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Where are we? Where are we going?

• Last few weeks: using matching, weighting for estimating
causal effects.

• This week: how to use regression to estimate causal effects.
• Regression is so widely used, it’s good to know what it’s

actually estimating!
• Goal: salvage regression from the ashes of 1980’s textbooks!
• Next week: panel data!

Reminder Email me and Stephen a half-page description of your
proposed research project.
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1/ Agnostic
Regression
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Regression as parametric modeling

• Gauss-Markov assumptions:
▶ linearity, i.i.d. sample, full rank 𝑋𝑖, zero conditional mean error,

homoskedasticity.

• ⇝ OLS is BLUE, plus normality of the errors and we get small
sample SEs.

• What is the basic approach here? It is a model for the
conditional distribution of 𝑌𝑖 given 𝑋𝑖:

[𝑌𝑖|𝑋𝑖] ∼ 𝑁(𝑋′
𝑖 𝛽, 𝜎􏷡)

• MLE from this model is the usual OLS estimator, 𝛽̂OLS:

𝛽̂OLS =

⎡
⎢⎢⎢⎢⎢⎣
𝑁
􏾜
𝑖=􏷠

𝑋𝑖𝑋′
𝑖

⎤
⎥⎥⎥⎥⎥⎦

−􏷠
𝑁
􏾜
𝑖=􏷠

𝑋𝑖𝑌𝑖
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Agnostic views on regression

[𝑌𝑖|𝑋𝑖] ∼ 𝑁(𝑋′
𝑖 𝛽, 𝜎􏷡)

• Strong distributional assumption on 𝑌𝑖.
• Properties like BLUE or MLE properties depend on these

assumptions holding.
• Alternative: take an agnostic view on regression.

▶ Use OLS without believing these assumptions.

• Lose the distributional assumptions, focus on the conditional
expectation function (CEF):

𝜇(𝑥) = 𝔼[𝑌𝑖|𝑋𝑖 = 𝑥] = 􏾜
𝑦
𝑦 ⋅ ℙ[𝑌𝑖 = 𝑦|𝑋𝑖 = 𝑥]
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Justifying linear regression

• Define linear regression:

𝛽 = argmin
𝑏

𝔼[(𝑌𝑖 − 𝑋′
𝑖 𝑏)􏷡]

• The solution to this is the following:

𝛽 = 𝔼[𝑋𝑖𝑋′
𝑖 ]−􏷠𝔼[𝑋𝑖𝑌𝑖]

• Note that the is the population coefficient vector, not the
estimator yet.
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Regression anatomy

• Consider simple linear regression:

(𝛼, 𝛽) = argmin
𝑎,𝑏

𝔼 􏿮(𝑌𝑖 − 𝑎 − 𝑏𝑋𝑖)􏷡􏿱

• In this case, we can write the population/true slope 𝛽 as:

𝛽 = 𝔼[𝑋𝑖𝑋′
𝑖 ]−􏷠𝔼[𝑋𝑖𝑌𝑖] =

Cov(𝑌𝑖, 𝑋𝑖)
𝕍[𝑋𝑖]

• With more covariates, 𝛽 is more complicated, but we can still
write it like this.

• Let 𝑋̃𝑘𝑖 be the residual from a regression of 𝑋𝑘𝑖 on all the other
independent variables. Then, 𝛽𝑘, the coefficient for 𝑋𝑘𝑖 is:

𝛽𝑘 =
Cov(𝑌𝑖, 𝑋̃𝑘𝑖)

𝑉(𝑋̃𝑘𝑖)
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Justification 1: Linear CEFs

• Justification 1: if the CEF is linear, the population regression
function is it. That is, if 𝐸[𝑌𝑖|𝑋𝑖] = 𝑋′

𝑖 𝑏, then 𝑏 = 𝛽.
• When would we expect the CEF to be linear? Two cases.

1. Outcome and covariates are multivariate normal.
2. Linear regression model is saturated.

• A model is saturated if there are as many parameters as
there are possible combination of the 𝑋𝑖 variables.
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Saturated model example

• Two binary variables, 𝑋􏷠𝑖 for incumbency status and 𝑋􏷡𝑖 for
party of the candidate.

