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Where are we? Where are we going?

• Last week: motivating the idea of regression and deriving an estimator for the
parameters of a linear regression model.

• This week: investigating the properties of the least squares estimator and the
assumptions of the linear regression model.

review
The population linear regression function

• The (population) simple linear regression model can be stated as the following:

r(x) = E[Y |X = x] = β0 + β1x

• This describes the data generating process in the population
• Y = dependent variable
• X = independent variable
• β0, β1 = population intercept and population slope (what we want to estimate)

1

mailto:mblackwell@gov.harvard.edu


2

The sample linear regression function

• The estimated or sample regression function is:

r̂(Xi) = Ŷi = β̂0 + β̂1Xi

• β̂0, β̂1 are the estimated intercept and slope
• Ŷi is the fitted/predicted value
• We also have the residuals, ûi which are the differences between the true values

of Y and the predicted value:

ûi = Yi − Ŷi

• You can think of the residuals as the prediction errors of our estimates.

goals
Overall goals

• Learn how to run and read regression
• Mechanics: how to estimate the intercept and slope?
• Properties: when are these good estimates?
• Uncertainty: how will the OLS estimator behave in repeated samples?
• Testing: can we assess the plausibility of no relationship (β1 = 0)?
• Interpretation: how do we interpret our estimates?

More narrow goal

• A more narrow goal is to understand everything from an R regression output:

ajr <- foreign::read.dta(”ajr.dta”)

out <- lm(logpgp95 ~ logem4, data = ajr)

summary(out)

##

## Call:

## lm(formula = logpgp95 ~ logem4, data = ajr)

##

## Residuals:

## Min 1Q Median 3Q Max

## -2.71304 -0.53326 0.01954 0.47188 1.44673

##
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## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 10.66025 0.30528 34.92 < 2e-16 ***

## logem4 -0.56412 0.06389 -8.83 2.09e-13 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 0.7563 on 79 degrees of freedom

## (82 observations deleted due to missingness)

## Multiple R-squared: 0.4967, Adjusted R-squared: 0.4903

## F-statistic: 77.96 on 1 and 79 DF, p-value: 2.094e-13

mechanics of ols
What is OLS?

• An estimator for the slope and the intercept of the regression line
• We talked last week about ways to derive this estimator and we settled on deriv-

ing it by minimizing the squared prediction errors of the regression, or in other
words, minimizing the sum of the squared residuals:

• Ordinary Least squares (OLS):

(β̂0, β̂1) = arg min
b0,b1

n∑
i=1

(Yi − b0 − b1Xi)
2

• In words, the OLS estimates are the intercept and slope that minimize the sum
of the squared residuals.

Intuition of the OLS estimator

• The intercept equation tells us that the regression line goes through the point
(Y ,X):

Y = β̂0 + β̂1X

• The slope for the regression line can be written as the following:

β̂1 =

∑n
i=1(Xi −X)(Yi − Y )∑n

i=1(Xi −X)2
=

Sample Covariance between X and Y

Sample Variance of X

• The higher the covariance between X and Y , the higher the slope will be.

• Negative covariances = negative slopes; positive covariances = positive slopes
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• What happens when Xi doesn’t vary?

• What happens when Yi doesn’t vary?

Mechanical properties of OLS

• Later we’ll see that under certain assumptions, OLS will have nice statistical
properties. But some properties of OLS are mechanical in the sense that they
are just a function of how we estimated the slope and intercept.

• Each of these can be derived from the first order conditions of OLS.

• The residuals will be 0 on average:

1

n

n∑
i=1

ûi = 0

• The residuals will be uncorrelated with the predictor (ĉov is the sample covari-
ance):

ĉov(Xi, ûi) = 0

• The residuals will be uncorrelated with the fitted values:

ĉov(Ŷi, ûi) = 0

• Note that these are properties of the estimated residuals, ûi, not the true errors,
ui!

