##	F-statistic: 329 on 2 and 646 DF, p-value: <2e-16

Note about terminology

- Generally, we talk about *panel data* and *time-series cross-sectional data* in political science.
- Panel data: small T, large N
 - The NES panel is like this: 2000 respondent asked questions at various points in time over the course of an election (or multiple elections).
- **TSCS data**: high *T*, low medium *N*.
 - U.S. states over time
 - Western European countries over time.
- For the most part, the issues of causality are the same for these two types of data, so I will refer to them both as panel data.
- But estimation is a different issue. Different estimators work differently under either data types.

1/ Fixed effects estimators

Notation

- Units i = 1, ..., N
- Time periods t = 1, ..., T with $T \ge 2$,
- Y_{it}, D_{it} are the outcome and treatment for unit i in period t
 We have a set of covariates in each period, as well,
- Covariates X_{it}, causally "prior" to D_{it}.

$$\begin{array}{c} X_t \\ \swarrow \searrow \\ D_t \rightarrow Y_t \end{array}$$

- U_i = unobserved, time-invariant unit effects (causally prior to everything)
- History of some variable: $\underline{D}_{it} = (D_1, \dots, D_t)$.
- Entire history: $\underline{D}_i = \underline{D}_{iT}$

Assumptions

- Potential outcomes: Y_{it}(1) = Y_{it}(d_t = 1) is the potential outcome for unit i at time t if they were treated at time t.
 - Here we focus on contemporaneous effects, $Y_{it}(d_t = 1) - Y_{it}(d_t = 0)$
 - Harder when including lags of treatment, $Y_{it}(d_t = 1, d_{t-1} = 1)$
- **Consistency** for each time period:

$$Y_{it} = Y_{it}(1)D_{it} + Y_{it}(0)(1 - D_{it})$$

• **Strict ignorability**: potential outcomes are independent of the entire history of treatment conditional on the history of covariates and the time-constant heterogeneity:

 $Y_{it}(d) \perp \underline{D}_i | \underline{X}_i, U_i$

Basic linear fixed-effects model

• Assume that the CEF for the mean potential outcome under control is:

$$\mathbb{E}[Y_{it}(0)|\underline{X}_{i}, U_{i}] = X'_{it}\beta + U_{i}$$

• And then assume a constant treatment effects:

 $\mathbb{E}[Y_{it}(1)|\underline{X}_{i}, U_{i}] = \mathbb{E}[Y_{it}(0)|\underline{X}_{i}, U_{i}] + \tau$

 With consistency and strict ignorability, we can write this as a CEF of the observed outcome:

$$\mathbb{E}[Y_{it}|\underline{X}_{i},\underline{D}_{i},U_{i}] = X_{it}^{\prime}\beta + \tau D_{it} + U_{i}$$

Relating to traditional models

• We can now write the observed outcomes in a traditional regression format:

$$Y_{it} = X'_{it}\beta + \tau D_{it} + U_i + \varepsilon_{it}$$

• Here, the error is similar to what we had for regression:

$$\varepsilon_{it} \equiv Y_{it}(0) - \mathbb{E}[Y_{it}(0)|\underline{X}_i, U_i]$$

 In traditional FE models, we skip potential outcomes and rely on a strict exogeneity assumption:

$$\mathbb{E}[\varepsilon_{it}|\underline{X}_{i},\underline{D}_{i},U_{i}]=0$$

Strict ignorability vs strict exogeneity

 $Y_{it}(d) \perp\!\!\!\perp \underline{D}_i | \underline{X}_i, U_i$

• Easy to show to that strict ignorability implies strict exogeneity:

$$\begin{split} \mathbb{E}[\varepsilon_{it}|\underline{X}_{i},\underline{D}_{i},U_{i}] &= \mathbb{E}\left[\left(Y_{it}(0) - \mathbb{E}[Y_{it}(0)|\underline{X}_{i},U_{i}]\right)|\underline{X}_{i},\underline{D}_{i},U_{i}\right] \\ &= \mathbb{E}[Y_{it}(0)|\underline{X}_{i},\underline{D}_{i},U_{i}] - \mathbb{E}[Y_{it}(0)|\underline{X}_{i},U_{i}] \\ &= \mathbb{E}[Y_{it}(0)|\underline{X}_{i},U_{i}] - \mathbb{E}[Y_{it}(0)|\underline{X}_{iT},U_{i}] \\ &= 0 \end{split}$$