• Four possible values of 𝑋𝑖, four possible values of 𝜇(𝑋𝑖):

𝐸[𝑌𝑖|𝑋􏷠𝑖 = 0,𝑋􏷡𝑖 = 0] = 𝛼
𝐸[𝑌𝑖|𝑋􏷠𝑖 = 1,𝑋􏷡𝑖 = 0] = 𝛼 + 𝛽
𝐸[𝑌𝑖|𝑋􏷠𝑖 = 0,𝑋􏷡𝑖 = 1] = 𝛼 + 𝛾
𝐸[𝑌𝑖|𝑋􏷠𝑖 = 1,𝑋􏷡𝑖 = 1] = 𝛼 + 𝛽 + 𝛾 + 𝛿

• We can write the CEF as follows:

𝐸[𝑌𝑖|𝑋􏷠𝑖, 𝑋􏷡𝑖] = 𝛼 + 𝛽𝑋􏷠𝑖 + 𝛾𝑋􏷡𝑖 + 𝛿(𝑋􏷠𝑖𝑋􏷡𝑖)
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Saturated models example

𝐸[𝑌𝑖|𝑋􏷠𝑖, 𝑋􏷡𝑖] = 𝛼 + 𝛽𝑋􏷠𝑖 + 𝛾𝑋􏷡𝑖 + 𝛿(𝑋􏷠𝑖𝑋􏷡𝑖)

• Basically, each value of 𝜇(𝑋𝑖) is being estimated separately.
▶ ⇝ within-strata estimation.
▶ No borrowing of information from across values of 𝑋𝑖.

• Requires a set of dummies for each categorical variable plus
all interactions.

• Or, a series of dummies for each unique combination of 𝑋𝑖.
• This makes linearity hold mechanically and so linearity is

not an assumption.
▶ Just a fact about saturated CEFs.
▶ ⇝ saturated models for limited dependent variables = A-OK!
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Saturated model example

• Washington (AER) data on the effects of daughters.
• We’ll look at the relationship between voting and number of

kids (causal?).

girls <- foreign::read.dta(”girls.dta”)

head(girls[, c(”name”, ”totchi”, ”aauw”)])

## name totchi aauw

## 1 ABERCROMBIE, NEIL 0 100

## 2 ACKERMAN, GARY L. 3 88

## 3 ADERHOLT, ROBERT B. 0 0

## 4 ALLEN, THOMAS H. 2 100

## 5 ANDREWS, ROBERT E. 2 100

## 6 ARCHER, W.R. 7 0
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Linear model

summary(lm(aauw ~ totchi, data = girls))

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 61.31 1.81 33.81 <2e-16 ***

## totchi -5.33 0.62 -8.59 <2e-16 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 42 on 1733 degrees of freedom

## (5 observations deleted due to missingness)

## Multiple R-squared: 0.0408, Adjusted R-squared: 0.0403

## F-statistic: 73.8 on 1 and 1733 DF, p-value: <2e-16
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Saturated model
summary(lm(aauw ~ as.factor(totchi), data = girls))

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 56.41 2.76 20.42 < 2e-16 ***

## as.factor(totchi)1 5.45 4.11 1.33 0.1851

## as.factor(totchi)2 -3.80 3.27 -1.16 0.2454

## as.factor(totchi)3 -13.65 3.45 -3.95 8.1e-05 ***

## as.factor(totchi)4 -19.31 4.01 -4.82 1.6e-06 ***

## as.factor(totchi)5 -15.46 4.85 -3.19 0.0015 **

## as.factor(totchi)6 -33.59 10.42 -3.22 0.0013 **

## as.factor(totchi)7 -17.13 11.41 -1.50 0.1336

## as.factor(totchi)8 -55.33 12.28 -4.51 7.0e-06 ***

## as.factor(totchi)9 -50.41 24.08 -2.09 0.0364 *

## as.factor(totchi)10 -53.41 20.90 -2.56 0.0107 *

## as.factor(totchi)12 -56.41 41.53 -1.36 0.1745

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 41 on 1723 degrees of freedom

## (5 observations deleted due to missingness)

## Multiple R-squared: 0.0506, Adjusted R-squared: 0.0446

## F-statistic: 8.36 on 11 and 1723 DF, p-value: 1.84e-14
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Saturated model minus the constant
summary(lm(aauw ~ as.factor(totchi) - 1, data = girls))

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## as.factor(totchi)0 56.41 2.76 20.42 <2e-16 ***