OLS slope as a weighted sum of the outcomes

• One useful derivation thatwe’ll domoving forward is towrite theOLS estimator
for the slope as a weighted sum of the outcomes.

β̂1 =

∑n
i=1(Xi −X)(Yi − Y )∑n

i=1(Xi −X)2

=

∑n
i=1(Xi −X)Yi∑n
i=1(Xi −X)2

−
∑n

i=1(Xi −X)Y∑n
i=1(Xi −X)2

=

∑n
i=1(Xi −X)Yi∑n
i=1(Xi −X)2

=

n∑
i=1

WiYi
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• Where here we have the weights, Wi as:

Wi =
(Xi −X)∑n
i=1(Xi −X)2

• This is important for two reasons. First, it’ll make derivations later much easier.
And second, it shows that is just the sum of a random variable. Therefore it is
also a random variable.

properties of the ols estimator
Sampling distribution of the OLS estimator

• Remember: OLS is an estimator—it’s a machine that we plug data into and we
get out estimates. Just like the sample mean, sample difference in means, or the
sample variance. It’s a more complicated estimator, to be sure, but it still has the
same basic structure as the others.

• It has a sampling distribution, with a sampling variance/standard error, etc.

• Let’s simulate some data to get a sense for how the sampling distribution of the
OLS estimators works.

• To do this, we’re going to pretend that the AJR data represents the population of
interest and we are going to take samples from it to see how the regression line
varies from sample to sample. (Note that this is just for demonstration since
we’ll never actually have the whole population)

• First, let’s plot the population regression line:

ajr <- foreign::read.dta(”ajr.dta”)

plot(ajr$logem4, ajr$logpgp95, xlab = ”Log Settler Mortality”, ylab = ”Log GDP per capita growth”,

pch = 19, bty = ”n”, xlim = c(1, 8), ylim = c(6, 12))

abline(lm(logpgp95 ~ logem4, data = ajr), col = ”indianred”, lwd = 3)
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• Now, let’s take two random samples of size n = 30 from this “population” and
the plot the results, with the true population line overlaid:

set.seed(2143)

par(mfrow = c(1, 2))

ajr.samp <- ajr[sample(1:nrow(ajr), size = 30, replace = TRUE), ]

plot(ajr.samp$logem4, ajr.samp$logpgp95, xlab = ”Log Settler Mortality”, ylab = ”Log GDP per capita growth”,

pch = 19, bty = ”n”, xlim = c(1, 8), ylim = c(6, 12))

abline(lm(logpgp95 ~ logem4, data = ajr.samp), col = ”dodgerblue”, lwd = 3)

abline(lm(logpgp95 ~ logem4, data = ajr), col = ”indianred”, lwd = 1)

ajr.samp2 <- ajr[sample(1:nrow(ajr), size = 30, replace = TRUE), ]

plot(ajr.samp2$logem4, ajr.samp2$logpgp95, xlab = ”Log Settler Mortality”, ylab = ”Log GDP per capita growth”,

pch = 19, bty = ”n”, xlim = c(1, 8), ylim = c(6, 12))

abline(lm(logpgp95 ~ logem4, data = ajr.samp2), col = ”dodgerblue”, lwd = 3)

abline(lm(logpgp95 ~ logem4, data = ajr), col = ”indianred”, lwd = 1)
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• Note how in our two samples, the slope and the intercept are not exactly the
same as in the population. In the first, the estimated intercept is lower than the
population intercept, while in the second the estimated intercept is higher.

• In the first sample, the estimated slope is closer to 0 than the true slope. In the
second sample, it’s more negative than the true slope.

• This is just due to random sampling!