Fixed-effects within estimator

Define the "within" model:

$$(Y_{it} - \overline{Y}_i) = (X_{it} - \overline{X}_i)'\beta + \tau(D_{it} - \overline{D}_i) + (\varepsilon_{it} - \overline{\varepsilon}_i)$$

• Here, let \overline{Y}_i be the unit averages. Note that:

$$\overline{Y}_i = \overline{X}_i'\beta + \tau \overline{D}_i + U_i + \overline{\varepsilon}_i$$

 Logic: since the unobserved effect is constant over time, subtracting off the mean also subtracts that unobserved effect:

$$U_i - \frac{1}{T} \sum_{t=1}^{T} U_i = U_i - U_i = 0$$

• This also demonstrates why the assumption of the fixed effects being time-constant is so important.

Within Estimator

• Let $\ddot{Z}_{it} = Z_{it} - \overline{Z}_i$ be the **time-demeaned** version of Z_{it} . Then the FE model is:

$$\ddot{Y}_{it} = \ddot{X}_{it}'\beta + \tau \ddot{D}_{it} + \ddot{\varepsilon}_{it}$$

- Within/FE estimator, $\hat{\tau}_{FE}$: pooled OLS estimator \ddot{Y}_{it} on \ddot{X}_{it} and \ddot{D}_{it}
- Only uses time variation within each cross section.
- Full rank: rank[$\sum_{t=1}^{T} \mathbb{E}[\ddot{X}_{it}\ddot{X}'_{it}]] = K$
 - Basically: no variables that are constant over time. Why?

Fixed effects with Ross data

```
library(plm)
fe.mod <- plm(log(kidmort_unicef) ~ democracy + log(GDPcur), data = ross,
    index = c("id", "year"), model = "within")
summary(fe.mod)</pre>
```

```
## Oneway (individual) effect Within Model
##
## Call:
## plm(formula = log(kidmort_unicef) ~ democracy + log(GDPcur),
      data = ross. model = "within". index = c("id". "vear"))
##
##
## Unbalanced Panel: n=166, T=1-7, N=649
##
## Residuals ·
## Min. 1st Qu. Median 3rd Qu. Max.
## -0.70500 -0.11700 0.00628 0.12200 0.75700
##
## Coefficients :
##
             Estimate Std. Error t-value Pr(>|t|)
## democracy -0.1432 0.0335 -4.28 0.000023 ***
## log(GDPcur) -0.3752 0.0113 -33.12 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 81.7
## Residual Sum of Squares: 23
## R-Squared : 0.718
##
        Adj. R-Squared : 0.532
## F-statistic: 613.481 on 2 and 481 DF, p-value: <2e-16
```

Time-constant variables

 Pooled model with a time-constant variable, proportion Islamic:

```
library(lmtest)
p.mod <- plm(log(kidmort_unicef) ~ democracy + log(GDPcur) + islam, data = ross,
    index = c("id", "year"), model = "pooling")
coeftest(p.mod)</pre>
```

```
##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.30608 0.35952 28.67 < 2e-16 ***
## democracy -0.80234 0.07767 -10.33 < 2e-16 ***
## log(GDPcur) -0.25497 0.01607 -15.87 < 2e-16 ***
## islam 0.00343 0.00091 3.77 0.00018 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</pre>
```