## as.factor(totchi)1 61.86 3.05 20.31 <2e-16 ***

## as.factor(totchi)2 52.62 1.75 30.13 <2e-16 ***

## as.factor(totchi)3 42.76 2.07 20.62 <2e-16 ***

## as.factor(totchi)4 37.11 2.90 12.79 <2e-16 ***

## as.factor(totchi)5 40.95 3.99 10.27 <2e-16 ***

## as.factor(totchi)6 22.82 10.05 2.27 0.0233 *

## as.factor(totchi)7 39.29 11.07 3.55 0.0004 ***

## as.factor(totchi)8 1.08 11.96 0.09 0.9278

## as.factor(totchi)9 6.00 23.92 0.25 0.8020

## as.factor(totchi)10 3.00 20.72 0.14 0.8849

## as.factor(totchi)12 0.00 41.43 0.00 1.0000

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 41 on 1723 degrees of freedom

## (5 observations deleted due to missingness)

## Multiple R-squared: 0.587, Adjusted R-squared: 0.584

## F-statistic: 204 on 12 and 1723 DF, p-value: <2e-16
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Compare to within-strata means

• The saturated model makes no assumptions about the
between-strata relationships.

• Just calculates within-strata means:

c1 <- coef(lm(aauw ~ as.factor(totchi) - 1, data = girls))

c2 <- with(girls, tapply(aauw, totchi, mean, na.rm = TRUE))

rbind(c1, c2)

## 0 1 2 3 4 5 6 7 8 9 10 12

## c1 56 62 53 43 37 41 23 39 1.1 6 3 0

## c2 56 62 53 43 37 41 23 39 1.1 6 3 0
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Other justifications for OLS

• Justification 2: 𝑋′
𝑖 𝛽 is the best linear predictor (in a

mean-squared error sense) of 𝑌𝑖.
▶ Why? 𝛽 = argmin𝑏 𝔼[(𝑌𝑖 − 𝑋′

𝑖 𝑏)􏷡]

• Justification 3: 𝑋′
𝑖 𝛽 provides the minimum mean squared

error linear approxmiation to 𝐸[𝑌𝑖|𝑋𝑖].
• Even if the CEF is not linear, a linear regression provides the

best linear approximation to that CEF.
• Don’t need to believe the assumptions (linearity) in order to

use regression as a good approximation to the CEF.
• Warning if the CEF is very nonlinear then this approximation

could be terrible!!
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The error terms

• Let’s define the error term: 𝑒𝑖 ≡ 𝑌𝑖 − 𝑋′
𝑖 𝛽 so that:

𝑌𝑖 = 𝑋′
𝑖 𝛽 + [𝑌𝑖 − 𝑋′

𝑖 𝛽] = 𝑋′
𝑖 𝛽 + 𝑒𝑖

• Note the residual 𝑒𝑖 is uncorrelated with 𝑋𝑖:

𝔼[𝑋𝑖𝑒𝑖] = 𝔼[𝑋𝑖(𝑌𝑖 − 𝑋′
𝑖 𝛽)]

= 𝔼[𝑋𝑖𝑌𝑖] − 𝔼[𝑋𝑖𝑋′
𝑖 𝛽]

= 𝔼[𝑋𝑖𝑌𝑖] − 𝔼 􏿮𝑋𝑖𝑋′
𝑖𝔼[𝑋𝑖𝑋′

𝑖 ]−􏷠𝔼[𝑋𝑖𝑌𝑖]􏿱
= 𝔼[𝑋𝑖𝑌𝑖] − 𝔼[𝑋𝑖𝑋′

𝑖 ]𝔼[𝑋𝑖𝑋′
𝑖 ]−􏷠𝔼[𝑋𝑖𝑌𝑖]

= 𝔼[𝑋𝑖𝑌𝑖] − 𝔼[𝑋𝑖𝑌𝑖] = 0

• No assumptions on the linearity of 𝔼[𝑌𝑖|𝑋𝑖].
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OLS estimator

• We know the population value of 𝛽 is:

𝛽 = 𝔼[𝑋𝑖𝑋′
𝑖 ]−􏷠𝔼[𝑋𝑖𝑌𝑖]

• How do we get an estimator of this?
• Plug-in principle ⇝ replace population expectation with

sample versions:

