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Where are we? Where are we going?

• Whatwe’ve beenup to: estimating parameters of populationdistributions. Gen-
erally we’ve been learning about a single variable.

• This week and for the rest of the term, we’ll be interested in the relationships be-
tween variables. How does one variable change we change the values of another
variable? These will be the bread and butter of the class moving forward.

relationships between two variables
What is a relationship and why do we care?

• Most of whatwewant to do in the social science is learn about how two variables
are related

• Examples:

– Does turnout vary by types of mailers received?
– Is the quality of political institutions related to average incomes?
– Does conflict mediation help reduce civil conflict?
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Notation and conventions

• Y - the dependent variable or outcome or regressand or left-hand-side variable
or response

– Voter turnout
– Log GDP per capita
– Number of battle deaths

• X - the independent variable or explanatory variable or regressor or right-
hand-side variable or treatment or predictor

– Social pressure mailer versus Civic Duty Mailer
– Average Expropriation Risk
– Presence of conflict mediation

• Generally our goal is to understand how Y varies as a function of X :

Y = f(X) + error

Three uses of regression

1. Description - parsimonious summary of the data
2. Prediction/Estimation/Inference - learn about parameters of the joint distri-

bution of the data
3. Causal Inference - evaluate counterfactuals

Describing relationships

• Remember that we had ways to summarize the relationship between variables
in the population.

• Joint densities, covariance, and correlation were all ways to summarize the re-
lationship between two variables.

• But these were population quantities andwe only have samples, so wemaywant
to estimate these quantities using their sample analogs

Scatterplots

• Sample version of joint probability density.
• Shows graphically how two variables are related (positive, negative, linear, non-

linear, etc)
• Use the plot() command in R.
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ajr <- foreign::read.dta(”ajr.dta”)

plot(ajr$logem4, ajr$logpgp95, xlab = ”Log Settler Mortality”, ylab = ”Log GDP per capita growth”,

pch = 19, bty = ”n”)

text(ajr$logem4, ajr$logpgp95, ajr$shortnam, pos = 1)
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• Example of a non-linear relationship, where we use the unlogged version of
GDP and settler mortality:

plot(exp(ajr$logem4), exp(ajr$logpgp95), xlab = ”Settler Mortality”, ylab = ”GDP per capita growth”,

pch = 19, bty = ”n”)

text(exp(ajr$logem4), exp(ajr$logpgp95), ajr$shortnam, pos = 1)
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Sample covariance

• The sample version of population covariance, σXY = E[(X − E[X])(Y −
E[Y ])].

• Defintion The sample covariance between Yi and Xi is

SXY =
1

n− 1

n∑
i=1

(Xi −Xn)(Yi − Y n)

## cov() gets confused when you give it missing data

cov(ajr$logem4, ajr$logpgp95)

## [1] NA

## tell cov() to use only the pairwise complete observations:

cov(ajr$logem4, ajr$logpgp95, use = ”pair”)

## [1] -0.9881104

Sample correlation

• The sample version of population correlation, ρ = σXY /σXσY .
• Defintion The sample correlation between Yi and Xi is

ρ̂ = r =
SXY

SXSY
=

∑n
i=1(Xi −Xn)(Yi − Y n)√∑n

i=1(Xi −Xn)2
∑n

i=1(Yi − Y n)2
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## cor() is very similar to cov()

cor(ajr$logem4, ajr$logpgp95)

## [1] NA

## and has the same solution to NAs:

cor(ajr$logem4, ajr$logpgp95, use = ”pair”)

## [1] -0.7047632

conditional expectation
Conditional expectation review

• When we turn to predicting an outcome or estimating the effect of a covariate
on an outcome, one way to describe relationships takes center stage: the condi-
tional expectation function.

• DefinitionThe conditional expectation function (CEF) or the regression func-
tion of Y given X , denoted E[Y |X = x] is the function that gives the mean of
Y at various values of x.