• Now let’s repeat this process 1000 times to see how the slopes and intercepts
vary in lots of repeated samples:

set.seed(2143)

true.reg <- lm(logpgp95 ~ logem4, data = ajr)

sims <- 1000

inters <- rep(NA, times = sims)

slopes <- rep(NA, times = sims)

plot(ajr$logem4, ajr$logpgp95, xlab = ”Log Settler Mortality”, ylab = ”Log GDP per capita growth”,

pch = 19, bty = ”n”, xlim = c(1, 8), ylim = c(6, 12))

for (i in 1:sims) {

ajr.samp <- ajr[sample(1:nrow(ajr), size = 30, replace = TRUE), ]

this.reg <- lm(logpgp95 ~ logem4, data = ajr.samp)

abline(this.reg, col = rgb(0.6, 0.6, 1, alpha = 0.5), lwd = 1)

inters[i] <- coef(this.reg)[1]

slopes[i] <- coef(this.reg)[2]

}

abline(true.reg, col = ”indianred”, lwd = 3)
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• You can see that the estimated slopes and intercepts vary from sample to sample,
but that the “average” of the lines looks about right. We can look at the sampling
distribution of the parameters separately to see that this is about right:

par(mfrow = c(1, 2))

hist(inters, xlab = expression(hat(beta)[0]), main = ”Sampling distribution of intercepts”)

abline(v = coef(true.reg)[1], col = ”indianred”, lwd = 3)

hist(slopes, xlab = expression(hat(beta)[1]), main = ”Sampling distribution of slopes”)

abline(v = coef(true.reg)[2], col = ”indianred”, lwd = 3)
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• The sampling distribution of the OLS estimators are centered roughly around
their true value. Remember that we call this property unbiasedness of the esti-
mators.

• Here’s the question: will OLS always be unbiased? Under what assumptions will
it be unbiased or consistent?

Assumptions needed for the unbiasedness of the sample mean

• What assumptions did we make to prove that the sample mean was unbiased?
• Just one: that we had a random or iid sample from the population.
• We’ll need more than this for the regression case

Assumptions for unbiasedness and consistency of OLS

• Generally we’ll need different assumptions to derive different properties of the
OLS estimator.

• For unbiasedness and consistency, we’ll need the following assumptions.

1. Linearity
2. Random (iid) sample
3. Variation in Xi

4. Zero conditional mean of the errors

Assumption 1: Linearity

Assumption 1 - The population regression function is linear in the parameters:

Y = β0 + β1Xi + u

• u is the unobserved error or disturbance term that represents all factors influ-
encing Y other than X .

• Violation of the linearity assumption:

Y =
1

β0 + β1X
+ u

• Not a violation of the linearity assumption:

Y = β0 + β1X
2 + u
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Assumption 2: Random Sample

Assumption 2 - We have a iid random sample of size n, {(Yi, Xi) : i = 1, 2, . . . , n}
from the population regression model above.

• Violation of the linearity assumption: time-series, selected samples.

0 20 40 60 80 100
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0
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X

Y

• Think about the weight example from last week, where Yi was my weight on a
given day and Xi was my number of active minutes the day before:

weighti = β0 + β1activityi + ui

• What if I only weighed myself on the weekdays?

Assumption 3: Variation in X

Assumption 3 - The in-sample independent variables, {Xi : i = 1, . . . , n}, are not
all the same value.

• Why does this matter? How would you draw the line of best fit through this
scatterplot, which is a violation of this assumption?
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• Also remember the formula for the OLS slope estimator:

β̂1 =

∑n
i=1(Xi −X)(Yi − Y )∑n

i=1(Xi −X)2

• What happens here when Xi doesn’t vary?

Assumption 4: Zero conditional mean of the errors

Assumption 4 - The error, ui, has expected value of 0 given any value of the indepen-
dent variable:

E[ui|Xi = x] = 0 ∀x.

• How does this assumption get violated? Let’s generate data from the following
model:

Yi = 1 + 0.5Xi + ui

• But let’s compare two situations. One where Xi and ui are correlated so that
the mean of ui depends on Xi (a violation of Assumption 4) and one where
there is no correlation (not a violation). Let’s plot this data along with the true
regression line (β0 = 1 and β1 = 0.5):
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• For the violation, you can see that for low values of Xi most of the errors are
negative and for high values ofXi, most of the errors are positive. You can also
see that the sample of data points doesn’t really fit the regression line at all.

