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Where are we? Where are we
going?

• Last week:
▶ Using the CEF to explore relationships
▶ Bias-variance trade-off led us to linear regression.

• This week:
▶ Inference for OLS: sampling distribution.
▶ Is there really a relationship? Hypothesis tests
▶ Can we get a range of plausible slope values? Confidence

intervals
▶ ⇝ how to read regression output.
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More narrow goal
ajr <- foreign::read.dta("ajr.dta")
summary(lm(logpgp95 ~ logem4, data = ajr))

##
## Call:
## lm(formula = logpgp95 ~ logem4, data = ajr)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.7130 -0.5333 0.0195 0.4719 1.4467
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.6602 0.3053 34.92 < 2e-16 ***
## logem4 -0.5641 0.0639 -8.83 2.1e-13 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.756 on 79 degrees of freedom
## (82 observations deleted due to missingness)
## Multiple R-squared: 0.497, Adjusted R-squared: 0.49
## F-statistic: 78 on 1 and 79 DF, p-value: 2.09e-13
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1/ Setup of the
OLS estimator
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Simple linear regression model

• We are going to assume a linear model:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝑢𝑖

• Data:
▶ Dependent variable: 𝑌𝑖
▶ Independent variable: 𝑋𝑖

• Population parameters:
▶ Population intercept: 𝛽0
▶ Population slope: 𝛽1

• Error/disturbance: 𝑢𝑖
▶ Represents all unobserved error factors influencing 𝑌𝑖 other

than 𝑋𝑖.
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What is OLS?

• Ordinary least squares (OLS) is an estimator for the slope and
the intercept of the regression line.

• Where does it come from? Minimizing the sum of the squared
residuals:

(𝛽0, 𝛽1) = argmin
𝑏0,𝑏1

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑏0 − 𝑏1𝑋𝑖)2

• Leads to:
𝛽0 = 𝑌 − 𝛽1𝑋

𝛽1 = ∑𝑛
𝑖=1(𝑋𝑖 − 𝑋)(𝑌𝑖 − 𝑌)
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋)2
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Intuition of the OLS estimator

• Regression line goes through the sample means (𝑌, 𝑋):

𝑌 = 𝛽0 + 𝛽1𝑋

• Slope is the ratio of the covariance to the variance of 𝑋𝑖:

𝛽1 = ∑𝑛
𝑖=1(𝑋𝑖 − 𝑋)(𝑌𝑖 − 𝑌)
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋)2
= Ĉov(𝑋𝑖, 𝑌𝑖)

𝕍̂[𝑋𝑖]

= Sample Covariance between 𝑋 and 𝑌
Sample Variance of 𝑋
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The sample linear regression
function

• The estimated or sample regression function is:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖

• Estimated intercept: 𝛽0
• Estimated slope: 𝛽1
• Predicted/fitted values: 𝑌𝑖
• Residuals: ̂𝑢𝑖 = 𝑌𝑖 − 𝑌𝑖
• You can think of the residuals as the prediction errors of our

estimates.
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Mechanical properties of OLS
• Some properties are mechanical since they can be derived

from the first order conditions of OLS.

1. The residuals will be 0 on average:

1
𝑛

𝑛
∑
𝑖=1

̂𝑢𝑖 = 0

2. The residuals will be uncorrelated with the predictor:

Ĉov(𝑋𝑖, ̂𝑢𝑖) = 0

3. The residuals will be uncorrelated with the fitted values:

Ĉov(𝑌𝑖, ̂𝑢𝑖) = 0
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OLS slope as a weighted sum of
the outcomes

• One useful derivation that we’ll do moving forward is to write
the OLS estimator for the slope as a weighted sum of the
outcomes.