• Note that this is a function of the population distributions.

• Regression at its most fundamental is about how the mean of Y changes as a
function of X

Binary covariate: Difference in means as difference in conditional expectation

• We’ve been writing µy and µx for the means in different groups.

• Note that these are just conditional expectations. DefineY to be the loan amount,
X = 1 to indicate a man, and X = 0 to indicate a woman and then we have:

µm = E[Y |X = 1]

µw = E[Y |X = 0]

• Notice here that since X can only take on two values, 0 and 1, then these two
conditional means completely summarize the CEF.
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• How do we calculate this? We’ve already done this: it’s just the usual sample
mean among the men and then the usual sample mean among the women:

Ê[Yi|Xi = 1] =
1

n1

∑
i:Xi=1

Yi

Ê[Yi|Xi = 0] =
1

n0

∑
i:Xi=0

Yi

• Here we have n1 =
∑n

i=1Xi is the number of men in the sample and n0 =
n− n1 is the number of women.

• The sum here
∑

i:Xi=1 is just summing only over the observations i such that
have Xi = 1, meaning that i is a man.

• This is very straightforward: estimate the mean of Y conditional on X by just
estimating the means within each group of X .

Binary covariate example

## mean of log GDP among non-African countries

mean(ajr$logpgp95[ajr$africa == 0], na.rm = TRUE)

## [1] 8.716383

## mean of log GDP among African countries

mean(ajr$logpgp95[ajr$africa == 1], na.rm = TRUE)

## [1] 7.355197

plot(ajr$africa, ajr$logpgp95, xlab = ””, ylab = ”Log GDP per capita growth”,

xaxt = ”n”, xlim = c(-0.25, 1.25), bty = ”n”)

axis(side = 1, at = c(0, 1), labels = c(”Non-Africa”, ”Africa”))

points(x = 0, y = mean(ajr$logpgp95[ajr$africa == 0], na.rm = TRUE), pch = 19,

col = ”red”, cex = 3)

points(x = 1, y = mean(ajr$logpgp95[ajr$africa == 1], na.rm = TRUE), pch = 19,

col = ”red”, cex = 3)
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Discrete covariate: sample conditional expectations

• In the last section we had a binary covariate. What if X is discrete?
• The same logic applies, we can still estimateE[Y |X = x]with the sample mean

among those who have Xi = x:

Ê[Yi|Xi = x] =
1

nx

∑
i:Xi=x

Yi

• For example, I’ve been collecting data on my own weight for a little under a
year. What if I wanted to know how my weight (Y ) varied by the day of the
week (X)? This is a discrete, ordered variable.

• Well, we could just calculate the mean weight for each day of the week:

weight <- read.csv(”weight.csv”, stringsAsFactors = FALSE)

weight$weekday <- as.numeric(format(as.Date(weight$date, format = ”%m/%d/%y%n%H:%M”),

”%w”)) + 1

weight$date <- as.Date(weight$date, format = ”%m/%d/%y%n%H:%M”)

day.means <- rep(NA, times = 7)

names(day.means) <- c(”1 - Su”, ”2 - Mo”, ”3 - Tu”, ”4 - We”, ”5 - Th”, ”6 - Fr”,

”7 - Sa”)

for (i in 1:7) {

day.means[i] <- mean(weight$weight[weight$weekday == i])

}

day.means

## 1 - Su 2 - Mo 3 - Tu 4 - We 5 - Th 6 - Fr 7 - Sa
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## 170.2457 170.2500 169.3265 169.2676 169.4156 169.9375 170.2231

plot(x = weight$weekday, y = weight$weight, bty = ”n”, xaxt = ”n”, xlab = ”Weekday”,

ylab = ”Average Weight”, las = 1, pch = 19, col = ”grey60”)

points(x = 1:7, y = day.means, pch = 19, col = ”red”, cex = 3)

lines(x = 1:7, y = day.means, pch = 19, col = ”red”, lwd = 3)

axis(side = 1, at = 1:7, labels = names(day.means))
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Moving to continuous covariates

Continuous covariate (I): each unique value gets a mean

• What if X is continuous? Can we calculate a mean for every value of X?

