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Agnostic Regression

Regression and Causality

Regression with Heterogeneous Treatment Effects
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Where are we? Where are we going?

= Last few weeks: using matching, weighting for estimating
causal effects.

= This week: how to use regression to estimate causal effects.

= Regression is so widely used, it's good to know what it's
actually estimating!

= Goal: salvage regression from the ashes of 1980’s textbooks!

= Next week: panel data!

Reminder Email me and Stephen a half-page description of your
proposed research project.
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1/ Agnostic
Regdression



Regression as parametric modeling

Gauss-Markov assumptions:

» linearity, i.i.d. sample, full rank X;, zero conditional mean error,
homoskedasticity.

~» OLS is BLUE, plus normality of the errors and we get small
sample SEs.

What is the basic approach here? It is a model for the
conditional distribution of Y; given X;:

[YilX;] ~ N(X/B,0%)
MLE from this model is the usual OLS estimator, fo.s:
|

BoLs =

N
) XiX!
i=1




Agnostic views on regression

[YiIX;] ~ N(X/B, %)

= Strong distributional assumption on Y;.

= Properties like BLUE or MLE properties depend on these
assumptions holding.

= Alternative: take an agnostic view on regression.

» Use OLS without believing these assumptions.

= Lose the distributional assumptions, focus on the conditional
expectation function (CEF):

ux) = E[Y|X; = x] = Y,y P[Y; = y|X; = «]
Y



Justifying linear regression

= Define linear regression:

B = argmin E[(Y; - X{b)z]
b

= The solution to this is the following:
B = E[X;X/1"E[X;Y]]

= Note that the is the population coefficient vector, not the
estimator yet.
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Regression anatomy

= Consider simple linear regression:

(a,p) = argmin E [(Yl- —-a- bX,-)Z]
ab

= In this case, we can write the population/true slope g as:

Cov(Y;, X)

B = E[X;X/1'E[X;Y] = VIX]

= With more covariates, 8 is more complicated, but we can still
write it like this.

= Let X;; be the residual from a regression of X;; on all the other
independent variables. Then, f, the coefficient for Xj; is:
Cov(Y;, X))
KT T o
V (Xki)
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Justification 1: Linear CEFs

= Justification 1: if the CEF is linear, the population regression
function is it. That is, if E[Y;|X;] = X/b, then b = p.
= When would we expect the CEF to be linear? Two cases.

1. Outcome and covariates are multivariate normal.
2. Linear regression model is saturated.

= A model is saturated if there are as many parameters as
there are possible combination of the X; variables.



Saturated model example

= Two binary variables, Xj; for incumbency status and X,; for
party of the candidate.

= Four possible values of X;, four possible values of u(X;):

E[YiX1i=0,X3i=0]=«a
E[YiX:i=1X5=01=a+p
ElYi|X1;=0,Xp; =1l =a+y
ElYiX;;=1,Xp;=1]=a+p+y+0

= We can write the CEF as follows:

E[Y;|X1;, X3i] = a + BXq; + yXai + 0(X1:X2:)
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Saturated models example

E[Yi|Xy;, Xpi] = a + BXq; + yXo; + 0(X1:X5)

= Basically, each value of u(X;) is being estimated separately.

» ~~ within-strata estimation.
» No borrowing of information from across values of X;.

= Requires a set of dummies for each categorical variable plus
all interactions.

= Or, a series of dummies for each unique combination of X;.

= This makes linearity hold mechanically and so linearity is
not an assumption.

» Just a fact about saturated CEFs.
» ~~ saturated models for limited dependent variables = A-OK!
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Saturated model example

= Washington (AER) data on the effects of daughters.

