Gov 2002: 7. Regression and Causality

Matthew Blackwell

October 15, 2015

Agnostic Regression

Regression and Causality

Regression with Heterogeneous Treatment Effects

Where are we? Where are we going?

- Last few weeks: using matching, weighting for estimating causal effects.
- This week: how to use regression to estimate causal effects.
- Regression is so widely used, it's good to know what it's actually estimating!
- Goal: salvage regression from the ashes of 1980's textbooks!
- Next week: panel data!

Reminder Email me and Stephen a half-page description of your proposed research project.

1/ Agnostic Regression

Regression as parametric modeling

- Gauss-Markov assumptions:
 - Inearity, i.i.d. sample, full rank X_i, zero conditional mean error, homoskedasticity.
- \rightsquigarrow OLS is BLUE, plus normality of the errors and we get small sample SEs.
- What is the basic approach here? It is a model for the conditional distribution of Y_i given X_i:

$$[Y_i|X_i] \sim N(X_i'\beta,\sigma^2)$$

• MLE from this model is the usual OLS estimator, $\hat{\beta}_{OLS}$:

$$\hat{\beta}_{\mathsf{OLS}} = \left[\sum_{i=1}^{N} X_i X_i'\right]^{-1} \sum_{i=1}^{N} X_i Y_i$$

Agnostic views on regression

 $[Y_i|X_i] \sim N(X_i'\beta,\sigma^2)$

- Strong distributional assumption on Y_i.
- Properties like BLUE or MLE properties depend on these assumptions holding.
- Alternative: take an **agnostic** view on regression.
 - Use OLS without believing these assumptions.
- Lose the distributional assumptions, focus on the conditional expectation function (CEF):

$$\mu(x) = \mathbb{E}[Y_i | X_i = x] = \sum_{y} y \cdot \mathbb{P}[Y_i = y | X_i = x]$$

Justifying linear regression

• Define linear regression:

$$\beta = \operatorname*{arg\,min}_{b} \mathbb{E}[(Y_i - X'_i b)^2]$$

• The solution to this is the following:

$$\beta = \mathbb{E}[X_i X_i']^{-1} \mathbb{E}[X_i Y_i]$$

Note that the is the **population** coefficient vector, not the estimator yet.

Regression anatomy

Consider simple linear regression:

$$(\alpha, \beta) = \underset{a,b}{\operatorname{arg\,min}} \mathbb{E}\left[(Y_i - a - bX_i)^2\right]$$

In this case, we can write the population/true slope β as:

$$\beta = \mathbb{E}[X_i X_i']^{-1} \mathbb{E}[X_i Y_i] = \frac{\mathsf{Cov}(Y_i, X_i)}{\mathbb{V}[X_i]}$$

- With more covariates, β is more complicated, but we can still write it like this.
- Let X

 ^x

 ki be the residual from a regression of X

 ki on all the other independent variables. Then, β

 k, the coefficient for X

 ki is:

$$\beta_k = \frac{\mathsf{Cov}(Y_i, \tilde{X}_{ki})}{V(\tilde{X}_{ki})}$$

Justification 1: Linear CEFs

- Justification 1: if the CEF is linear, the population regression function is it. That is, if E[Y_i|X_i] = X'_ib, then b = β.
- When would we expect the CEF to be linear? Two cases.
 - 1. Outcome and covariates are multivariate normal.
 - 2. Linear regression model is saturated.
- A model is **saturated** if there are as many parameters as there are possible combination of the *X_i* variables.

Saturated model example

- Two binary variables, X_{1i} for incumbency status and X_{2i} for party of the candidate.
- Four possible values of X_i , four possible values of $\mu(X_i)$:

$$E[Y_i|X_{1i} = 0, X_{2i} = 0] = \alpha$$

$$E[Y_i|X_{1i} = 1, X_{2i} = 0] = \alpha + \beta$$

$$E[Y_i|X_{1i} = 0, X_{2i} = 1] = \alpha + \gamma$$

$$E[Y_i|X_{1i} = 1, X_{2i} = 1] = \alpha + \beta + \gamma + \delta$$

• We can write the CEF as follows:

$$E[Y_i|X_{1i}, X_{2i}] = \alpha + \beta X_{1i} + \gamma X_{2i} + \delta(X_{1i}X_{2i})$$