𝛽̂ =

⎡
⎢⎢⎢⎢⎢⎣
1
𝑁

􏾜
𝑖
𝑋𝑖𝑋′

𝑖

⎤
⎥⎥⎥⎥⎥⎦

−􏷠
1
𝑁

􏾜
𝑖
𝑋𝑖𝑌𝑖

• If you work through the matrix algebra, this turns out to be:

𝛽̂ = (𝐗′𝐗)−􏷠 𝐗′𝐲
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Asymptotic OLS inference

• With this representation in hand, we can write the OLS
estimator as follows:

𝛽̂ = 𝛽 +

⎡
⎢⎢⎢⎢⎢⎣􏾜

𝑖
𝑋𝑖𝑋′

𝑖

⎤
⎥⎥⎥⎥⎥⎦

−􏷠

􏾜
𝑖
𝑋𝑖𝑒𝑖

• Core idea: ∑
𝑖𝑋𝑖𝑒𝑖 is the sum of r.v.s so the CLT applies.

• That, plus some simple asymptotic theory allows us to say:

√𝑁(𝛽̂ − 𝛽)⇝ 𝑁(0,Ω)

• Converges in distribution to a Normal distribution with mean
vector 0 and covariance matrix, Ω:

Ω = 𝔼[𝑋𝑖𝑋′
𝑖 ]−􏷠𝔼[𝑋𝑖𝑋′

𝑖 𝑒􏷡𝑖 ]𝔼[𝑋𝑖𝑋′
𝑖 ]−􏷠.

• No linearity assumption needed!
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Estimating the variance

• In large samples then:

√𝑁(𝛽̂ − 𝛽) ∼ 𝑁(0,Ω)

• How to estimate Ω? Plug-in principle again!

􏾧Ω =

⎡
⎢⎢⎢⎢⎢⎣􏾜

𝑖
𝑋𝑖𝑋′

𝑖

⎤
⎥⎥⎥⎥⎥⎦

−􏷠 ⎡⎢⎢⎢⎢⎢⎣􏾜
𝑖
𝑋𝑖𝑋′

𝑖 𝑒̂􏷡𝑖

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣􏾜

𝑖
𝑋𝑖𝑋′

𝑖

⎤
⎥⎥⎥⎥⎥⎦

−􏷠

.

• Replace 𝑒𝑖 with its emprical counterpart (residuals)
𝑒̂𝑖 = 𝑌𝑖 − 𝑋′

𝑖 𝛽̂.
• Replace the population moments of 𝑋𝑖 with their sample

counterparts.
• The square root of the diagonals of this covariance matrix are

the “robust” or Huber-White standard errors that Stata
commonly report.
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Heteroskedasticity

• No assumptions of homoskedasticity.
• Heteroskedaticity will definitely occur when:

▶ CEF is linear, but the 𝜎􏷡(𝑥) = 𝕍[𝑌𝑖|𝑋𝑖 = 𝑥] is not constant in 𝑥.
▶ 𝐸[𝑌𝑖|𝑋𝑖] is not linear, but we use the linear regression to

approxmiate it.

22 / 58



2/ Regression and
Causality
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Regression and causality

• Most econometrics textbooks: regression defined without
respect to causality.

• But then when is 𝛽̂ “biased”? The above derivations work for
some 𝔼[𝑌𝑖|𝑋𝑖].

• The question, then, is when does knowing the CEF tell us
something about causality?

• MHE argues that a regression is causal when the CEF it
approximates is causal. Identification is king.

• We will show that under certain conditions, a regression of the
outcome on the treatment and the covariates can recover a
causal parameter, but perhaps not the one in which we are
interested.
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Review

• Quick reminder: we have potential outcomes, 𝑌𝑖(1) and 𝑌𝑖(0),
and two parameters, the ATE and ATT:

𝜏 = 𝐸[𝑌𝑖(1) − 𝑌𝑖(0)],
𝜏ATT = 𝐸[𝑌𝑖(1) − 𝑌𝑖(0)|𝐷𝑖 = 1].