Time-constant variables

FE model, where the islam variable drops out, along with the intercept:

```
fe.mod2 <- plm(log(kidmort_unicef) ~ democracy + log(GDPcur) + islam, data = ross,
    index = c("id", "year"), model = "within")
    coeftest(fe.mod2)
```

```
##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## democracy -0.1297 0.0359 -3.62 0.00033 ***
## log(GDPcur) -0.3800 0.0118 -32.07 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</pre>
```

Fixed-effects within estimator

Informal proof. We have strict exogeneity:

 $\mathbb{E}[\varepsilon_{it}|\underline{X}_i,\underline{D}_i,U_i]=0$

• This implies exogeneity of the time-averaged errors:

$$\mathbb{E}[\overline{\varepsilon}_i | \underline{X}_i, \underline{D}_i, U_i] = \frac{1}{T} \sum_{i=1}^T \mathbb{E}[\varepsilon_{ii} | \underline{X}_i, \underline{D}_i, U_i] = 0$$

 Mean-differenced errors are uncorrelated with the treatment or regressors from *any* time period:

$$\mathbb{E}[\ddot{\varepsilon}_{it}|\underline{X}_i,\underline{D}_i,U_i]=0$$

• Thus, the mean-differenced treatment and covariates must also be uncorrelated with the mean-differenced errors:

$$\mathbb{E}[\ddot{Y}_{it}|\underline{X}_{i},\underline{D}_{i},U_{i}]=\ddot{X}_{it}^{\prime}\beta+\tau\ddot{D}_{it}$$

Dummy variable regression

- An alternative way to estimate FE models is using a series of dummy variables for each unit, *i*.
- Let $W_{it}^k = 1$ if k = i and $W_{it}^k = 0$ otherwise for all $k \in 1, ..., N$.
- $W_{it} = (W_{it}^1, \dots, W_{it}^N)$ is the dummy variable vector.
- Least Squares Dummy Variable (LSDV) estimator: pooled OLS regression Y_{it} on X_{it}, D_{it}, and W_{it}.
- Algebraically equivalent to the within estimator for estimates.

SE issues

- Let $\boldsymbol{\varepsilon}_i$ be the $(T \times 1)$ vector of errors of the FE model.
- Panel homoskedasticity:

$$\mathbb{E}[\boldsymbol{\varepsilon}_i \boldsymbol{\varepsilon}_i'] = \sigma_{\varepsilon}^2 \mathbf{I}_T$$

- Here, I_T is a diagonal matrix with T rows and columns and so basically:
 - Homoskedasticity: $\mathbb{V}[\varepsilon_{it}|\underline{X}_i, \underline{D}_i, U_i] = \sigma_{\varepsilon}^2$
 - ▶ No serial correlation: $Cov[\varepsilon_{it}, \varepsilon_{is} | \underline{X}_i, \underline{D}_i, U_i] = 0$ when $t \neq s$
- ~→ FE via within/LSDV are **efficient** estimators.
- Robust/sandwich SEs available via the usual formulas.

Within vs LSDV

- Within estimator and LSDV give exactly the same estimates, but SEs will differ slightly.
- SEs from vanilla OLS on the **within estimator** will be slightly off due to incorrect degrees of freedom.
 - OLS doesn't account for you calculating the time-means.
 - Smart software (plm() in R, areg in Stata) will correct.
- LSDV estimator gets the correct SEs because time-means are calculated by OLS → correct degrees of freedom.
 - Downside: can be computationally demanding

Example with Ross data

##		Estimate Std.	Error	t value	Pr(> t)
##	(Intercept)	13.76	0.266	51.8	1.0e-198
##	democracy	-0.14	0.033	-4.3	2.3e-05
##	log(GDPcur)	-0.38	0.011	-33.1	3.5e-126
##	as.factor(id)AGO	0.30	0.168	1.8	7.4e-02
##	as.factor(id)ALB	-1.93	0.190	-10.2	4.4e-22
##	as.factor(id)ARE	-1.88	0.170	-11.0	2.4e-25

coeftest(fe.mod)[1:2,]