• Compare this to a situation with no correlation between Xi and ui, where the
errors are roughly 0 on average, no matter the value of Xi.

Zero conditional mean in the error example

• Think about the weight example from last week, where Yi was my weight on a
given day and Xi was my number of active minutes the day before:

weighti = β0 + β1activityi + ui

• What might in ui here? Amount of food eaten, workload, etc etc.
• We have to assume that all of these factors have the same mean, no matter what

my level of activity was. Plausible?
• When is this assumption most plausible? When Xi is randomly assigned.

Unbiasedness

• With Assumptions 1-4, we can show that the OLS estimator for the slope is
unbiased, that is E[β̂1] = β1.
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• There are two ways that we use the above assumptions. First, we can establish
that the conditional expectation function (CEF)

E[Yi|X1, . . . , Xn] = E[Yi|Xi] (A2: iid)
= E[β0 + β1Xi + u|Xi] (A1: linearity)
= β0 + β1Xi + E[ui|Xi]

= β0 + β1Xi (A4: zero mean error)

• Second, note that we can only calculate β̂1 when Assumption 3 (variation inX)
holds.

• With these two facts, we can show show that E[β̂1|X1, . . . , Xn] = β1.
• Remember that we showed that β̂1 =

∑n
i=1WiYi. We’re going to use this fact.

Also remember that Wi is a function of all observations of the independent
variable since it contains the mean, so conditional on X = (X1, . . . , Xn), it is
constant.

E[β̂1|X1, . . . , Xn] = E

[
n∑

i=1

WiYi

∣∣∣X1, . . . , Xn

]

=
n∑

i=1

E [WiYi|X1, . . . , Xn]

=

n∑
i=1

WiE [Yi|X1, . . . , Xn]

=

n∑
i=1

Wi(β0 + β1Xi) (result above)

= β0

n∑
i=1

Wi + β1

n∑
i=1

WiXi

• Are we stuck? No! Because we can show that
∑n

i=1Wi = 0 and
∑n

i=1WiXi =
1:
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n∑
i=1

Wi =
n∑

i=1

(Xi −X)∑n
i=1(Xi −X)2

=
1∑n

i=1(Xi −X)2

n∑
i=1

(Xi −X)

=
1∑n

i=1(Xi −X)2
· 0 = 0

- This works because the sum of deviations from the mean are 0! Now, the second
fact:

n∑
i=1

WiXi =

n∑
i=1

Xi(Xi −X)∑n
i=1(Xi −X)2

=
1∑n

i=1(Xi −X)2

n∑
i=1

Xi(Xi −X)

=
1∑n

i=1(Xi −X)2

[
n∑

i=1

Xi(Xi −X)−
n∑

i=1

X(Xi −X)

]

=
1∑n

i=1(Xi −X)2

n∑
i=1

(Xi −X)(Xi −X)

= 1

• Plugging this back into our original derivation, we get the following:

E[β̂1|X1, . . . , Xn] = β0 · 0 + β1 · 1 = β1

• Now, noticed that we conditioned on X1, . . . , Xn. But we need to show that
E[β̂1] = β1. Let’s use the law of iterated expectations!

E[β̂1] = E[E[β̂1|X1, . . . , Xn]]

= E[β1]
= β1

• The basic intuition here that the conditionmean given the independent variable
is the same, no matter the value of the independent variables. Therefore, the
overall mean must just be equal to that constant.

• Recap: linearity, random sampling, variation in X , and zero conditional mean
for the error will get us unbiasedness.
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Consistency

• Under the same set of assumptions, we can show that the OLS estimator is con-
sistent, so that β̂1

p→ β1.

• It’s not very hard to prove, but we’ll skip the proof because it involves properties
of convergence in probability. You can find the proof in the appendix of these
notes.

Where are we?

• Now we know that, under Assumptions 1-4, we know that β̂1 ∼?(β1, ?)