• We have shown in past weeks that these effects are identified
when ignorability holds. MHE calls this the conditional
independence assumption (CIA).
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Linear constant effects model, binary
treatment

• Experiment: with a simple experiment, we can rewrite the
consistency assumption to be a regression formula:

𝑌𝑖 = 𝐷𝑖𝑌𝑖(1) + (1 − 𝐷𝑖)𝑌𝑖(0)
= 𝑌𝑖(0) + (𝑌𝑖(1) − 𝑌𝑖(0))𝐷𝑖

= 𝔼[𝑌𝑖(0)] + 𝜏𝐷𝑖 + (𝑌𝑖(0) − 𝔼[𝑌𝑖(0)])
= 𝜇􏷟 + 𝜏𝐷𝑖 + 𝑣􏷟𝑖

• Note that if ignorability holds (as in an experiment) for 𝑌𝑖(0),
then it will also hold for 𝑣􏷟𝑖 , since 𝔼[𝑌𝑖(0)] is constant. Thus,
this satifies the usual assumptions for regression.
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Now with covariates

• Now assume no unmeasured confounders: 𝑌𝑖(𝑑) ⟂⟂ 𝐷𝑖|𝑋𝑖.
• We will assume a linear model for the potential outcomes:

𝑌𝑖(𝑑) = 𝛼 + 𝜏 ⋅ 𝑑 + 𝜂𝑖

• Remember that linearity isn’t an assumption if 𝐷𝑖 is binary
• Effect of 𝐷𝑖 is constant here, the 𝜂𝑖 are the only source of

individual variation and we have 𝐸[𝜂𝑖] = 0.
• Consistency assumption allows us to write this as:

𝑌𝑖 = 𝛼 + 𝜏𝐷𝑖 + 𝜂𝑖.
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Covariates in the error

• Let’s assume that 𝜂𝑖 is linear in 𝑋𝑖: 𝜂𝑖 = 𝑋′
𝑖 𝛾 + 𝜈𝑖

• New error is uncorrelated with 𝑋𝑖: 𝔼[𝜈𝑖|𝑋𝑖] = 0.
• This is an assumption! Might be false!
• Plug into the above:

𝔼[𝑌𝑖(𝑑)|𝑋𝑖] = 𝐸[𝑌𝑖|𝐷𝑖, 𝑋𝑖] = 𝛼 + 𝜏𝐷𝑖 + 𝐸[𝜂𝑖|𝑋𝑖]
= 𝛼 + 𝜏𝐷𝑖 + 𝑋′

𝑖 𝛾 + 𝐸[𝜈𝑖|𝑋𝑖]
= 𝛼 + 𝜏𝐷𝑖 + 𝑋′

𝑖 𝛾
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Summing up regression with constant
effects

• Reviewing the assumptions we’ve used:
▶ no unmeasured confounders
▶ constant treatment effects
▶ linearity of the treatment/covariates

• Under these, we can run the following regression to estimate
the ATE, 𝜏:

𝑌𝑖 = 𝛼 + 𝜏𝐷𝑖 + 𝑋′
𝑖 𝛾 + 𝜈𝑖

• Works with continuous or ordinal 𝐷𝑖 if linearity in the effect of
these variables is truly linear.
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OLS constant effects simulation

Model with linear covariates, constant 0 effect of treatment:

library(mvtnorm)

n <- 100

p <- 4

X <- rmvnorm(n = 100, mean = rep(0, p))

gamma <- c(27.4, 13.7, 13.7, 13.7)

y <- 210 + X %*% c(gamma) + rnorm(n)

alpha <- c(-1, 0.5, -0.5, -0.1)

dprobs <- boot::inv.logit(X %*% alpha)

d <- rbinom(n, size = 1, prob = dprobs)
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OLS with no covariates

summary(lm(y ~ d))

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 220.36 4.58 48.13 < 2e-16 ***

## d -28.69 6.54 -4.39 0.000029 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 33 on 98 degrees of freedom

## Multiple R-squared: 0.164, Adjusted R-squared: 0.156

## F-statistic: 19.2 on 1 and 98 DF, p-value: 0.000029
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OLS with covariates

summary(lm(y ~ d + X))

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 209.952 0.159 1320.7 <2e-16 ***

## d -0.128 0.253 -0.5 0.62

## X1 27.368 0.126 217.5 <2e-16 ***

## X2 13.677 0.114 120.1 <2e-16 ***

## X3 13.673 0.130 105.1 <2e-16 ***

## X4 13.570 0.106 128.0 <2e-16 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 1 on 94 degrees of freedom

## Multiple R-squared: 0.999, Adjusted R-squared: 0.999

## F-statistic: 2.44e+04 on 5 and 94 DF, p-value: <2e-16

32 / 58



What happens with nonlinearity

Suppose we can only observe the following covariates:

z1 <- exp(X[, 1]/2)

z2 <- X[, 2]/(1 + exp(X[, 1])) + 10

z3 <- (X[, 1] * X[, 3]/25 + 0.6)^3

z4 <- (X[, 2] + X[, 4] + 20)^2

Implies that 𝑌𝑖 and 𝐷𝑖 are functions of log(𝑍𝑖􏷠), 𝑍𝑖􏷡, 𝑍􏷡
𝑖􏷠𝑍𝑖􏷡,

1/ log(𝑍𝑖􏷠), 𝑍𝑖􏷢/ log(𝑍𝑖􏷠), and 𝑋􏷠/􏷡
𝑖􏷣 .