= We'll look at the relationship between voting and number of
kids (causal?).

girls <- foreign::read.dta(”girls.dta”)

head(girls[, c(”name”, ”totchi”, ”aauw”)])

## name totchi aauw
## 1  ABERCROMBIE, NEIL 0 100
## 2 ACKERMAN, GARY L. 3 88
## 3 ADERHOLT, ROBERT B. Q 0
## 4 ALLEN, THOMAS H. 2 100
## 5 ANDREWS, ROBERT E. 2 100
## 6 ARCHER, W.R. 7 0

N
a



Linear model

summary (Im(aauw ~ totchi, data =

##
##
##
##
##
##
##
##
##
##
##
##

girls))

Coefficients:

Estimate Std. Error t value
(Intercept) 61.31 1.81 33.81
totchi -5.33 0.62 -8.59
Signif. codes: @ ’x*x’ 0.001 ’'*x’ 0.01

Pri>Itl)
<2e-16 x*x*
<2e-16 **x*

g

0.05 7.7 0.1 7 1

Residual standard error: 42 on 1733 degrees of freedom
(5 observations deleted due to missingness)

Multiple R-squared:
F-statistic: 73.8 on 1 and 1733 DF,

0.0408, Adjusted R-

squared: 0.0403

p-value: <2e-16



Saturated model

summary (lm(aauw ~ as.factor(totchi), data = girls))

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Coefficients:

(Intercept) 56.
as.factor(totchi)1 5.
as.factor(totchi)2 =3,
as.factor(totchi)3 -13.
as.factor(totchi)4 =195
as.factor(totchi)5 =15,
as.factor(totchi)6 -33.
as.factor(totchi)7 -17.
as.factor(totchi)8 =55,
as.factor(totchi)9 -50.
as.factor(totchi)lo  -53.
as.factor(totchi)12  -56.
Signif. codes: @ ’x*x’ 0.

Estimate Std. Error t value Pr(>|t|)

41
45
80
65
31
46
59
13
33
41
41
41

001 ’Hx’

2.
4.1
3.
3
4

Q.

76

27

.45
.01

4.
10.
1S
12.
24.
20.
41.

85
42
41
28
08
90
53

01

20.42 < 2e-16

1.33 0.1851
-1.16  0.2454
=3.95 8.1e=05
-4.82 1.6e-06
-3.19 0.0015
-3.22 0.0013
-1.50 0.1336
-4.51 7.0e-06
-2.09 0.0364
-2.56 0.0107
-1.36 0.1745

"%’ 9.05 7.7 0.1

Residual standard error: 41 on 1723 degrees of freedom
(5 observations deleted due to missingness)

Multiple R-squared:

F-statistic: 8.36 on 11 and 1723 DF,

0.0506, Adjusted R-squared: 0.0446

p-value: 1.84e-14

*k*k

kkk

KKk

)%

*%*

*kk

*
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Saturated model minus the constant

summary (1lm(aauw ~ as.factor(totchi) - 1, data = girls))

H#i#

## Coefficients:

#i# Estimate Std. Error t value Pr(>|t])

## as.factor(totchi)@ 56.41 2.76 20.42 <2e-16 **x
## as.factor(totchi)l 61.86 3.05 20.31 <2e-16 ***x
## as.factor(totchi)2 52.62 1.75 30.13 <2e-16 **x
## as.factor(totchi)3 42.76 2.07 20.62 <2e-16 **xx
## as.factor(totchi)4 37.11 2.90 12.79 <2e-16 **x*
## as.factor(totchi)5s 40.95 3.99  10.27 <2e-16 **xx
## as.factor(totchi)6 22.82 10.05 2.27 0.0233 *
## as.factor(totchi)7 39.29 11.07 3.55 0.0004 *xx*
## as.factor(totchi)8 1.08 11.96 0.09 0.9278

## as.factor(totchi)9 6.00 23.92 0.25 0.8020

## as.factor(totchi)leo 3.00 20.72 0.14 0.8849

## as.factor(totchi)12 0.00 41.43 0.00 1.0000

##H --—-

## Signif. codes: @ ’*xx’ 0.001 ’*x’ 0.01 '’ 0.05 .’ 0.1’ ’ 1
H##

## Residual standard error: 41 on 1723 degrees of freedom
## (5 observations deleted due to missingness)

## Multiple R-squared: ©.587, Adjusted R-squared: 0.584
## F-statistic: 204 on 12 and 1723 DF, p-value: <2e-16



Compare to within-strata means

= The saturated model makes no assumptions about the
between-strata relationships.
= Just calculates within-strata means:

cl <- coef(lm(aauw ~ as.factor(totchi) - 1, data = girls))

c2 <- with(girls, tapply(aauw, totchi, mean, na.rm = TRUE))
rbind(cl, c2)

## e 1 2 3 4 5 6 7 891012
## c1 56 62 53 43 37 41 23 391.16 3 0
## c2 56 62 53 43 37 41 23 391.16 3 0



Other justifications for OLS

= Justification 2: X/B is the best linear predictor (in a
mean-squared error sense) of Y;.