Saturated models example

 $E[Y_i|X_{1i},X_{2i}] = \alpha + \beta X_{1i} + \gamma X_{2i} + \delta(X_{1i}X_{2i})$

- Basically, each value of $\mu(X_i)$ is being estimated separately.
 - ▶ ~→ within-strata estimation.
 - ▶ No borrowing of information from across values of *X_i*.
- Requires a set of dummies for each categorical variable plus all interactions.
- Or, a series of dummies for each unique combination of X_i.
- This makes linearity hold mechanically and so linearity is not an assumption.
 - Just a fact about saturated CEFs.
 - $\blacktriangleright \rightsquigarrow$ saturated models for limited dependent variables = A-OK!

Saturated model example

- Washington (AER) data on the effects of daughters.
- We'll look at the relationship between voting and number of kids (causal?).

girls <- foreign::read.dta("girls.dta")
head(girls[, c("name", "totchi", "aauw")])</pre>

##		name totchi aauw	name tot	
##	1	ABERCROMBIE, NEIL 0 100	RCROMBIE, NEIL	
##	2	ACKERMAN, GARY L. 3 88	ERMAN, GARY L.	
##	3	ADERHOLT, ROBERT B. 0 0	OLT, ROBERT B.	
##	4	ALLEN, THOMAS H. 2 100	LEN, THOMAS H.	
##	5	ANDREWS, ROBERT E. 2 100	EWS, ROBERT E.	
##	6	ARCHER, W.R. 7 0	ARCHER, W.R.	

Linear model

summary(lm(aauw ~ totchi, data = girls))

```
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 61.31 1.81 33.81 <2e-16 ***
## totchi -5.33 0.62 -8.59 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 42 on 1733 degrees of freedom
## (5 observations deleted due to missingness)
## Multiple R-squared: 0.0408, Adjusted R-squared: 0.0403
## F-statistic: 73.8 on 1 and 1733 DF, p-value: <2e-16</pre>
```

Saturated model

summary(lm(aauw ~ as.factor(totchi), data = girls))

Ħ	#		

Coefficients:

##		Estimate	Std. Error	t value	Pr(> t)				
##	(Intercept)	56.41	2.76	20.42	< 2e-16	***			
##	as.factor(totchi)1	5.45	4.11	1.33	0.1851				
##	as.factor(totchi)2	-3.80	3.27	-1.16	0.2454				
##	as.factor(totchi)3	-13.65	3.45	-3.95	8.1e-05	***			
##	as.factor(totchi)4	-19.31	4.01	-4.82	1.6e-06	***			
##	as.factor(totchi)5	-15.46	4.85	-3.19	0.0015	**			
##	as.factor(totchi)6	-33.59	10.42	-3.22	0.0013	**			
##	as.factor(totchi)7	-17.13	11.41	-1.50	0.1336				
##	as.factor(totchi)8	-55.33	12.28	-4.51	7.0e-06	***			
##	as.factor(totchi)9	-50.41	24.08	-2.09	0.0364	*			
##	as.factor(totchi)10	-53.41	20.90	-2.56	0.0107	*			
##	as.factor(totchi)12	-56.41	41.53	-1.36	0.1745				
##									
##	Signif. codes: 0 '	***' 0.00	1 '**' 0.01	'*' 0.05	5'.'0.1	''1			
##									
##	# Residual standard error: 41 on 1723 degrees of freedom								
##	# (5 observations deleted due to missingness)								
##	Multiple R-squared:	0.0506,	Adjusted R-	-squared:	0.0446				
##	F-statistic: 8.36 of	n 11 and 1	1723 DF, p [.]	-value: 1	.84e-14				

Saturated model minus the constant

summary(lm(aauw ~ as.factor(totchi) - 1, data = girls))

Coefficients:

##		Estimate	Std. Error	t value	Pr(> t)				
##	as.factor(totchi)0	56.41	2.76	20.42	<2e-16	***			
##	as.factor(totchi)1	61.86	3.05	20.31	<2e-16	***			
##	as.factor(totchi)2	52.62	1.75	30.13	<2e-16	***			
##	as.factor(totchi)3	42.76	2.07	20.62	<2e-16	***			
##	as.factor(totchi)4	37.11	2.90	12.79	<2e-16	***			
##	as.factor(totchi)5	40.95	3.99	10.27	<2e-16	***			
##	as.factor(totchi)6	22.82	10.05	2.27	0.0233	*			
##	as.factor(totchi)7	39.29	11.07	3.55	0.0004	***			
##	as.factor(totchi)8	1.08	11.96	0.09	0.9278				
##	as.factor(totchi)9	6.00	23.92	0.25	0.8020				
##	as.factor(totchi)10	3.00	20.72	0.14	0.8849				
##	as.factor(totchi)12	0.00	41.43	0.00	1.0000				
##									
##	Signif. codes: 0 '	***' 0.00	'**' 0.01	'*' 0.05	'.' 0.1	''1			
##									
##	# Residual standard error: 41 on 1723 degrees of freedom								
##	<pre># (5 observations deleted due to missingness)</pre>								
##	Multiple R-squared:	0.587,	Adjusted R-	-squared:	0.584				
##	F-statistic: 204 of	n 12 and 1	1723 DF, p	-value: <	2e-16				

Compare to within-strata means

- The saturated model makes no assumptions about the between-strata relationships.
- Just calculates within-strata means:

c1 <- coef(lm(aauw ~ as.factor(totchi) - 1, data = girls))
c2 <- with(girls, tapply(aauw, totchi, mean, na.rm = TRUE))
rbind(c1, c2)</pre>

##		0	1	2	3	4	5	6	7	8	9	10	12
##	c1	56	62	53	43	37	41	23	39	1.1	6	3	0
##	c2	56	62	53	43	37	41	23	39	1.1	6	3	0

Other justifications for OLS

- Justification 2: X_i'β is the best linear predictor (in a mean-squared error sense) of Y_i.
 - Why? $\beta = \arg \min_{b} \mathbb{E}[(Y_i X'_i b)^2]$
- Justification 3: X_i[']β provides the minimum mean squared error linear approxmiation to E[Y_i|X_i].
- Even if the CEF is not linear, a linear regression provides the best linear approximation to that CEF.
- Don't need to believe the assumptions (linearity) in order to use regression as a good approximation to the CEF.
- **Warning** if the CEF is very nonlinear then this approximation could be terrible!!

The error terms

• Let's define the error term: $e_i \equiv Y_i - X'_i\beta$ so that:

$$Y_i = X'_i\beta + [Y_i - X'_i\beta] = X'_i\beta + e_i$$

• Note the residual e_i is uncorrelated with X_i :

$$\begin{split} \mathbb{E}[X_i e_i] &= \mathbb{E}[X_i(Y_i - X'_i \beta)] \\ &= \mathbb{E}[X_i Y_i] - \mathbb{E}[X_i X'_i \beta] \\ &= \mathbb{E}[X_i Y_i] - \mathbb{E}\left[X_i X'_i \mathbb{E}[X_i X'_i]^{-1} \mathbb{E}[X_i Y_i]\right] \\ &= \mathbb{E}[X_i Y_i] - \mathbb{E}[X_i X'_i] \mathbb{E}[X_i X'_i]^{-1} \mathbb{E}[X_i Y_i] \\ &= \mathbb{E}[X_i Y_i] - \mathbb{E}[X_i Y_i] = 0 \end{split}$$

• No assumptions on the linearity of $\mathbb{E}[Y_i|X_i]$.

OLS estimator

• We know the population value of β is:

$$\beta = \mathbb{E}[X_i X_i']^{-1} \mathbb{E}[X_i Y_i]$$

- How do we get an estimator of this?
- Plug-in principle ~>> replace population expectation with sample versions:

$$\hat{\beta} = \left[\frac{1}{N}\sum_{i}X_{i}X_{i}'\right]^{-1}\frac{1}{N}\sum_{i}X_{i}Y_{i}$$

If you work through the matrix algebra, this turns out to be:

$$\hat{\boldsymbol{\beta}} = \left(\mathbf{X}' \mathbf{X} \right)^{-1} \mathbf{X}' \mathbf{y}$$

Asymptotic OLS inference

• With this representation in hand, we can write the OLS estimator as follows:

$$\hat{\beta} = \beta + \left[\sum_{i} X_{i} X_{i}'\right]^{-1} \sum_{i} X_{i} e_{i}$$