𝛽1 =
𝑛
∑
𝑖=1

𝑊𝑖𝑌𝑖

• Where here we have the weights, 𝑊𝑖 as:

𝑊𝑖 =
(𝑋𝑖 − 𝑋)

∑𝑛
𝑖=1(𝑋𝑖 − 𝑋)2

• Estimation error: proof

𝛽1 − 𝛽1 =
𝑛
∑
𝑖=1

𝑊𝑖𝑢𝑖

• ⇝ 𝛽1 is a sum of random variables.
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2/ Sampling
distribution of the
OLS estimator
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Sampling distribution of the OLS
estimator

• Remember: OLS is an estimator—it’s a machine that we plug
data into and we get out estimates.

OLS

Sample 1: {(𝑌1, 𝑋1),… , (𝑌𝑛, 𝑋𝑛)} (𝛽0, 𝛽1)1
Sample 2: {(𝑌1, 𝑋1),… , (𝑌𝑛, 𝑋𝑛)} (𝛽0, 𝛽1)2

⋮ ⋮
Sample 𝑘 − 1: {(𝑌1, 𝑋1),… , (𝑌𝑛, 𝑋𝑛)} (𝛽0, 𝛽1)𝑘−1

Sample 𝑘: {(𝑌1, 𝑋1),… , (𝑌𝑛, 𝑋𝑛)} (𝛽0, 𝛽1)𝑘

• Just like the sample mean, sample difference in means, or the
sample variance

• It has a sampling distribution, with a sampling
variance/standard error, etc.
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Simulation procedure

• Let’s take a simulation approach to demonstrate:
▶ Pretend that the AJR data represents the population of

interest
▶ See how the line varies from sample to sample

1. Draw a random sample of size 𝑛 = 30 with replacement using
sample()

2. Use lm() to calculate the OLS estimates of the slope and
intercept

3. Plot the estimated regression line
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Population Regression
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Randomly sample from AJR
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Randomly sample from AJR
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Randomly sample from AJR
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Randomly sample from AJR
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Randomly sample from AJR
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Randomly sample from AJR
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Randomly sample from AJR
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Sampling distribution of OLS

• You can see that the estimated slopes and intercepts vary
from sample to sample, but that the “average” of the lines
looks about right.

Sampling distribution of intercepts
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Sample mean properties review

• Last couple of weeks we derived the properties of 𝑋𝑛 under
one assumption: i.i.d. random samples.

• In large samples, we derived the sampling distribution:

𝑋𝑛 ∼ 𝑁 (𝜇, 𝜎
2

𝑛 )

• Unbiasedness: 𝔼[𝑋𝑛] = 𝜇
• Sampling variance: 𝜎2/𝑛
• Standard error: 𝜎/√𝑛
• ⇝ allows us to do hypothesis tests, calculate confidence

intervals.
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Our goal

• What is the sampling distribution of the OLS slope?

𝛽1 ∼ ?(?, ?)

• Mean of the sampling distribution: ??
• Sampling variance: ??
• Standard error: ??
• Distribution: ??
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Basic assumptions of OLS

• In order to get the mean of the sampling distribution 𝔼[𝛽1],
we need to make some assumptions:

1. Linearity
2. Random (iid) sample
3. Variation in 𝑋𝑖
4. Zero conditional mean of the errors
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Linearity

Assumption 1: Linearity
The population regression function is linear in the parameters:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝑢𝑖

• Violation of the linearity assumption:

𝑌𝑖 =
1

𝛽0 + 𝛽1𝑋𝑖
+ 𝑢𝑖

• Not a violation of the linearity assumption:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋2
𝑖 + 𝑢𝑖
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Random sample

Assumption 2: Random Sample
We have a iid random sample of size 𝑛, {(𝑌𝑖, 𝑋𝑖) ∶ 𝑖 = 1, 2,… , 𝑛}
from the population regression model above.

• Violation of the random sample assumption: time-series,
selected samples.