##		Estimate	Std.	Error	t	value	Pr(> t)
##	democracy	-0.14		0.033		-4.3	2.3e-05
##	log(GDPcur)	-0.38		0.011		-33.1	3.5e-126

First differences

- Because the U_i are time-fixed, first-differences are an alternative to mean-differences.
- For some variable, Z_{it} , let $\Delta Z_{it} = Z_{it} Z_{i,t-1}$
- The first difference model is the following:

$$\Delta Y_{it} = \Delta X'_{it}\beta + \tau \Delta D_{it} + \Delta \varepsilon_{it}$$

- This follows from the fact that $\Delta U_i = 0$
- By the same logic as above, strict ignorability implies strict exogeneity which implies E[Δε_{ii}|<u>X</u>_i, <u>D</u>_i, U_i = 0], so

$$\mathbb{E}[\Delta Y_{it}|\underline{X}_{i},\underline{D}_{i},U_{i}] = \Delta X_{it}^{\prime}\beta + \tau \Delta D_{it}$$

First differences estimation

- First differences estimator: pooled OLS regression of ΔY_{it} on ΔX_{it} and ΔD_{it} .
- If $\Delta \varepsilon_{it}$ are homoskedastic and without serial correlation, usual OLS SEs work just fine.
- $\varepsilon_{it} = \varepsilon_{i,t-1} + \Delta \varepsilon_{it}$ implies original errors have serial correlation.
- → more efficient than FE when there is serial correlation exists in the errors.
- Robust/sandwich SEs available here too.

First differences in R

```
fd.mod <- plm(log(kidmort_unicef) ~ democracy + log(GDPcur), data = ross,
    index = c("id", "year"), model = "fd")
    summary(fd.mod)
```

```
## Oneway (individual) effect First-Difference Model
##
## Call:
## plm(formula = log(kidmort_unicef) ~ democracy + log(GDPcur),
      data = ross, model = "fd", index = c("id", "year"))
##
##
## Unbalanced Panel: n=166. T=1-7. N=649
##
## Residuals :
## Min. 1st Qu. Median 3rd Qu. Max.
## -0.9060 -0.0956 0.0468 0.1410 0.3950
##
## Coefficients ·
##
             Estimate Std. Error t-value Pr(>|t|)
## (intercept) -0.1495 0.0113 -13.26 <2e-16 ***
## democracy -0.0449 0.0242 -1.85 0.064.
## log(GDPcur) -0.1718 0.0138 -12.49 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares:
                        23.5
## Residual Sum of Squares: 17.8
## R-Squared : 0.246
##
        Adj. R-Squared : 0.244
## F-statistic: 78.1367 on 2 and 480 DF, p-value: <2e-16
```

2/ Random effects

Random effects

$$Y_{it} = X_{it}'\beta + \tau D_{it} + U_i + \varepsilon_{it}$$

• With fixed effects, we have:

$$\mathbb{E}[\varepsilon_{it}|\underline{X}_i,\underline{D}_i,U_i]=0$$

• "Random effects" models make an additional assumption:

$$\mathbb{E}[U_i|\underline{X}_i,\underline{D}_i] = \mathbb{E}[U_i] = 0$$

- Unit-level effects are uncorrelated with treatment and covariates.
- Important: implies that ignorability holds without conditioning on U_i → no unmeasured confounding.

Why random effects?

- So why do people use random effects? Standard errors!
- Under the RE assumption, we have the following:

$$Y_{it} = X'_{it}\beta + \tau D_{it} + \nu_i$$

where $v_i = U_i + \varepsilon_{it}$.

Now, notice that

$$\operatorname{cov}[Y_{i1}, Y_{i2} | \underline{X}_{it}, \underline{D}_{it}] = \sigma_u^2$$

where σ_u^2 is the variance of the U_i .