- Core idea: $\sum_i X_i e_i$ is the sum of r.v.s so the CLT applies.
- That, plus some simple asymptotic theory allows us to say:

$$\sqrt{N}(\hat{\beta} - \beta) \rightsquigarrow N(0, \Omega)$$

 Converges in distribution to a Normal distribution with mean vector 0 and covariance matrix, Ω:

 $\Omega = \mathbb{E}[X_i X_i']^{-1} \mathbb{E}[X_i X_i' e_i^2] \mathbb{E}[X_i X_i']^{-1}.$

No linearity assumption needed!

Estimating the variance

In large samples then:

$$\sqrt{N}(\hat{\beta} - \beta) \sim N(0, \Omega)$$

• How to estimate Ω? **Plug-in principle** again!

$$\widehat{\Omega} = \left[\sum_{i} X_{i} X_{i}'\right]^{-1} \left[\sum_{i} X_{i} X_{i}' \hat{e}_{i}^{2}\right] \left[\sum_{i} X_{i} X_{i}'\right]^{-1}$$

- Replace e_i with its emprical counterpart (residuals) $\hat{e}_i = Y_i - X'_i \hat{\beta}.$
- Replace the population moments of *X_i* with their sample counterparts.
- The square root of the diagonals of this covariance matrix are the "robust" or Huber-White standard errors that Stata commonly report.

Heteroskedasticity

- No assumptions of homoskedasticity.
- Heteroskedaticity will definitely occur when:
 - CEF is linear, but the $\sigma^2(x) = \mathbb{V}[Y_i|X_i = x]$ is not constant in x.
 - E[Y_i|X_i] is not linear, but we use the linear regression to approxmiate it.

2/ Regression and Causality

Regression and causality

- Most econometrics textbooks: regression defined without respect to causality.
- But then when is β̂ "biased"? The above derivations work for some E[Y_i|X_i].
- The question, then, is when does knowing the CEF tell us something about causality?
- MHE argues that a regression is causal when the CEF it approximates is causal. Identification is king.
- We will show that under certain conditions, a regression of the outcome on the treatment and the covariates can recover a causal parameter, but perhaps not the one in which we are interested.

Review

• Quick reminder: we have potential outcomes, $Y_i(1)$ and $Y_i(0)$, and two parameters, the ATE and ATT:

 $\tau = E[Y_i(1) - Y_i(0)],$ $\tau_{\mathsf{ATT}} = E[Y_i(1) - Y_i(0)|D_i = 1].$

 We have shown in past weeks that these effects are identified when ignorability holds. MHE calls this the conditional independence assumption (CIA).

Linear constant effects model, binary treatment

• Experiment: with a simple experiment, we can rewrite the consistency assumption to be a regression formula:

$$\begin{aligned} &\mathcal{X}_{i} = D_{i}Y_{i}(1) + (1 - D_{i})Y_{i}(0) \\ &= Y_{i}(0) + (Y_{i}(1) - Y_{i}(0))D_{i} \\ &= \mathbb{E}[Y_{i}(0)] + \tau D_{i} + (Y_{i}(0) - \mathbb{E}[Y_{i}(0)] \\ &= \mu^{0} + \tau D_{i} + v_{i}^{0} \end{aligned}$$

• Note that if ignorability holds (as in an experiment) for $Y_i(0)$, then it will also hold for v_i^0 , since $\mathbb{E}[Y_i(0)]$ is constant. Thus, this satifies the usual assumptions for regression.

Now with covariates

- Now assume no unmeasured confounders: $Y_i(d) \perp D_i | X_i$.
- We will assume a linear model for the potential outcomes:

$$Y_i(d) = \alpha + \tau \cdot d + \eta_i$$

- Remember that linearity isn't an assumption if D_i is binary
- Effect of D_i is constant here, the η_i are the only source of individual variation and we have E[η_i] = 0.
- Consistency assumption allows us to write this as:

$$Y_i = \alpha + \tau D_i + \eta_i.$$

Covariates in the error

- Let's assume that η_i is linear in X_i : $\eta_i = X'_i \gamma + \nu_i$
- New error is uncorrelated with X_i : $\mathbb{E}[\nu_i|X_i] = 0$.
- This is an assumption! Might be false!
- Plug into the above:

$$\mathbb{E}[Y_i(d)|X_i] = E[Y_i|D_i, X_i] = \alpha + \tau D_i + E[\eta_i|X_i]$$
$$= \alpha + \tau D_i + X'_i \gamma + E[\nu_i|X_i]$$
$$= \alpha + \tau D_i + X'_i \gamma$$