» Why? B= argminh E[(Y; - X/b)?]
= Justification 3: X/B provides the minimum mean squared
error linear approxmiation to E[Y;|X;].

= Even if the CEF is not linear, a linear regression provides the
best linear approximation to that CEF.

= Don't need to believe the assumptions (linearity) in order to
use regression as a good approximation to the CEF.

= Warning if the CEF is very nonlinear then this approximation
could be terrible!!
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The error terms

= Let's define the error term: ¢; = Y; — X/B so that:

Yi :Xz,ﬁ-i'[Yl—X{ﬁ] :Xi,ﬁ+ei

= Note the residual ¢; is uncorrelated with X;:
E[X;e;] = E[X;(Y; — X{B)]
= E[X;Y;] - E[X;X/B]
= E[X,Y;] - B [X:X/BIX; X/ E[X; Y]]
= E[X;Y{] - E[X;X/JE[X,X]]"E[X;Y]
= E[X;Y;] - E[X;Y;] =0

= No assumptions on the linearity of E[Y;|X;].
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OLS estimator

= We know the population value of 8 is:
B = E[X;X/1"E[X;Y]]

= How do we get an estimator of this?
= Plug-in principle ~> replace population expectation with
sample versions:

=il

R 1
p= ﬁ?xixi ﬁzi:xiyi

= |f you work through the matrix algebra, this turns out to be:

B=XX) "Xy
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Asymptotic OLS inference

= With this representation in hand, we can write the OLS
estimator as follows:

1
B=p+|D XX/ D Xe
: :

= Core idea: Y, Xje; is the sum of r.v.s so the CLT applies.
= That, plus some simple asymptotic theory allows us to say:

VN@B-p) ~ N(O,Q)

= Converges in distribution to a Normal distribution with mean
vector 0 and covariance matrix, €:

Q = B[X; X/ E[X, X2 ]E[X; X/] .

= No linearity assumption needed!
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Estimating the variance

In large samples then:
VN@E-p ~NO,O

How to estimate Q7 Plug-in principle again!

! =il

Q= XXX || N XXie
1 1

2 XiX]
1

Replace ¢; with its emprical counterpart (residuals)

& =Y;,-Xp.

Replace the population moments of X; with their sample
counterparts.

The square root of the diagonals of this covariance matrix are
the “robust” or Huber-White standard errors that Stata
commonly report.
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Heteroskedasticity

= No assumptions of homoskedasticity.
= Heteroskedaticity will definitely occur when:
» CEF is linear, but the o%(x) = V[Y;|X; = x] is not constant in x.

» E[Y;|X;] is not linear, but we use the linear regression to
approxmiate it.
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2/ Regression anc
Causality



Regression and causality

= Most econometrics textbooks: regression defined without
respect to causality.

= But then when is  “biased”? The above derivations work for
some [E[Y;|X;].

= The question, then, is when does knowing the CEF tell us
something about causality?

= MHE argues that a regression is causal when the CEF it
approximates is causal. Identification is king.

= We will show that under certain conditions, a regression of the
outcome on the treatment and the covariates can recover a
causal parameter, but perhaps not the one in which we are
interested.
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Review

= Quick reminder: we have potential outcomes, Y;(1) and Y;(0),
and two parameters, the ATE and ATT:

© = E[Y;(1) - Y;(0)],
tatT = E[Yi(1) - Y;(0)ID; = 1].
= We have shown in past weeks that these effects are identified

when ignorability holds. MHE calls this the conditional
independence assumption (CIA).
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Linear constant effects model, binary
treatment

= Experiment: with a simple experiment, we can rewrite the
consistency assumption to be a regression formula:

Y; = D;Y;(1) + (1 - D)Y;(0)
=Y;(0) + (Yi(1) - Yi(0))D;
= E[Y;(0)] + ©D; + (Y;(0) - E[Y;(0)])

-0 0
=y’ +1D; +7;

= Note that if ignorability holds (as in an experiment) for Y;(0),

then it will also hold for ©?, since E[Y;(0)] is constant. Thus,
this satifies the usual assumptions for regression.