Regression is a nonlinear function of the observed covariates.
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When linearity goes wrong

summary(lm(y ~ d + z1 + z2 + z3 + z4))

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 21.8728 30.0799 0.73 0.469

## d -6.9292 3.3854 -2.05 0.043 *

## z1 36.3110 2.6970 13.46 <2e-16 ***

## z2 -2.9033 3.6619 -0.79 0.430

## z3 86.2022 43.1030 2.00 0.048 *

## z4 0.4021 0.0329 12.23 <2e-16 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 14 on 94 degrees of freedom

## Multiple R-squared: 0.855, Adjusted R-squared: 0.847

## F-statistic: 111 on 5 and 94 DF, p-value: <2e-16
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3/ Regression with
Heterogeneous
Treatment Effects
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Heterogeneous effects, binary treatment

• Completely randomized experiment:

𝑌𝑖 = 𝐷𝑖𝑌𝑖(1) + (1 − 𝐷𝑖)𝑌𝑖(0)
= 𝑌𝑖(0) + (𝑌𝑖(1) − 𝑌𝑖(0))𝐷𝑖

= 𝜇􏷟 + 𝜏𝑖𝐷𝑖 + (𝑌𝑖(0) − 𝜇􏷟)
= 𝜇􏷟 + 𝜏𝐷𝑖 + (𝑌𝑖(0) − 𝜇􏷟) + (𝜏𝑖 − 𝜏) ⋅ 𝐷𝑖

= 𝜇􏷟 + 𝜏𝐷𝑖 + 𝜀𝑖

• Error term now includes two components:
1. “Baseline” variation in the outcome: (𝑌𝑖(0) − 𝜇􏷟)
2. Variation in the treatment effect, (𝜏𝑖 − 𝜏)

• Easy to verify that under experiment, 𝔼[𝜀𝑖|𝐷𝑖] = 0
• Thus, OLS estimates the ATE with no covariates.
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Adding covariates

• What happens with no unmeasured confounders? Need to
condition on 𝑋𝑖 now.

• Remember identification of the ATE/ATT using iterated
expectations.

• ATE is the weighted sum of CATEs:

𝜏 = 􏾜
𝑥
𝜏(𝑥) Pr[𝑋𝑖 = 𝑥]

• ATE/ATT are weighted averages of CATEs.
• What about the regression estimand, 𝜏𝑅? How does it related

to the ATE/ATT?
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Heterogeneous effects and regression

• Let’s investigate this under a saturated regression model:

𝑌𝑖 = 􏾜
𝑥
𝐵𝑥𝑖𝛼𝑥 + 𝜏𝑅𝐷𝑖 + 𝑒𝑖.

• Use a dummy variable for each unique combination of 𝑋𝑖:
𝐵𝑥𝑖 = 𝕀(𝑋𝑖 = 𝑥)

• Linear in 𝑋𝑖 by construction!
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Investigating the regression coefficient

• How can we investigate 𝜏𝑅? Well, we can rely on the
regression anatomy:

𝜏𝑅 = Cov(𝑌𝑖, 𝐷𝑖 − 𝐸[𝐷𝑖|𝑋𝑖])
𝕍(𝐷𝑖 − 𝐸[𝐷𝑖|𝑋𝑖])

• 𝐷𝑖 − 𝔼[𝐷𝑖|𝑋𝑖] is the residual from a regression of 𝐷𝑖 on the full
set of dummies.