Summing up regression with constant effects

- Reviewing the assumptions we've used:
 - no unmeasured confounders
 - constant treatment effects
 - linearity of the treatment/covariates
- Under these, we can run the following regression to estimate the ATE, $\tau:$

$$Y_i = \alpha + \tau D_i + X'_i \gamma + \nu_i$$

• Works with continuous or ordinal D_i if linearity in the effect of these variables is truly linear.

OLS constant effects simulation

Model with linear covariates, constant 0 effect of treatment:

```
library(mvtnorm)
n <- 100
p <- 4
X <- rmvnorm(n = 100, mean = rep(0, p))
gamma <- c(27.4, 13.7, 13.7, 13.7)
y <- 210 + X %*% c(gamma) + rnorm(n)
alpha <- c(-1, 0.5, -0.5, -0.1)
dprobs <- boot::inv.logit(X %*% alpha)
d <- rbinom(n, size = 1, prob = dprobs)</pre>
```

OLS with no covariates

$summary(lm(y \sim d))$

```
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 220.36     4.58     48.13 < 2e-16 ***
## d         -28.69     6.54     -4.39 0.000029 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 33 on 98 degrees of freedom
## Multiple R-squared: 0.164, Adjusted R-squared: 0.156
## F-statistic: 19.2 on 1 and 98 DF, p-value: 0.000029</pre>
```

OLS with covariates

summary(lm(y ~ d + X))

##								
##	Coefficient	s:						
##		Estimate Std.	Error	t value	Pr(> t)			
##	(Intercept)	209.952	0.159	1320.7	<2e-16	***		
##	d	-0.128	0.253	-0.5	0.62			
##	X1	27.368	0.126	217.5	<2e-16	***		
##	Х2	13.677	0.114	120.1	<2e-16	***		
##	Х3	13.673	0.130	105.1	<2e-16	***		
##	X4	13.570	0.106	128.0	<2e-16	***		
##								
##	Signif. code	es: 0 '***' 0	.001 ';	**' 0.01	'*' 0.05	'.' 0.1	, ,	1
##								
##	Residual sta	andard error: '	1 on 94	4 degrees	s of freed	dom		
##	Multiple R-	squared: 0.999	9, Ad	justed R•	-squared:	0.999		
##	F-statistic	: 2.44e+04 on 5	5 and 9	94 DF, p	o-value: <	<2e-16		

What happens with nonlinearity

Suppose we can only observe the following covariates:

```
z1 <- exp(X[, 1]/2)
z2 <- X[, 2]/(1 + exp(X[, 1])) + 10
z3 <- (X[, 1] * X[, 3]/25 + 0.6)^3
z4 <- (X[, 2] + X[, 4] + 20)^2</pre>
```

Implies that Y_i and D_i are functions of $\log(Z_{i1})$, Z_{i2} , $Z_{i1}^2 Z_{i2}$, $1/\log(Z_{i1})$, $Z_{i3}/\log(Z_{i1})$, and $X_{i4}^{1/2}$.

Regression is a **nonlinear** function of the observed covariates.

When linearity goes wrong

summary(lm(y ~ d + z1 + z2 + z3 + z4))

##						
##	Coefficient	s:				
##		Estimate	Std. Error	t value	Pr(> t)	
##	(Intercept)	21.8728	30.0799	0.73	0.469	
##	d	-6.9292	3.3854	-2.05	0.043	*
##	z1	36.3110	2.6970	13.46	<2e-16	***
##	z2	-2.9033	3.6619	-0.79	0.430	
##	z3	86.2022	43.1030	2.00	0.048	*
##	z4	0.4021	0.0329	12.23	<2e-16	***
##						
##	Signif. code	es: 0 '**	**' 0.001 '*	*' 0.01	'*' 0.05	'.' 0.1 '' 1
##						
##	Residual sta	andard er	ror: 14 on 9	4 degree	es of free	edom
##	Multiple R-	squared:	0.855, Adj	usted R-	-squared:	0.847
##	F-statistic	: 111 on	5 and 94 DF	, p-val	lue: <2e-1	16