26 /58



Now with covariates

= Now assume no unmeasured confounders: Y;(d) 1L D;|X;.

= We will assume a linear model for the potential outcomes:
Yi(d):a+T-d+77i

= Remember that linearity isn't an assumption if D; is binary

= Effect of D; is constant here, the 7, are the only source of
individual variation and we have E[n;] = 0.

= Consistency assumption allows us to write this as:

YZ'ZOC+TD1'+171'.
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Covariates in the error

= Let's assume that 7; is linear in X;: n; = X/y +v;
= New error is uncorrelated with X;: E[v;|X;] = 0.
= This is an assumption! Might be false!

Plug into the above:

E[Y;(d)X;] = E[YilD;, X;] = a + tD; + E[n;1X;]
=a+ TDZ' + Xl,)/ + E[v,'IXi]
=a+ TDZ' + X;')/
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Summing up regression with constant
effects

= Reviewing the assumptions we've used:

» no unmeasured confounders
» constant treatment effects
» linearity of the treatment/covariates

= Under these, we can run the following regression to estimate
the ATE, ©:
Yi=a+1D;+ X/y +v;

= Works with continuous or ordinal D; if linearity in the effect of
these variables is truly linear.
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OLS constant effects simulation

Model with linear covariates, constant 0 effect of treatment:

library(mvtnorm)

n <- 100

p <-4

X <= rmvnorm(n = 100, mean = rep(@, p))
gamma <- c(27.4, 13.7, 13.7, 13.7)

y <= 210 + X %*% c(gamma) + rnorm(n)

alpha <- c(-1, 0.5, -0.5, -0.1)
dprobs <- boot::inv.logit(X %*% alpha)
d <- rbinom(n, size = 1, prob = dprobs)




OLS with no covariates

summary (Im(y ~ d))

##
##
##
##
##
##
##
##
##
##
##

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 220.36 4.58 48.13 < 2e-16 x*xx*
d -28.69 6.54 -4.39 0.000029 ***
Signif. codes: @ ’x*x’ 0.001 ’xx’ 0.01 'x’ .05 ’.” 0.1 > ’ 1
Residual standard error: 33 on 98 degrees of freedom

Multiple R-squared: ©.164, Adjusted R-squared: 0.156
F-statistic: 19.2 on 1 and 98 DF, p-value: 0.000029

o1
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OLS with covariates

summary (Im(y ~ d + X))

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 209.952 0.159 1320.7 <2e-16 ***
d -0.128 0.253 -0.5 0.62
X1 27.368 0.126 217.5 <2e-16 ***
X2 13.677 0.114 120.1 <2e-16 **xx*
X3 13.673 0.130 105.1 <2e-16 **xx%
X4 13.570 0.106 128.0  <2e-16 #**x%
Signif. codes: @ ’*x*xx’ 0.001 ’*x*’ 0.01 ’x’ .05 ’.’ 0.1 ’ ’ 1
Residual standard error: 1 on 94 degrees of freedom

Multiple R-squared: ©.999, Adjusted R-squared: 0.999
F-statistic: 2.44e+04 on 5 and 94 DF, p-value: <2e-16



What happens with nonlinearity

Suppose we can only observe the following covariates:

<- exp(X[, 11/2)
<= X[, 21/C1 + exp(X[, 11)) + 10

<- (XL, 11 = X[, 31/25 + 0.6)"3
<- (X[, 2] + X[, 41 + 20)"2

Implies that Y; and D; are functions of log(Z;), Zi, Z4Zs,
1/10g(Zi1), Zis/10g(Zs1), and X}j°.

Regression is a nonlinear function of the observed covariates.