• That is we know that the sampling distribution is centered on the true popula-
tion slope, but we don’t know the population variance.

Sampling variance of estimated slope

• In order to derive the sampling variance of the OLS estimator,

1. Linearity
2. Random (iid) sample
3. Variation in Xi

4. Zero conditional mean of the errors
5. Homoskedasticity

Assumption 5: Homoskedasticity

Assumption 5 - The conditional variance of Yi given Xi is constant:

V(Yi|Xi = x) = V(ui|Xi = x) = σ2
u.

• The conditional variance of Y given X is sometimes called the skedastic func-
tion, thus the name homoskedasticity.
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Deriving the sampling variance

V[β̂1|X1, . . . , Xn] = V

[
n∑

i=1

WiYi

∣∣∣X1, . . . , Xn

]

=

n∑
i=1

W 2
i V [Yi|X1, . . . , Xn] (A2: iid)

=

n∑
i=1

W 2
i V [Yi|Xi] (A2: iid)

= σ2
u

n∑
i=1

W 2
i (A5: homoskedastic)

=
σ2
u

∑n
i=1(Xi −X)2(∑n

i=1(Xi −X)2
)2

=
σ2
u∑n

i=1(Xi −X)2

• What drives the sampling variability of the OLS estimator?

– The higher the variance of Yi, the higher the sampling variance
– The lower the variance of Xi, the higher the sampling variance
– As we increase n, the denominator gets large, while the numerator is fixed

and so the sampling variance shrinks to 0.

Estimating the sampling variance/standard error

• We just saw that V(β̂1|X) = σ2
u∑n

i=1(Xi−X)2

• Butwe don’t observeσ2
u—it is the variance of the errors, whichwe don’t observe.

What can we do? Estimate it using the residuals!

σ̂2
u =

1

n− 2

n∑
i=1

û2i

• Why n − 2 instead of n or n − 1? Remember that OLS is designed to mini-
mize the sum of the squared residuals, so it tends to slightly underestimate the
variance. The n− 2 corrects this.

• With this, we can find the estimated standard error of our OLS estimator of the
slope:

ŜE[β̂1] =

√
σ̂2
u√∑n

i=1(Xi −X)2
=

σ̂u√∑n
i=1(Xi −X)2
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Gauss-Markov Theorem

Theorem Under assumptions 1-5, the OLS estimator is BLUE, or the Best Linear
Unbiased Estimator, where by “best” we mean it lowest sampling variance.

• The proof is very detailed, so we’ll skip it. See Wooldridge, Appendix 3A.6 for
details.

• Fails to hold when the assumptions are violated!

Large-sample inference distribution of OLS estimators

• Remember that we can write β̂1 =
∑n

i=1WiYi, so that the OLS estimator is the
sum of independent r.v.’s.

• Also remember the mantra of the central limit theorem: “the sums and means
of r.v.’s tend to be Normally distributed in large samples.”

• Also true here, by amore advanced version of theCLT (LiapounovCLT for fixed
regressors, Maringale Difference CLT for general regressors), we know that in
large samples:

β̂1 − β1

SE[β̂1]
∼ N(0, 1)

• Also, in large samples, remember that we can replace the true standard error
with our estimate of the standard error, so that:

β̂1 − β1

ŜE[β̂1]
∼ N(0, 1)

Sampling distribution in small samples

• What if we have a small sample? What can we do then?
• We still know that β̂ ∼?(β1, SE[β̂]2) since we know that unbiasedness holds

and we know how to calculate the sampling variance. We just don’t know the
form of the sampling distribution.

• Can’t get something for nothing, but we can make progress if we make another
assumption:

1. Linearity
2. Random (iid) sample
3. Variation in Xi

4. Zero conditional mean of the errors
5. Homoskedasticity
6. Errors are conditionally Normal
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Assumption 6: conditionally Normal errors

Assumption 6 - The conditional distribution of u givenX is Normal with mean 0 and
variance σ2

u.