3/ Regression with Heterogeneous Treatment Effects

Heterogeneous effects, binary treatment

Completely randomized experiment:

$$Y_{i} = D_{i}Y_{i}(1) + (1 - D_{i})Y_{i}(0)$$

= $Y_{i}(0) + (Y_{i}(1) - Y_{i}(0))D_{i}$
= $\mu_{0} + \tau_{i}D_{i} + (Y_{i}(0) - \mu_{0})$
= $\mu_{0} + \tau D_{i} + (Y_{i}(0) - \mu_{0}) + (\tau_{i} - \tau) \cdot D_{i}$
= $\mu_{0} + \tau D_{i} + \varepsilon_{i}$

- Error term now includes two components:
 - 1. "Baseline" variation in the outcome: $(Y_i(0) \mu_0)$
 - 2. Variation in the treatment effect, $(\tau_i \tau)$
- Easy to verify that under experiment, $\mathbb{E}[\varepsilon_i|D_i] = 0$
- Thus, OLS estimates the ATE with no covariates.

Adding covariates

- What happens with no unmeasured confounders? Need to condition on *X_i* now.
- Remember identification of the ATE/ATT using iterated expectations.
- ATE is the weighted sum of CATEs:

$$\tau = \sum_{x} \tau(x) \Pr[X_i = x]$$

- ATE/ATT are weighted averages of CATEs.
- What about the regression estimand, τ_R ? How does it related to the ATE/ATT?

Heterogeneous effects and regression

• Let's investigate this under a saturated regression model:

$$Y_i = \sum_x B_{xi} \alpha_x + \tau_R D_i + e_i.$$

- Use a dummy variable for each unique combination of X_i:
 B_{xi} = II(X_i = x)
- Linear in X_i by construction!

Investigating the regression coefficient

 How can we investigate τ_R? Well, we can rely on the regression anatomy:

$$\tau_R = \frac{\mathsf{Cov}(Y_i, D_i - E[D_i|X_i])}{\mathbb{V}(D_i - E[D_i|X_i])}$$

- D_i − E[D_i|X_i] is the residual from a regression of D_i on the full set of dummies.
- With a little work we can show:

$$\tau_R = \frac{\mathbb{E}\left[\tau(X_i)(D_i - \mathbb{E}[D_i|X_i])^2\right]}{\mathbb{E}[(D_i - E[D_i|X_i])^2]} = \frac{\mathbb{E}[\tau(X_i)\sigma_d^2(X_i)]}{\mathbb{E}[\sigma_d^2(X_i)]}$$

• $\sigma_d^2(x) = \mathbb{V}[D_i|X_i = x]$ is the conditional variance of treatment assignment.

ATE versus OLS

$$\tau_R = \mathbb{E}[\tau(X_i)W_i] = \sum_x \tau(x) \frac{\sigma_d^2(x)}{\mathbb{E}[\sigma_d^2(X_i)]} \mathbb{P}[X_i = x]$$

Compare to the ATE:

$$\tau = \mathbb{E}[\tau(X_i)] = \sum_x \tau(x) \mathbb{P}[X_i = x]$$

- Both weight strata relative to their size (ℙ[X_i = x])
- OLS weights strata higher if the treatment variance in those strata (σ²_d(x)) is higher in those strata relative to the average variance across strata (𝔼[σ²_d(X_i)]).
- The ATE weights only by their size.

Regression weighting

$$W_i = \frac{\sigma_d^2(X_i)}{\mathbb{E}[\sigma_d^2(X_i)]}$$

- Why does OLS weight like this?
- OLS is a minimum-variance estimator ~> more weight to more precise within-strata estimates.
- Within-strata estimates are most precise when the treatment is evenly spread and thus has the highest variance.
- If D_i is binary, then we know the conditional variance will be:

$$\sigma_d^2(x) = \mathbb{P}[D_i = 1 | X_i = x] (1 - \mathbb{P}[D_i = 1 | X_i = x])$$

= $e(x) (1 - e(x))$

• Maximum variance with $\mathbb{P}[D_i = 1 | X_i = x] = 1/2$.