• Think about the weight example from last week, where 𝑌𝑖 was
my weight on a given day and 𝑋𝑖 was my number of active
minutes the day before:

weight𝑖 = 𝛽0 + 𝛽1activity𝑖 + 𝑢𝑖

• What if I only weighed myself on the weekdays?
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A non-iid sample
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Variation in X

Assumption 3: Variation in 𝑋
The in-sample independent variables, {𝑋𝑖 ∶ 𝑖 = 1,… , 𝑛}, are not all
the same value.

• Also remember the formula for the OLS slope estimator:

𝛽1 = ∑𝑛
𝑖=1(𝑋𝑖 − 𝑋)(𝑌𝑖 − 𝑌)
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋)2

• What happens here when 𝑋𝑖 doesn’t vary?
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Stuck in a moment
• Why does this matter? How would you draw the line of best

fit through this scatterplot, which is a violation of this
assumption?
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Zero conditional mean

Assumption 4: Zero conditional mean of the errors
The error, 𝑢𝑖, has expected value of 0 given any value of the
independent variable:

𝔼[𝑢𝑖|𝑋𝑖 = 𝑥] = 0 ∀𝑥.

• ⇝ 𝑢𝑖 and 𝑋𝑖 uncorrelated: Cov[𝑢𝑖, 𝑋𝑖] = 𝔼[𝑢𝑖𝑋𝑖] = 0
• ⇝ 𝔼[𝑌𝑖|𝑋𝑖] = 𝛽0 + 𝛽1𝑋𝑖 is the CEF
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Violating the zero conditional
mean assumption

• How does this assumption get violated? Let’s generate data
from the following model:

𝑌𝑖 = 1 + 0.5𝑋𝑖 + 𝑢𝑖
• But let’s compare two situations:

1. Where the mean of 𝑢𝑖 depends on 𝑋𝑖 (they are correlated)
2. No relationship between them (satisfies the assumption)
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More examples of zero conditional
mean in the error

• Think about the weight example from last week, where 𝑌𝑖 was
my weight on a given day and 𝑋𝑖 was my number of active
minutes the day before:

weight𝑖 = 𝛽0 + 𝛽1activity𝑖 + 𝑢𝑖

• What might in 𝑢𝑖 here? Amount of food eaten, workload, etc
etc.

• We have to assume that all of these factors have the same
mean, no matter what my level of activity was. Plausible?

• When is this assumption most plausible? When 𝑋𝑖 is randomly
assigned.
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Unbiasedness

• Used 4 assumptions:

1. Linearity: 𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝑢𝑖
2. Random (iid) sample
3. Variation in 𝑋𝑖
4. Zero conditional mean of the errors: 𝔼[𝑢𝑖|𝑋𝑖 = 𝑥] = 0

• Letting 𝑋 = (𝑋1,… , 𝑋𝑛)

Unbiasedness of OLS
Under assumptions 1-4, the OLS estimator is unbiased:

𝔼[𝛽1] = 𝛽1
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Unbiasedness proof
• Remember the estimation error:

𝛽1 − 𝛽1 =
𝑛
∑
𝑖=1

𝑊𝑖𝑢𝑖

• 𝑊𝑖 = (𝑋𝑖 − 𝑋)/(∑𝑖=1(𝑋𝑖 − 𝑋)2).
• Use this to prove conditional unbiasedness:

𝔼[𝛽1 − 𝛽1|𝑋] = 𝔼⎡⎢
⎣

𝑛
∑
𝑖=1

𝑊𝑖𝑢𝑖∣𝑋⎤⎥
⎦

=
𝑛
∑
𝑖=1

𝔼[𝑊𝑖𝑢𝑖 |𝑋]

=
𝑛
∑
𝑖=1

𝑊𝑖𝔼[𝑢𝑖 |𝑋]

=
𝑛
∑
𝑖=1

𝑊𝑖 × 0 = 0

• Unconditionally unbiased: 𝔼[𝛽1] = 𝔼[𝔼[𝛽1|𝑋]] = 𝔼[𝛽1] = 𝛽1
• Law of Large Numbers ⇝ 𝛽1 consistent
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3/ Sampling
variance of OLS
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Where are we?