• This implies that the distribution of Yi given Xi is: N(β0 + β1Xi, σ
2
u).

Sampling distribution of OLS slope

• If we have Yi given Xi is distributed N(β0 + β1Xi, σ
2
u), then we have the fol-

lowing at any sample size:

β̂1 − β1

SE[β̂1]
∼ N(0, 1)

• Furthermore, if we replace the true standard error with the estimated standard
error, then we get the following:

β̂1 − β1

ŜE[β̂1]
∼ tn−2

• The standardized coefficient follows a t distribution n− 2 degrees of freedom.
We take off an extra degree of freedom because we had to one more parameter
than just the sample mean.

• All of this depends on Normal errors! We can check to see if the error do look
Normal.

hypothesis tests for regression
Null and alternative hypotheses review

• Null: H0 : β1 = 0

– The null is the straw man we want to knock down.
– With regression, almost always null of no relationship

• Alternative: Ha : β1 ̸= 0

– Claim we want to test
– Almost always “some effect”
– Could do one-sided test, but you shouldn’t, for reasons we’ve already dis-

cussed
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• Notice these are statements about the population parameters, not the OLS esti-
mates. ## Test statistic

• Under the null of H0 : β1 = c, we can use the following familiar test statistic:

T =
β̂1 − c

ŜE[β̂1]

• As we saw in the last section, if the errors are conditionally Normal, then under
the null hypothesis we have:

T ∼ tn−2

• In large samples, we know that T is approximately (standard) Normal, but we
also know that tn−2 is approximately (standard) Normal in large samples too,
so this statement works there too, even if Normality of the errors fails.

• Thus, under the null, we know the distribution of T and can use that to formu-
late a rejection region and calculate p-values.

Rejection region

• Choose a level of the test, α, and find rejection regions that correspond to that
value under the null distribution:

P(−tα/2,n−2 < T < tα/2,n−2) = 1− α

• This is exactly the same as with sample means and sample differences in means,
except that the degrees of freedom on the t distribution have changed.

p-value

• The interpretation of the p-value is the same: the probability of seeing a test
statistic at least this extreme if the null hypothesis were true

• Mathematically:

P

(∣∣∣∣∣ β̂1 − c

ŜE[β̂1]

∣∣∣∣∣ ≥ |Tobs|

)
• If the p-value is less than α we would reject the null at the α level.

R output

• By default, R shows you the Tobs for the test statistic with the null of β1 = 0,
which is just the estimate divided by the standard error:

Tobs =
β̂1 − 0

ŜE[β̂1]
=

β̂1

ŜE[β̂1]
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• R also calculates the p-values for you.
• In the AJR data:

out <- lm(logpgp95 ~ logem4, data = ajr)

coef(summary(out))

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 10.6602465 0.30528441 34.919066 8.758878e-50

## logem4 -0.5641215 0.06389003 -8.829569 2.093611e-13

• We could have calculated that directly:

r -0.5641/0.06389

## [1] -8.829238

confidence intervals for regression
Confidence intervals

• Very similar to the approach with sample means. By the sampling distribution
of the OLS estimator, we know that we can find t-values such that:

P
(
− tα/2,n−2 ≤

β̂1 − β1

ŜE[β̂1]
≤ tα/2,n−2

)
= 1− α

• If we rearrange this as before, we can get an expression for confidence intervals:

P
(
β̂1 − tα/2,n−2ŜE[β̂1] ≤ β1 ≤ β̂1tα/2,n−2ŜE[β̂1]

)
= 1− α

• Thus, we can write the confidence intervals as:

β̂1 ± tα/2,n−2ŜE[β̂1]

• We can derive these for the intercept as well:

β̂0 ± tα/2,n−2ŜE[β̂0]

Confidence intervals in R

• Confidence intervals are not outputted by default, but you grab them for any
regression using the confint() function:
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confint(lm(logpgp95 ~ logem4, data = ajr))

## 2.5 % 97.5 %

## (Intercept) 10.0525931 11.2678999

## logem4 -0.6912914 -0.4369515

review of assumptions
• What assumptions do we need to make what claims with OLS?