OLS weighting example

Binary covariate:

$$\mathbb{P}[X_i = 1] = 0.75 \qquad \mathbb{P}[X_i = 0] = 0.25$$
$$\mathbb{P}[D_i = 1 | X_i = 1] = 0.9 \qquad \mathbb{P}[D_i = 1 | X_i = 0] = 0.5$$
$$\sigma_d^2(1) = 0.09 \qquad \sigma_d^2(0) = 0.25$$
$$\tau(1) = 1 \qquad \tau(0) = -1$$

- Implies the ATE is $\tau = 0.5$
- Average conditional variance: $\mathbb{E}[\sigma_d^2(X_i)] = 0.13$
- \rightsquigarrow weights for $X_i = 1$ are: 0.09/0.13 = 0.692, for $X_i = 0$: 0.25/0.13 = 1.92.

 $\tau_R = \mathbb{E}[\tau(X_i)W_i]$ = $\tau(1)W(1)\mathbb{P}[X_i = 1] + \tau(0)W(0)\mathbb{P}[X_i = 0]$ = $1 \times 0.692 \times 0.75 + -1 \times 1.92 \times 0.25$ = 0.039

When will OLS estimate the ATE?

- When does $\tau = \tau_R$?
- Constant treatment effects: $\tau(x) = \tau = \tau_R$
- Constant probability of treatment: $e(x) = \mathbb{P}[D_i = 1 | X_i = x] = e$.
 - Implies that the OLS weights are 1.
- Incorrect linearity assumption in X_i will lead to more bias.

Other ways to use regression

- What's the path forward?
 - Accept the bias (might be relatively small with saturated models)
 - Use a different regression approach
- Let μ_d(x) = 𝔼[Y_i(d)|X_i = x] be the CEF for the potential outcome under D_i = d.
- By consistency and n.u.c., we have $\mu_d(x) = \mathbb{E}[Y_i|D_i = d, X_i = x]$.
- Estimate a regression of Y_i on X_i among the D_i = d group.
- Then,
 *µ*_d(x) is just a predicted value from the regression for
 X_i = x.
- How can we use this?

Imputation estimators

- Impute the treated potential outcomes with $\widehat{Y}_i(1) = \hat{\mu}_1(X_i)!$
- Impute the control potential outcomes with $\widehat{Y}_i(0) = \hat{\mu}_0(X_i)!$
- Procedure:
 - Regress Y_i on X_i in the treated group and get predicted values for all units (treated or control).
 - ▶ Regress *Y_i* on *X_i* in the control group and get predicted values for all units (treated or control).
 - Take the average difference between these predicted values.
- More mathematically, look like this:

$$\tau_{imp} = \frac{1}{N} \sum_i \hat{\mu}_1(X_i) - \hat{\mu}_0(X_i)$$

Sometimes called an imputation estimator.

Simple imputation estimator

- Use predict() from the within-group models on the data from the entire sample.
- Useful trick: use a model on the entire data and model.frame() to get the right design matrix:

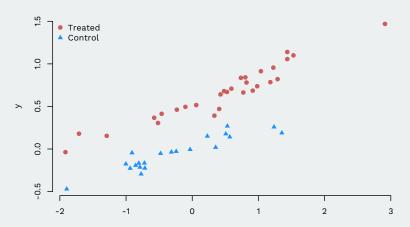
```
## heterogeneous effects
y.het <- ifelse(d == 1, y + rnorm(n, 0, 5), y)
mod <- lm(y.het ~ d + X)
mod1 <- lm(y.het ~ X, subset = d == 1)
mod0 <- lm(y.het ~ X, subset = d == 0)
y1.imps <- predict(mod1, model.frame(mod))
y0.imps <- predict(mod0, model.frame(mod))
mean(y1.imps - y0.imps)</pre>
```