• With a little work we can show:

𝜏𝑅 =
𝔼 􏿮𝜏(𝑋𝑖)(𝐷𝑖 − 𝔼[𝐷𝑖|𝑋𝑖])􏷡􏿱

𝔼[(𝐷𝑖 − 𝐸[𝐷𝑖|𝑋𝑖])􏷡]
=

𝔼[𝜏(𝑋𝑖)𝜎􏷡𝑑(𝑋𝑖)]
𝔼[𝜎􏷡𝑑(𝑋𝑖)]

• 𝜎􏷡𝑑(𝑥) = 𝕍[𝐷𝑖|𝑋𝑖 = 𝑥] is the conditional variance of treatment
assignment.
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ATE versus OLS

𝜏𝑅 = 𝔼[𝜏(𝑋𝑖)𝑊𝑖] = 􏾜
𝑥
𝜏(𝑥)

𝜎􏷡𝑑(𝑥)
𝔼[𝜎􏷡𝑑(𝑋𝑖)]

ℙ[𝑋𝑖 = 𝑥]

• Compare to the ATE:

𝜏 = 𝔼[𝜏(𝑋𝑖)] = 􏾜
𝑥
𝜏(𝑥)ℙ[𝑋𝑖 = 𝑥]

• Both weight strata relative to their size (ℙ[𝑋𝑖 = 𝑥])
• OLS weights strata higher if the treatment variance in those

strata (𝜎􏷡𝑑(𝑥)) is higher in those strata relative to the average
variance across strata (𝔼[𝜎􏷡𝑑(𝑋𝑖)]).

• The ATE weights only by their size.
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Regression weighting

𝑊𝑖 =
𝜎􏷡𝑑(𝑋𝑖)

𝔼[𝜎􏷡𝑑(𝑋𝑖)]

• Why does OLS weight like this?
• OLS is a minimum-variance estimator ⇝ more weight to

more precise within-strata estimates.
• Within-strata estimates are most precise when the treatment

is evenly spread and thus has the highest variance.
• If 𝐷𝑖 is binary, then we know the conditional variance will be:

𝜎􏷡𝑑(𝑥) = ℙ[𝐷𝑖 = 1|𝑋𝑖 = 𝑥] (1 − ℙ[𝐷𝑖 = 1|𝑋𝑖 = 𝑥])
= 𝑒(𝑥) (1 − 𝑒(𝑥))

• Maximum variance with ℙ[𝐷𝑖 = 1|𝑋𝑖 = 𝑥] = 1/2.
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OLS weighting example
• Binary covariate:

ℙ[𝑋𝑖 = 1] = 0.75 ℙ[𝑋𝑖 = 0] = 0.25
ℙ[𝐷𝑖 = 1|𝑋𝑖 = 1] = 0.9 ℙ[𝐷𝑖 = 1|𝑋𝑖 = 0] = 0.5

𝜎􏷡𝑑(1) = 0.09 𝜎􏷡𝑑(0) = 0.25
𝜏(1) = 1 𝜏(0) = −1

• Implies the ATE is 𝜏 = 0.5
• Average conditional variance: 𝔼[𝜎􏷡𝑑(𝑋𝑖)] = 0.13
• ⇝ weights for 𝑋𝑖 = 1 are: 0.09/0.13 = 0.692, for 𝑋𝑖 = 0:

0.25/0.13 = 1.92.
𝜏𝑅 = 𝔼[𝜏(𝑋𝑖)𝑊𝑖]

= 𝜏(1)𝑊(1)ℙ[𝑋𝑖 = 1] + 𝜏(0)𝑊(0)ℙ[𝑋𝑖 = 0]
= 1 × 0.692 × 0.75 + −1 × 1.92 × 0.25
= 0.039
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When will OLS estimate the ATE?

• When does 𝜏 = 𝜏𝑅?
• Constant treatment effects: 𝜏(𝑥) = 𝜏 = 𝜏𝑅
• Constant probability of treatment: 𝑒(𝑥) = ℙ[𝐷𝑖 = 1|𝑋𝑖 = 𝑥] = 𝑒.

▶ Implies that the OLS weights are 1.

• Incorrect linearity assumption in 𝑋𝑖 will lead to more bias.
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Other ways to use regression

• What’s the path forward?
▶ Accept the bias (might be relatively small with saturated

models)
▶ Use a different regression approach

• Let 𝜇𝑑(𝑥) = 𝔼[𝑌𝑖(𝑑)|𝑋𝑖 = 𝑥] be the CEF for the potential
outcome under 𝐷𝑖 = 𝑑.