- This violates the assumption of no autocorrelation for OLS. What's the problem with this?
- Random effects models gets us consistent standard error estimates.

Quasi-demeaning

 Random effects models usually transform the data via what is called quasi-demeaning or partial pooling:

$$(Y_{it} - \theta \overline{Y}_i) = (X_{it} - \theta \overline{X}_i)'\beta + \tau (D_{it} - \theta \overline{D}_i) + (\nu_{it} - \theta \overline{\nu}_i)$$

• Here θ is between zero and one, where $\theta = 0$ implies pooled OLS and $\theta = 1$ implies fixed effects. Doing some math shows that

$$\theta = 1 - \left[\sigma_u^2 / (\sigma_u^2 + T\sigma_\varepsilon^2)\right]^{1/2}$$

• the **random effect estimator** runs pooled OLS on this model replacing θ with an estimate $\hat{\theta}$.

Example with Ross data

re.mod <- plm(log(kidmort_unicef) ~ democracy + log(GDPcur), data = ross, index = c("id", "year"), model = "random") coeftest(re.mod)[1:3,]

##		Estimate	Std.	Error	t	value	Pr(> t)
##	(Intercept)	12.31		0.255		48.3	1.6e-216
##	democracy	-0.19		0.034		-5.6	2.4e-08
##	log(GDPcur)	-0.36		0.011		-32.8	1.5e-139

coeftest(fe.mod)[1:2,]

##	Estimate	Std.	Error	t	value	Pr(> t)
## democracy	-0.14		0.033		-4.3	2.3e-05
## log(GDPcur)	-0.38		0.011		-33.1	3.5e-126

coeftest(pooled.mod)[1:3,]

##		Estimate	Std.	Error	t	value	Pr(> t)
##	(Intercept)	9.76		0.345		28	2.9e-115
##	democracy	-0.96		0.070		-14	1.2e-37
##	log(GDPcur)	-0.23		0.015		-15	1.2e-42

 More general random effects models using lmer() from the lme4 package

Hausman tests

- Can we test the assumption that $\mathbb{E}[U_i|\underline{X}_i, \underline{D}_i] = \mathbb{E}[U_i]$?
 - If true (and all the RE assumptions hold), then RE and FE are consistent, but RE is efficient.
 - ▶ If false, then RE is inconsistent, but FE is consistent.
- A **Hausman test** uses these facts to develop a hypothesis test of the assumption:
 - ▶ If FE and RE estimates are similar ~→ assumption plausible.
 - ► If FE and RE very different ~→ assumption perhaps not plausible.
- Limitations:
 - 1. We must maintain strict exogeneity for null and alternative.
 - 2. Must maintain that U_i is homoskedastic (not required for FE)
 - 3. Limited to comparing coefficients on variables that vary in *i* and *t*.

Calculate the Hausman test

- Let $\widehat{SE}[\widehat{\tau}_{FE}]$ and $\widehat{SE}[\widehat{\tau}_{RE}]$ be the estimated SEs of the estimators.
 - Under the null that RE is correct, $\widehat{SE}[\widehat{\tau}_{FE}] > \widehat{SE}[\widehat{\tau}_{RE}]$
- Hausman test statistic:

$$H = \frac{\widehat{\tau}_{FE} - \widehat{\tau}_{RE}}{\left(\widehat{SE}[\widehat{\tau}_{FE}]^2 - \widehat{SE}[\widehat{\tau}_{RE}]^2\right)^{1/2}}$$

- Under the null hypothesis that RE is correct, *H* is asymptotically normal.
- When $\hat{\tau}_{FE}$ and $\hat{\tau}_{RE}$ are very different relative to their uncertainty, H will be big in absolute value and we will reject the null.