• Not really, because remember the probability that two values will be the same
in a continuous variable is 0.

• Thus, we’ll end up with a very “jumpy” function, Ê[Yi|Xi = x], since nx will
be at most 1 for any value of x.

• Let’s look at the relationship between my weight and my active minutes in the
previous day using this approach:

fitbit <- read.csv(”fitbit.csv”, stringsAsFactors = FALSE)

fitbit$date <- as.Date(fitbit$date, format = ”%m/%d/%y”)

## lag fitbit by one day
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fitbit$date <- fitbit$date + 1

## merge fitbit and weight data

weight <- merge(weight, fitbit, by = ”date”)

plot(weight$active.mins[order(weight$active.mins)], weight$weight[order(weight$active.mins)],

type = ”l”, lwd = 3, pch = 19, col = ”indianred”, las = 1, bty = ”n”, xlab = ”Active Minutes Previous Day”,

ylab = ”Weight”, ylim = c(166, 175))

points(weight$active.mins, weight$weight, pch = 19)
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• You can imagine that this will jump around a lot from sample to sample. The
estimates, Ê[Yi|Xi = x], will have high sampling variance.

Continuous covariate (II): stratify and take means

• So, that seems like each value ofX won’t work, but maybe we can take the con-
tinuous variable and turn it into a discrete variable. We call this stratification.

• Once it’s discrete, we can just calculate the means within each strata.
• For instance, we could break up the “Active Minutes” variable into 3 categories:

lazy (< 30mins), active (30-60mins), and very active (>60min).

lowactivity.mean <- mean(weight$weight[weight$active.mins < 30])

medactivity.mean <- mean(weight$weight[weight$active.mins >= 30 & weight$active.mins <

60])

hiactivity.mean <- mean(weight$weight[weight$active.mins >= 60])
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plot(weight$active.mins, weight$weight, pch = 19, las = 1, bty = ”n”, xlab = ”Active Minutes Previous Day”,

ylab = ”Weight”, ylim = c(166, 175), col = ”grey60”)

abline(v = c(30, 60), col = ”indianred”, lwd = 3)

text(x = c(15, 45, 90), y = c(175, 175, 175), c(”Lazy”, ”Active”, ”Very Active”),

col = ”indianred”)

segments(x0 = c(0, 30, 60), x1 = c(30, 60, 120), y0 = c(lowactivity.mean, medactivity.mean,

hiactivity.mean), col = ”indianred”, lwd = 3)
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• Now we’re starting to see that there seems to be a negative relationship.
• But can we make this even more simple?

Continuous covariate (III): model relationship as a line

• The stratification approach was fairly crude: it assumed that means were con-
stant within strata, but that seems wrong.

• Can we get a more global model for the regression function? Well, maybe we
could assume that it is linear:

E[Yi|Xi = x] = β0 + β1x

• Why might we do this? Parsimony, first and foremost: 2 numbers to predict
any value.

• Some other nice properties we’ll talk about in the coming weeks.
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• Here is the linear regression function for the weight-active minutes relation-
ships:

plot(weight$active.mins, weight$weight, pch = 19, las = 1, bty = ”n”, xlab = ”Active Minutes Previous Day”,

ylab = ”Weight”, ylim = c(166, 175), col = ”grey60”)

abline(lm(weight ~ active.mins, data = weight), col = ”indianred”, lwd = 3)
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• We’ll see soon how we estimate this line. It’s a bit more complicated that the
stratify and calculate means.