[1] 0.61

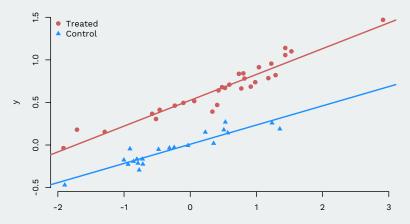
Notes on imputation estimators

- If $\hat{\mu}_d(x)$ are consistent estimators, then τ_{imp} is consistent for the ATE.
- Why don't people use this?
 - Most people don't know the results we've been talking about.
 - Harder to implement than vanilla OLS.
- Can use linear regression to estimate $\hat{\mu}_d(x) = x'\beta_d$
- - ▶ Kernel regression, local linear regression, regression trees, etc
 - Easiest is generalized additive models (GAMs)

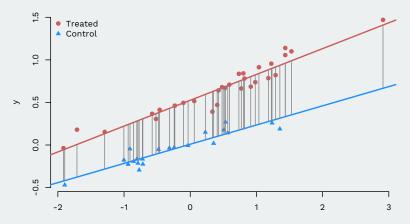
Imputation estimator visualization



Imputation estimator visualization

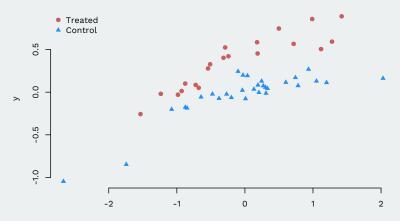


Imputation estimator visualization



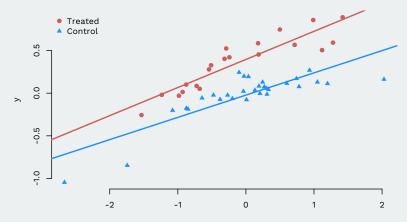
Nonlinear relationships

• Same idea but with nonlinear relationship between Y_i and X_i :



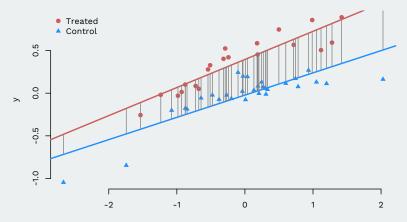
Nonlinear relationships

• Same idea but with nonlinear relationship between Y_i and X_i :



Nonlinear relationships

• Same idea but with nonlinear relationship between Y_i and X_i :



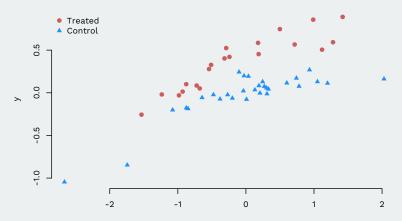
Using semiparametric regression

- Here, CEFs are nonlinear, but we don't know their form.
- We can use GAMs from the mgcv package to for flexible estimate:

```
library(mgcv)
mod0 <- gam(y ~ s(x), subset = d == 0)
summary(mod0)</pre>
```

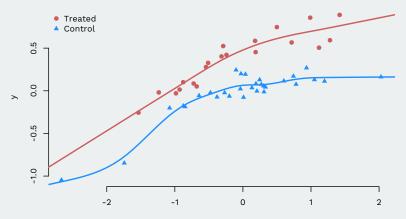
```
##
## Family: gaussian
## Link function: identity
##
## Formula:
## y \sim s(x)
##
## Parametric coefficients:
             Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -0.0225 0.0154 -1.46
                                             0 16
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(x) 6.03 7.08 41.3 <2e-16 ***
## ---
```

Using GAMs



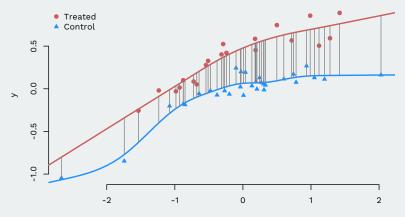
х

Using GAMs



х

Using GAMs



х

Limited dependent variables

- Usual advice: model the data from first principles:
 - ► Logit/probit for binary, Poisson for counts, etc.
- OLS is a-ok with limited DVs when:
 - Binary treatment and no covariates (just diff-in-means)
 - Binary treatment, discrete covariates, and saturated models (stratified diff-in-means)
- Imposing a model on LDVs in this case imposes a distributional assumption which could be wrong!
- Even in unsaturated models, the marginal effect from OLS often decent compared to nonlinear models.
 - Could go wrong in small samples
 - If using nonlinear models, always get effects on the scale of the outcome.