• Now we know that, under Assumptions 1-4, we know that

𝛽1 ∼ ?(𝛽1, ?)

• That is we know that the sampling distribution is centered on
the true population slope, but we don’t know the population
sampling variance.

𝕍[𝛽1] = ??

38 / 68



Sampling variance of estimated
slope

• In order to derive the sampling variance of the OLS estimator,

1. Linearity
2. Random (iid) sample
3. Variation in 𝑋𝑖
4. Zero conditional mean of the errors
5. Homoskedasticity
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Homoskedasticity
Assumption 5
The conditional variance of 𝑌𝑖 given 𝑋𝑖 is constant:

𝕍(𝑌𝑖|𝑋𝑖 = 𝑥) = 𝕍(𝑢𝑖|𝑋𝑖 = 𝑥) = 𝜎2𝑢.

• 𝕍[𝑌𝑖|𝑋𝑖 = 𝑥] sometimes called the skedastic function, thus the
name homoskedasticity.

• Under homoskedasticity proof :

𝕍[𝛽1|𝑋] = 𝜎2𝑢
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋)2

• Standard error:

𝑆𝐸[𝛽1|𝑋] = √𝕍[𝛽1|𝑋] = 𝜎𝑢
√∑𝑛

𝑖=1(𝑋𝑖 − 𝑋)2

• Violations: magnitude of 𝑢𝑖 differ at different levels of 𝑋𝑖.
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Derive the sampling variance

𝕍[𝛽1|𝑋] = 𝜎2𝑢
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋)2

• What drives the sampling variability of the OLS estimator?
▶ The higher the variance of 𝑌𝑖, the higher the sampling variance
▶ The lower the variance of 𝑋𝑖, the higher the sampling variance
▶ As we increase 𝑛, the denominator gets large, while the

numerator is fixed and so the sampling variance shrinks to 0.
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Estimating the sampling
variance/standard error

• But we don’t observe 𝜎2𝑢—it is the variance of the errors.
• Estimate with the residuals:

𝜎̂2𝑢 = 1
𝑛 − 2

𝑛
∑
𝑖=1

̂𝑢2𝑖

• Why 𝑛 − 2 instead of 𝑛 or 𝑛 − 1? To correct for OLS slightly
underestimating the variance.

▶ We already used the data twice to estimate 𝛽0 and 𝛽1

• Estimated standard error of the OLS slope:

𝑆𝐸[𝛽1|𝑋] =
√𝜎̂2𝑢

√∑𝑛
𝑖=1(𝑋𝑖 − 𝑋)2

= 𝜎̂𝑢
√∑𝑛

𝑖=1(𝑋𝑖 − 𝑋)2
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Where are we?

• Under Assumptions 1-5, we know that

𝛽1 ∼ ?⎛⎜
⎝
𝛽1,

𝜎2𝑢
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋)2
⎞⎟
⎠

• Now we know the mean and sampling variance of the
sampling distribution.

• How does this compare to other estimators for the population
slope?
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OLS is BLUE :(

Gauss-Markov Theorem
Under assumptions 1-5, the OLS estimator is BLUE, or the Best
Linear Unbiased Estimator, where by ”best” we mean it lowest
sampling variance.

• Assumptions 1-5: the “Gauss Markov Assumptions”
• The proof is very detailed, so we’ll skip it. See Wooldridge,

Appendix 3A.6 for details.
• Fails to hold when the assumptions are violated!
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Where are we?