Hausman test in R

phtest(fe.mod, re.mod)

Hausman Test ## ## data: log(kidmort_unicef) ~ democracy + log(GDPcur) ## chisq = 70, df = 2, p-value = 8.0410-16 ## alternative hypothesis: one model is inconsistent

3/ Fixed effects with heterogeneous treatment effects

Potential outcomes in the general setting

Let's allow for heterogenerous treatment effects:

$$\tau_{it} = Y_{it}(1) - Y_{it}(0)$$

• Keeping the old linearity in *X_{it}* assumption:

$$Y_{it} = X'_{it}\beta + \tau_{it}D_{it} + U_i + \varepsilon_{it}$$

• Add and substract τD_{it} , where $\tau = \mathbb{E}[\tau_{it}]$:

$$Y_{it} = X'_{it}\beta + \tau D_{it} + U_i + \eta_{it}$$

Where the combined error is:

$$\eta_{it} = \underbrace{(\tau_{it} - \tau)D_{it}}_{\text{non-constant effects}} + \underbrace{Y_{it}(0) - E[Y_{it}(0)|\underline{X}_{i}, U_{i}]}_{\text{typical errors, } \varepsilon_{it}}$$

Assumptions

 Earlier we showed that strict ignorability implied strict exogeneity for ε_{it}. What about η_{it}?

 $\mathbb{E}[\eta_{it}|\underline{X}_i,\underline{D}_i,U_i]=0$

• Since $\eta_{it} = (\tau_{it} - \tau)D_{it} + \varepsilon_{it}$ and we showed that $\mathbb{E}[\varepsilon_{it}|\underline{X}_i, \underline{D}_i, U_i] = 0$, it suffices to show:

 $\mathbb{E}[(\tau_{it} - \tau)D_{it}|\underline{X}_i, \underline{D}_i, U_i] = 0$

Non-constant effects errors

How does the non-constant effect error work here?

$$\mathbb{E}[(\tau_{it} - \tau)D_{it}|\underline{X}_{i}, \underline{D}_{i}, U_{i}] = \mathcal{D}_{it}(\mathbb{E}[\tau_{it} - \tau|\underline{X}_{i}, \underline{D}_{i}, U_{i}])$$

$$= D_{it}(\mathbb{E}[\tau_{it}|\underline{X}_{i}, \underline{D}_{i}, U_{i}] - \tau)$$

$$= D_{it}(\mathbb{E}[\tau_{it}|\underline{X}_{i}, U_{i}] - \tau)$$

$$= D_{it}(\mathbb{E}[\tau_{it}|\underline{X}_{i}, U_{i}] - \mathbb{E}[\tau_{it}])$$

• Thus, we can see that the combined error will only satisfy the strict exogeneity assumption of fixed effects when

$$E[\tau_{it}|\underline{X}_{i}, U_{i}] = E[\tau_{it}]$$

 This is when the treatment effects are independent of the unit effects and the covariates.

Regression bias?

• We've seen this before: it's a general problem with regression and varying treatment effects.

$$\eta_{it} = \underbrace{D_{it}(\tau_{it} - \tau)}_{\text{non-constant effects}} + \underbrace{Y_{it}(0) - E[Y_{it}(0)|\underline{X}_{i}, U_{i}]}_{\text{typical errors}}$$

- Generally the issue here is that non-constant effects induce correlation between the treatment and the error term.
- Distinct from confounding bias since we could, in principle, estimate E[τ_{it}|<u>X</u>_i, U_i] to then calculate E[τ_{it}]
- Overall ATE still nonparametrically identified, even if the FE regression doesn't estimate it.