1. Data description: variation in X
2. Unbiasedness/Consistency: linearity, iid, variation inX , zero conditional

mean error.
3. Large-sample inference: linearity, iid, variation in X , zero conditional

mean error, homoskedasticity.
4. Small-sample inference: linearity, iid, variation in X , zero conditional

mean error, homoskedasticity, Normal errors.

• Can we weaken these? In some cases, yes. Bootstrap to weaken homoskedas-
ticity, for instance.

goodness of fit
Prediction error

• How do we judge how well a line fits the data? Is there some way to judge?
• One way is to find out how much better we do at predicting Y once we include
X into the regression model.

• Prediction errors withoutX : best prediction is themean, so our squared errors,
or the total sum of squares (SStot) would be:

SStot =

n∑
i=1

(Yi − Y )2

• Once we have estimated our model, we have new prediction errors, which are
just the sum of the squared residuals or SSres:

SSres =

n∑
i=1

(Yi − Ŷi)
2
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R-square

• By definition, the residuals have to be smaller than the deviations from the
mean, so we might ask the following: how much lower is the SSres compared
to the SStot?

• We quantify this question with the coefficient of determination or R2. This is
the following:

R2 =
SStot − SSres

SStot
= 1− SSres

SStot

• This is the fraction of the total prediction error eliminated by providing infor-
mation on X .

• Alternatively, this is the fraction of the variation in Y is “explained by” X .
• R2 = 0 means no relationship
• R2 = 1 implies perfect linear fit

Is R-squared useful?

• Can be very misleading. Each of these samples have the same R2 even though
they are vastly different:
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appendix
Proof of sums and means trick

• In the derivation of the OLS estimator, we relied on a trick with the means and
sums. Here is the proof:
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n∑
i=1

Xi(Yi − Y ) =
n∑

i=1

Xi(Yi − Y )− nXY + nXY

=

n∑
i=1

Xi(Yi − Y )−X

(
n∑

i=1

Yi

)
+X

(
n∑

i=1

Y

)

=

n∑
i=1

Xi(Yi − Y )−X

(
n∑

i=1

Yi −
n∑

i=1

Y

)

=
n∑

i=1

Xi(Yi − Y )−X
n∑

i=1

(
Yi − Y

)
=

n∑
i=1

Xi(Yi − Y )−
n∑

i=1

X
(
Yi − Y

)
=

n∑
i=1

[
Xi(Yi − Y )−X

(
Yi − Y

)]
=

n∑
i=1

(Xi −X)(Yi − Y )

• Replace (Yi − Y ) with (Xi −X) to prove that

n∑
i=1

Xi(Xi −X) =
n∑

i=1

(Xi −X)2
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Proof of OLS Consistency

• How can we prove this? Well, we can use the

β̂1 =
n∑

i=1

WiYi

=

n∑
i=1

Wi(β0 + β1Xi + ui)

= β0

n∑
i=1

Wi + β1

n∑
i=1

WiXi +

n∑
i=1

Wiui

= β1 +

n∑
i=1

Wiui

= β1 +

∑n
i=1(Xi −X)ui∑n
i=1(Xi −X)2

= β1 +
1/n

∑n
i=1(Xi −X)(ui − u)

1/n
∑n

i=1(Xi −X)2

• Note that, by the law of large numbers:

1/n

n∑
i=1

(Xi −X)(ui − u)
p→ cov(X,u)

1/n
n∑

i=1

(Xi −X)2
p→ V(X)

• With these facts in hand and relying on the properties of convergence in prob-
ability (see Wooldridge PLIM property 2 in Appendix C):

β̂1
p→ β1 +

cov(X,u)

V(X)

= β1 +
0

V(X)
(A4: zero conditional mean of error)

= β1 (A3: variation in IV)
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