• Under Assumptions 1-5, we know that

𝛽1 ∼ ?⎛⎜
⎝
𝛽1,

𝜎2𝑢
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋)2
⎞⎟
⎠

• And we know that 𝜎2𝑢
∑𝑛

𝑖=1(𝑋𝑖−𝑋)2
is the lowest variance of any

linear estimator of 𝛽1
• What about the last question mark? What’s the form of the

distribution? Uniform? 𝑡? Normal? Exponential?
Hypergeometric?
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Large-sample distribution of OLS
estimators

• OLS estimator is the sum of independent r.v.’s:

𝛽1 =
𝑛
∑
𝑖=1

𝑊𝑖𝑌𝑖

• Weighted sum of r.v.s ⇝ central limit theorem:

𝛽1
𝑑→ 𝑁 ⎛⎜

⎝
𝛽1,

𝜎2𝑢
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋)2
⎞⎟
⎠

• True here as well, so we know that in large samples:
𝛽1 − 𝛽1
𝑆𝐸[𝛽1]

∼ 𝑁(0, 1)

• Can also replace 𝑆𝐸 with an estimate:
𝛽1 − 𝛽1
𝑆𝐸[𝛽1]

∼ 𝑁(0, 1)
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Where are we?
Under Assumptions 1-5 and in large samples, we know that

𝛽1 ∼ 𝑁 ⎛⎜
⎝
𝛽1,

𝜎2𝑢
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋)2
⎞⎟
⎠
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Sampling distribution in small
samples

• What if we have a small sample? What can we do then? Back
here:

𝛽1 ∼ ?⎛⎜
⎝
𝛽1,

𝜎2𝑢
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋)2
⎞⎟
⎠

• Can’t get something for nothing, but we can make progress if
we make another assumption:

1. Linearity
2. Random (iid) sample
3. Variation in 𝑋𝑖
4. Zero conditional mean of the errors
5. Homoskedasticity
6. Errors are conditionally normal
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Normal errors

Assumption 6: Conditionally Normal Errors
The conditional distribution of 𝑢𝑖 given 𝑋𝑖 is normal with mean 0
and variance 𝜎2𝑢.

• This implies that the distribution of 𝑌𝑖 given 𝑋𝑖 is:
𝑁(𝛽0 + 𝛽1𝑋𝑖, 𝜎2𝑢).

49 / 68



Sampling distribution of OLS slope
• If we have 𝑌𝑖 given 𝑋𝑖 is distributed 𝑁(𝛽0 + 𝛽1𝑋𝑖, 𝜎2𝑢), then

we have the following at any sample size:

𝛽1 − 𝛽1
𝑆𝐸[𝛽1]

∼ 𝑁(0, 1)

• Furthermore, if we replace the true standard error with the
estimated standard error, then we get the following:

𝛽1 − 𝛽1
𝑆𝐸[𝛽1]

∼ 𝑡𝑛−2

• The standardized coefficient follows a 𝑡 distribution 𝑛 − 2
degrees of freedom. We take off an extra degree of freedom
because we had to one more parameter than just the sample
mean.

• All of this depends on normal errors! We can check to see if
the residuals do look normal.
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Where are we?

• Under Assumptions 1-5 and in large samples, we know that

𝛽1 − 𝛽1
𝑆𝐸[𝛽1]

∼ 𝑁(0, 1)

• Under Assumptions 1-6 and in any sample, we know that

𝛽1 − 𝛽1
𝑆𝐸[𝛽1]

∼ 𝑡𝑛−2
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4/ Hypothesis
tests and
confidence
intervals
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Null and alternative hypotheses
review

• Null: 𝐻0 ∶ 𝛽1 = 0
▶ The null is the straw man we want to knock down.
▶ With regression, almost always null of no relationship

• Alternative: 𝐻𝑎 ∶ 𝛽1 ≠ 0
▶ Claim we want to test
▶ Almost always “some effect”
▶ Could do one-sided test, but you shouldn’t, for reasons we’ve

already discussed
• Notice these are statements about the population parameters,

not the OLS estimates.
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Test statistic

• Under the null of 𝐻0 ∶ 𝛽1 = 𝑏, we can use the following
familiar test statistic:

𝑇 = 𝛽1 − 𝑏
𝑆𝐸[𝛽1]