• By consistency and n.u.c., we have 𝜇𝑑(𝑥) = 𝔼[𝑌𝑖|𝐷𝑖 = 𝑑,𝑋𝑖 = 𝑥].
• Estimate a regression of 𝑌𝑖 on 𝑋𝑖 among the 𝐷𝑖 = 𝑑 group.
• Then, 𝜇̂𝑑(𝑥) is just a predicted value from the regression for

𝑋𝑖 = 𝑥.
• How can we use this?
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Imputation estimators

• Impute the treated potential outcomes with 􏾧𝑌𝑖(1) = 𝜇̂􏷠(𝑋𝑖)!
• Impute the control potential outcomes with 􏾧𝑌𝑖(0) = 𝜇̂􏷟(𝑋𝑖)!
• Procedure:

▶ Regress 𝑌𝑖 on 𝑋𝑖 in the treated group and get predicted values
for all units (treated or control).

▶ Regress 𝑌𝑖 on 𝑋𝑖 in the control group and get predicted values
for all units (treated or control).

▶ Take the average difference between these predicted values.

• More mathematically, look like this:

𝜏𝑖𝑚𝑝 =
1
𝑁

􏾜
𝑖
𝜇̂􏷠(𝑋𝑖) − 𝜇̂􏷟(𝑋𝑖)

• Sometimes called an imputation estimator.
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Simple imputation estimator

• Use predict() from the within-group models on the data from
the entire sample.

• Useful trick: use a model on the entire data and
model.frame() to get the right design matrix:

## heterogeneous effects

y.het <- ifelse(d == 1, y + rnorm(n, 0, 5), y)

mod <- lm(y.het ~ d + X)

mod1 <- lm(y.het ~ X, subset = d == 1)

mod0 <- lm(y.het ~ X, subset = d == 0)

y1.imps <- predict(mod1, model.frame(mod))

y0.imps <- predict(mod0, model.frame(mod))

mean(y1.imps - y0.imps)

## [1] 0.61
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Notes on imputation estimators

• If 𝜇̂𝑑(𝑥) are consistent estimators, then 𝜏𝑖𝑚𝑝 is consistent for
the ATE.

• Why don’t people use this?
▶ Most people don’t know the results we’ve been talking about.
▶ Harder to implement than vanilla OLS.

• Can use linear regression to estimate 𝜇̂𝑑(𝑥) = 𝑥′𝛽𝑑
• Recent trend is to estimate 𝜇̂𝑑(𝑥) via non-parametric methods

such as:
▶ Kernel regression, local linear regression, regression trees, etc
▶ Easiest is generalized additive models (GAMs)
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Imputation estimator visualization
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Imputation estimator visualization
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Imputation estimator visualization
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Nonlinear relationships
• Same idea but with nonlinear relationship between 𝑌𝑖 and 𝑋𝑖:
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Nonlinear relationships
• Same idea but with nonlinear relationship between 𝑌𝑖 and 𝑋𝑖:
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Nonlinear relationships
• Same idea but with nonlinear relationship between 𝑌𝑖 and 𝑋𝑖:
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Using semiparametric regression
• Here, CEFs are nonlinear, but we don’t know their form.
• We can use GAMs from the mgcv package to for flexible

estimate:
library(mgcv)

mod0 <- gam(y ~ s(x), subset = d == 0)

summary(mod0)

##

## Family: gaussian

## Link function: identity

##

## Formula:

## y ~ s(x)

##

## Parametric coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -0.0225 0.0154 -1.46 0.16

##

## Approximate significance of smooth terms:

## edf Ref.df F p-value

## s(x) 6.03 7.08 41.3 <2e-16 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## R-sq.(adj) = 0.909 Deviance explained = 92.8%

## GCV = 0.0093204 Scale est. = 0.0071351 n = 30
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Using GAMs
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Using GAMs
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Using GAMs
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Limited dependent variables

• Usual advice: model the data from first principles:
▶ Logit/probit for binary, Poisson for counts, etc.

• OLS is a-ok with limited DVs when:
▶ Binary treatment and no covariates (just diff-in-means)
▶ Binary treatment, discrete covariates, and saturated models

(stratified diff-in-means)

• Imposing a model on LDVs in this case imposes a
distributional assumption which could be wrong!

• Even in unsaturated models, the marginal effect from OLS
often decent compared to nonlinear models.

▶ Could go wrong in small samples
▶ If using nonlinear models, always get effects on the scale of the

outcome.
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