When linearity goes wrong

summary(Im(y ~ d + z1 + z2 + z3 + z4))

#i#

## Coefficients:

#i# Estimate Std. Error t value Pr(>|t])

## (Intercept) 21.8728 30.0799 0.73 0.469

## d -6.9292 3.3854 -2.05 0.043 *
#H z1 36.3110 2.6970 13.46 <2e-16 *x*x*
#it z2 -2.9033 3.6619 -0.79 0.430

## z3 86.2022 43.1030 2.00 0.048 *
#t z4 0.4021 0.0329 12.23 <2e-16 x*xx
#H# ---

## Signif. codes: @ ’#*x’ 0.001 ’**’ .01 ’*’ .05 .’ 0.1 ’ ’ 1
it

## Residual standard error: 14 on 94 degrees of freedom
## Multiple R-squared: ©.855, Adjusted R-squared: 0.847
## F-statistic: 111 on 5 and 94 DF, p-value: <2e-16



3/ Regression with
Heterogeneous

Treatment Effects



Heterogeneous effects, binary treatment

= Completely randomized experiment:

Y; = D;Yi(1) + (1 - Dy)Y;(0)
= Yi(0) + (Y;(1) - Yi(0))D;
= po + ;D; + (Yi(0) — o)
= pio + TD; + (Yi(0) — po) + (7, — 1) - D;
= o +1D; + ¢

= Error term now includes two components:

1. “Baseline” variation in the outcome: (Y;(0) — uo)
2. Variation in the treatment effect, (z; — 7)

= Easy to verify that under experiment, [E[¢;|D;] =0
Thus, OLS estimates the ATE with no covariates.
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Adding covariates

= What happens with no unmeasured confounders? Need to
condition on X; now.

= Remember identification of the ATE/ATT using iterated
expectations.

= ATE is the weighted sum of CATEs:

7= Y, 7(x) Pr[X; = x]

= ATE/ATT are weighted averages of CATEs.
= What about the regression estimand, 7z? How does it related
to the ATE/ATT?
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Heterogeneous effects and regression

= Let's investigate this under a saturated regression model:

Yi = E Bxiax aF TRDi I @
2%

= Use a dummy variable for each unique combination of X;:
By = I(X; = x)
= Linear in X; by construction!
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Investigating the regression coefficient

= How can we investigate 73?7 Well, we can rely on the
regression anatomy:
- Cov(Y;, D; — E[D;|X;])
®7 V(- ED|X)

= D; —E[D;|X;] is the residual from a regression of D, on the full
set of dummies.

= With a little work we can show:

_ E[x(X)(D; - EIDIX;1?]  E[r(X)03(X,)]
RETEID-EDIXIA | El(X)]

= 0%(x) = V[D,X; = x] is the conditional variance of treatment
assignment.
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ATE versus OLS

2
g = E[1(X)W;] = 2 T(x)gd—(x)

]PXI‘:
2 "ot =

= Compare to the ATE:

T = E[t(X)] = Y} 1(0P[X; = ]
= Both weight strata relative to their size (P[X; = x])

= OLS weights strata higher if the treatment variance in those
strata (05(x)) is higher in those strata relative to the average
variance across strata (E[03(X))]).

= The ATE weights only by their size.
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Regression weighting

o a5(Xi)
" E[05(X)]

= Why does OLS weight like this?

= OLS is a minimum-variance estimator ~~ more weight to
more precise within-strata estimates.

= Within-strata estimates are most precise when the treatment
is evenly spread and thus has the highest variance.

= |f D; is binary, then we know the conditional variance will be:

05(x) = P[D; = 11X; = x] (1 - P[D; = 11X; = x])
= e(x) (1 - e(x))

= Maximum variance with P[D; = 1|X; = x] = 1/2.
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OLS weighting example

= Binary covariate:

P[X; =1] = 0.75 P[X; = 0] = 0.25

P[D; =1X;=1]=09 P[D;=1|X;=0]=05
04(1) = 0.09 04(0) = 0.25

(1) =1 7(0) = -1

= Implies the ATE is 7 = 0.5
= Average conditional variance: E[0%(X;)] = 0.13
= ~~ weights for X; =1 are: 0.09/0.13 = 0.692, for X; = 0:
0.25/0.13 = 1.92.
tr = E[t(X;))Wi]
= 7()H)WQ)P[X; = 1] + (0)W(0)P[X; = 0]
=1x%0.692x0.75 + -1 x1.92 X 0.25
= 0.039
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When will OLS estimate the ATE?