• Under then null hypothesis:
▶ Large samples: 𝑇 ∼ 𝑁(0, 1).
▶ Small samples, plus conditionally normal errors: 𝑇 ∼ 𝑡𝑛−2
▶ Safe to use 𝑡𝑛−2 in either case since 𝑡𝑛−2 ⇝ 𝑁(0, 1)

• Thus, under the null, we know the distribution of 𝑇 and can
use that to formulate a critical value and calculate p-values.
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Critical values
• Choose a level of the test, 𝛼, and find the critical value:

ℙ(|𝑇 | > 𝑐) = 𝛼 ⟺ ℙ(−𝑐 < 𝑇 < 𝑐) = 1 − 𝛼

• This is exactly the same as with sample means.
• In large samples with an 𝛼 = 0.05, find the values so that we

reject 5% of the time under the null:

-4 -2 0 2 4

0.0

0.1

0.2

0.3

0.4

0.5

x

dn
or

m
(x

)

Retain RejectReject

0.025 0.025

c = 1.96-c = -1.96

55 / 68



p-value

• The interpretation of the p-value is the same: the probability
of seeing a test statistic at least this extreme if the null
hypothesis were true

• Mathematically:

ℙ(∣ 𝛽1 − 𝑏
𝑆𝐸[𝛽1]

∣ ≥ |𝑇𝑜𝑏𝑠|)

• If the p-value is less than 𝛼 we would reject the null at the 𝛼
level.
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R output

• By default, R shows you the 𝑇𝑜𝑏𝑠 for the test statistic with the
null of 𝛽1 = 0, which is just the estimate divided by the
standard error:

𝑇𝑜𝑏𝑠 = 𝛽1 − 0
𝑆𝐸[𝛽1]

= 𝛽1
𝑆𝐸[𝛽1]

• R also calculates the p-values for you.
• In the AJR data:

out <- lm(logpgp95 ~ logem4, data = ajr)
coef(summary(out))

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.6602 0.30528 34.92 8.759e-50
## logem4 -0.5641 0.06389 -8.83 2.094e-13
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Confidence intervals
• Very similar to the approach with sample means. By the

sampling distribution of the OLS estimator, we know that we
can find 𝑡-values such that:

ℙ( − 𝑡𝛼/2,𝑛−2 ≤ 𝛽1 − 𝛽1
𝑆𝐸[𝛽1]

≤ 𝑡𝛼/2,𝑛−2) = 1 − 𝛼

• If we rearrange this as before, we can get an expression for
confidence intervals:

ℙ(𝛽1 − 𝑡𝛼/2,𝑛−2𝑆𝐸[𝛽1] ≤ 𝛽1 ≤ 𝛽1 + 𝑡𝛼/2,𝑛−2𝑆𝐸[𝛽1]) = 1 − 𝛼

• Thus, we can write the confidence intervals as:

𝛽1 ± 𝑡𝛼/2,𝑛−2𝑆𝐸[𝛽1]

• “In 95% of repeated samples, the confidence interval for 𝛽1
will cover the true value.”
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Confidence intervals in R

• Confidence intervals are not outputted by default, but you
grab them for any regression using the confint() function:

confint(lm(logpgp95 ~ logem4, data = ajr))

## 2.5 % 97.5 %
## (Intercept) 10.0526 11.268
## logem4 -0.6913 -0.437
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5/ Goodness of fit
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Prediction error

• How do we judge how well a line fits the data? Is there some
way to judge?

• One way is to find out how much better we do at predicting
𝑌𝑖 once we include 𝑋𝑖 into the regression model.

• Prediction errors without 𝑋𝑖: best prediction is the mean, so
our squared errors, or the total sum of squares (𝑆𝑆𝑡𝑜𝑡) would
be:

𝑆𝑆𝑡𝑜𝑡 =
𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑌)2

• Prediction errors with 𝑋𝑖: the sum of the squared residuals or
𝑆𝑆𝑟𝑒𝑠:

𝑆𝑆𝑟𝑒𝑠 =
𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑌𝑖)2
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Total SS vs SSR
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Total SS vs SSR
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R-square

• By definition, the residuals have to be smaller than the
deviations from the mean, so we might ask the following: how
much lower is the 𝑆𝑆𝑟𝑒𝑠 compared to the 𝑆𝑆𝑡𝑜𝑡?