Strict exogeneity/ignorability

 $Y_{it}(d) \perp\!\!\!\perp \underline{D}_i | \underline{X}_i, U_i$

- Strict ignorability is very strong.
- Rules out the following:
 - D_{it} affects Y_{it} which then affects $D_{i,t+1}$
 - Basically, any feedback between treatment and the outcome
- Can we weaken this? Yes! Sequential ignorability:

$$Y_{it}(d) \perp D_{it}|\underline{X}_{it}, \underline{D}_{i,t-1}, U_i$$

- Note here that the we only condition up to t so that the errors can be correlated with future D_{i,t+1} and so on.
- This implies sequential exogeneity of the errors:

$$\mathbb{E}[\varepsilon_{it}|\underline{X}_{it},\underline{D}_{it},U_i]=0.$$

Strict ignorability example

- Example: economic interdependence between countries (D_{it} = 1 if county-dyad *i* is interdependent in period *t*) and conflict severity (Y_{it}) between countries.
- Strict ignorability assumption implies shocks to conflict severity at t uncorrelated with:
 - future values of conflict severity
 - economic interdendence
 - any other time-varying covariate

Lagged dependent variables

$$Y_{it} = \beta Y_{i,t-1} + \tau D_{it} + U_i + \varepsilon_{it}$$

- Fixed effects models with lagged dependent variables is much harder.
- Easiest to see with first differences:

$$(Y_{it} - Y_{i,t-1}) = \beta(Y_{i,t-1} - Y_{i,t-2}) + \tau(D_{it} - D_{i,t-1}) + (\varepsilon_{it} - \varepsilon_{i,t-1})$$

- Obviously, $Y_{i,t-1}$ is correlated with the $\varepsilon_{i,t-1}$.
- This is sometimes called a **dynamic panel model**, where we can't rely on the exogeneity assumption alone.
- → need an instrumental variable approach (coming up in a few weeks).

4/ Cumulative effects

Contemporaneous vs Cumulative effects

- Another assumption we've been making is that there is only a contemporaneous effect: τD_{it} .
- Implicitly or explicitly fixing the past history of the treatment.
- What if we want to estimate the cumulative effects?
- Very difficult, if not impossible with fixed effects models.
- Why?
 - ▶ For cumulative effects, we need to consider the effects of treatment on time-varying confounders, X_{it}(<u>d</u>_i, _{t-1}).
 - Those pathways might be hard to identify

New notation

- Two-period effects: $Y_{it}(d_{t-1}, d_t)$
- New consistency assumption:

$$Y_{it} = Y_{it}(D_{i,t-1}, D_{it})$$

In general, we will be interested in average treatment effects:

$$\mathbb{E}[Y_{it}(d_{t-1}, d_t) - Y_{it}(d_{t-1}^*, d_t^*)].$$

- Let $\underline{d} = (d_1, \dots, d_T)$ be one entire history of \underline{D} .
- Partial history: $\underline{d}_t = (d_1, \dots, d_t)$.

Fixed effects causal models

• Need a causal model:

 $Y_{it}(d_{t-1},d_t) = X_{it}'(d_{t-1})\beta_c + \tau_{i,t-1}d_{t-1} + \tau_{it}d_t + U_i + \varepsilon_{it}$

- β_c have c subscript here to denote difference from above fixed effect regressions.
- Allows for heterogeneous effects in each unit-period.

$$\mathbb{E}[Y_{it}(1,1) - Y_{it}(0,0)] = \mathbb{E}[\underbrace{\tau_{i,t-1} + \tau_{it}}_{\text{direct effects}} + \underbrace{(X_{it}(1) - X_{it}(0))'\beta_c}_{\text{effect of } D_{i,t-1} \text{ through } X_{it}}]$$

Cumulative effects notes

 Sobel paper shows that under fixed effects-style confounding can only estimate contemporaneous effect, where d_{t-1} is the same for the comparison:

$$\mathbb{E}[Y_{it}(d_{t-1}, 1) - Y_{it}(d_{t-1}, 0)] = \mathbb{E}[\tau_{it}]$$

- β_c is very difficult to identify! Need more restrictions.
- Exception: X_{it} is unaffected by $D_{i,t-1}$ so that $X_{it}(1) = X_{it}(0)$ and so:

$$\mathbb{E}[Y_{it}(1,1) - Y_{it}(0,0)] = \mathbb{E}[\tau_{i,t-1} + \tau_{it}]$$