= When does © = t37?
= Constant treatment effects: 7(x) = 7 = 73
Constant probability of treatment: e(x) = P[D; = 1|X; = x] = e.

> Implies that the OLS weights are 1.

= Incorrect linearity assumption in X; will lead to more bias.
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Other ways to use regression

= What's the path forward?

» Accept the bias (might be relatively small with saturated
models)
» Use a different regression approach

= Let uy(x) = E[Y;(d)|X; = x] be the CEF for the potential
outcome under D; =d.

= By consistency and n.u.c., we have u,(x) = E[Y,ID; =d,X; = x].

= Estimate a regression of Y; on X; among the D, = d group.

= Then, fi;(x) is just a predicted value from the regression for
X; = x.

= How can we use this?
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Imputation estimators

= Impute the treated potential outcomes with Y;(1) = f1(X;)!
= |Impute the control potential outcomes with Yi(O) = fo(X))!
= Procedure:

» Regress Y; on X; in the treated group and get predicted values
for all units (treated or control).

» Regress Y; on X; in the control group and get predicted values
for all units (treated or control).

» Take the average difference between these predicted values.

= More mathematically, look like this:
1 ¢, .
Timp = 37 D 1(X;) - fio(X;)
i
= Sometimes called an imputation estimator.
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Simple imputation estimator

= Use predict() from the within-group models on the data from
the entire sample.

= Useful trick: use a model on the entire data and
model.frame() to get the right design matrix:

## heterogeneous effects
y.het <- ifelse(d == 1, y + rnorm(n, @, 5), y)

mod <- Im(y.het ~ d + X)

modl <- lm(y.het ~ X, subset = d == 1)
mod@ <- Im(y.het ~ X, subset = d == @)
y1.imps <- predict(modl, model.frame(mod))
y0.imps <- predict(mod@, model.frame(mod))
mean(y1.imps - y@.imps)

## [1] 0.61



Notes on imputation estimators

= If 44(x) are consistent estimators, then 7;,, is consistent for
the ATE.
= Why don't people use this?
» Most people don’t know the results we've been talking about.
» Harder to implement than vanilla OLS.
= Can use linear regression to estimate [1;(x) = x'f,
= Recent trend is to estimate [i4(x) via non-parametric methods
such as:

» Kernel regression, local linear regression, regression trees, etc
» Easiest is generalized additive models (GAMs)
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Imputation estimator visualization
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Imputation estimator visualization
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Imputation estimator visualization
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Nonlinear relationships

= Same idea but with nonlinear relationship between Y; and X;:

® Treated L4
A Control ®
°
G ° L . .
1] °® °
e . A
A A
A A A 5
o ® o A AAM A
- o o A, A A
., © A A ML
A A
[ ]
)
s <
l
A

=
T = A

I T T T 1

-2 -1 0 1 2

51/58



Nonlinear relationships

= Same idea but with nonlinear relationship between Y; and X;:

® Treated
A Control
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Nonlinear relationships

= Same idea but with nonlinear relationship between Y; and X;:

® Treated
A Control
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Using semiparametric regression

= Here, CEFs are nonlinear, but we don't know their form.
= We can use GAMs from the mgcv package to for flexible
estimate:

library(mgcv)

mod@ <- gam(y ~ s(x), subset = d == 0)

summary (mod@)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Family: gaussian
Link function: identity

Formula:
y ~ s(x)

Parametric coefficients:

Estimate Std. Error t value Pr(>|t]|)
(Intercept) -0.0225 0.0154 -1.46 0.16
Approximate significance of smooth terms:

edf Ref.df F p-value
s(x) 6.03 7.08 41.3 <2e-16 ***
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Limited dependent variables

= Usual advice: model the data from first principles:

» Logit/probit for binary, Poisson for counts, etc.

= OLS is a-ok with limited DVs when:

» Binary treatment and no covariates (just diff-in-means)
» Binary treatment, discrete covariates, and saturated models
(stratified diff-in-means)

= Imposing a model on LDVs in this case imposes a
distributional assumption which could be wrong!

= Even in unsaturated models, the marginal effect from OLS
often decent compared to nonlinear models.

» Could go wrong in small samples
> If using nonlinear models, always get effects on the scale of the
outcome.
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