• We quantify this question with the coefficient of
determination or 𝑅2. This is the following:

𝑅2 = 𝑆𝑆𝑡𝑜𝑡 − 𝑆𝑆𝑟𝑒𝑠
𝑆𝑆𝑡𝑜𝑡

= 1 − 𝑆𝑆𝑟𝑒𝑠
𝑆𝑆𝑡𝑜𝑡

• This is the fraction of the total prediction error eliminated by
providing information on 𝑋𝑖.

• Common interpretation: 𝑅2 is the fraction of the variation in
𝑌𝑖 is “explained by” 𝑋𝑖.

▶ 𝑅2 = 0 means no relationship
▶ 𝑅2 = 1 implies perfect linear fit
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Is R-squared useful?
• Can be very misleading. Each of these samples have the same

𝑅2 even though they are vastly different:
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Review of Assumptions

• What assumptions do we need to make what claims with
OLS?

1. Data description: variation in 𝑋𝑖
2. Unbiasedness/Consistency: linearity, iid, variation in 𝑋𝑖, zero

conditional mean error.
3. Large-sample inference: linearity, iid, variation in 𝑋𝑖, zero

conditional mean error, homoskedasticity.
4. Small-sample inference: linearity, iid, variation in 𝑋𝑖, zero

conditional mean error, homoskedasticity, Normal errors.
• Can we weaken these? In some cases, yes.
• Next week: adding another variable to regression.
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Estimation error proof
Return

• Key facts:
▶ ∑𝑛

𝑖=1 𝑊𝑖 = 0 because ∑𝑛
𝑖=1(𝑋𝑖 − 𝑋) = 0

▶ ∑𝑛
𝑖=1 𝑊𝑖𝑋𝑖 = 1 because ∑𝑛

𝑖=1 𝑋𝑖(𝑋𝑖 − 𝑋) = ∑𝑛
𝑖=1(𝑋𝑖 − 𝑋)2

• Proof:

𝛽1 =
𝑛
∑
𝑖=1

𝑊𝑖𝑌𝑖

=
𝑛
∑
𝑖=1

𝑊𝑖(𝛽0 + 𝛽1𝑋𝑖 + 𝑢𝑖)

= 𝛽0 ⎛⎜⎝

𝑛
∑
𝑖=1

𝑊𝑖⎞⎟⎠
+ 𝛽1 ⎛⎜⎝

𝑛
∑
𝑖=1

𝑊𝑖𝑋𝑖⎞⎟⎠
+

𝑛
∑
𝑖=1

𝑊𝑖𝑢𝑖

= 𝛽1 +
𝑛
∑
𝑖=1

𝑊𝑖𝑢𝑖
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Variance proof
Return

• Proof:

𝕍[𝛽1|𝑋] = 𝕍⎡⎢
⎣

𝑛
∑
𝑖=1

𝑊𝑖𝑌𝑖∣𝑋⎤⎥
⎦

=
𝑛
∑
𝑖=1

𝕍[𝑊𝑖𝑌𝑖|𝑋]

=
𝑛
∑
𝑖=1

𝑊2
𝑖 𝕍[𝑌𝑖|𝑋]

=
𝑛
∑
𝑖=1

𝑊2
𝑖 𝜎2𝑢

= 𝜎2𝑢
𝑛
∑
𝑖=1

𝑊2
𝑖

= 𝜎2𝑢
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋)2
(∑𝑛

𝑖=1(𝑋𝑖 − 𝑋)2)2
= 𝜎2𝑢

∑𝑛
𝑖=1(𝑋𝑖 − 𝑋)2
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