Interpretation of the regression slope

• When we model the regression function as a line, we can interpret the param-
eters of the line in appealing ways:

1. Intercept: the average outcome among units with X = 0 is β0:

E[Y |X = 0] = β0 + β10 = β0

2. Slope: a one-unit change in X is associated with a β1 change in Y

E[Y |X = x+ 1]− E[Y |X = x] = (β0 + β1(x+ 1))− (β0 + β1x)

= β0 + β1x+ β1 − β0 − β1x

= β1
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Linear regression with a binary variable

• Using the two facts above, it’s easy to see that when X is binary, then we have
the following:

1. Intercept: E[Y |X = 0] = β0
2. Slope: average difference between X = 1 group and X = 0 group: β1 =

E[Y |X = 1]− E[Y |X = 0]

• Thus, we can read off the difference in means between two groups as the slope
coefficient on a linear regression

plot(ajr$africa, ajr$logpgp95, xlab = ””, ylab = ”Log GDP per capita growth”,

xlim = c(-0.25, 1.25), bty = ”n”)

points(x = 0, y = mean(ajr$logpgp95[ajr$africa == 0], na.rm = TRUE), pch = 19,

col = ”red”, cex = 3)

points(x = 1, y = mean(ajr$logpgp95[ajr$africa == 1], na.rm = TRUE), pch = 19,

col = ”red”, cex = 3)

abline(lm(logpgp95 ~ africa, data = ajr), col = ”red”, lwd = 2)

0.0 0.5 1.0

6
7

8
9

10

Lo
g 

GD
P 

pe
r c

ap
ita

 g
ro

wt
h

Parametric vs. nonparametric models

• The conditional mean approach for discrete independent variables are non-
parametric because they make no assumptions about the functional form of
E[Yi|Xi = x].

• We just estimate the mean among each value of x.
• With continuous independent variables, this approach breaks down because of

the number of values.
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• Need tomake parametric assumptions about the functional form ofE[Yi|Xi =
x] in order to make progress

• These are parametric because they involve writing the functional form in terms
of parameters, like the linear model.

Bias-variance tradeoff

• How we model the regression function, E[Yi|Xi = x], affects our the behavior
of our estimates:

plot(weight$active.mins[order(weight$active.mins)], weight$weight[order(weight$active.mins)],

type = ”l”, lwd = 3, pch = 19, col = ”indianred”, las = 1, bty = ”n”, xlab = ”Active Minutes Previous Day”,

ylab = ”Weight”, ylim = c(166, 175))

points(weight$active.mins, weight$weight, pch = 19)
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• Low bias (function “nails” every point)
• High variance (drastic changes from sample to sample)

Bias-variance tradeoff

• How we model the regression function, E[Yi|Xi = x], affects our the behavior
of our estimates:

plot(weight$active.mins, weight$weight, pch = 19, las = 1, bty = ”n”, xlab = ”Active Minutes Previous Day”,

ylab = ”Weight”, ylim = c(166, 175), col = ”grey60”)

abline(lm(weight ~ active.mins, data = weight), col = ”indianred”, lwd = 3)
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• Higher bias (misses “local” variation)
• Low variance (slope and intercept will only change slightly from sample to sam-

ple)

least squares
Back up and review

• To review our approach:

– We wanted to estimate the CEF/regression function E[Y |X = x], but
found that it was hard to do nonparametrically

– So we’re going to model it: place restrictions on its functional.
– Easiest functional form is a line:

E[Yi|Xi = x] = β0 + β1x

• β0 and β1 are population parameters just like µ or σ2!
• Need to estimate them in our samples! But how?

Simple linear regression model

• We’ll need some terms and concepts first. Let’s write our model:

Yi = E[Yi|Xi] + ui

Yi = β0 + β1Xi + ui
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• Now, suppose we have some estimates of the slope, β̂1, and the intercept, β̂0.
Then the fitted or sample regression line is

Ê[Yi|Xi = x] = β̂0 + β̂1x
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E(Y | X = x)
KOR Yi

Yi

ui = Yi − Yi

• Definition A fitted value or predicted value is the estimated conditional mean
of Yi for a particular observation with independent variable Xi:

Ŷi = Ê[Yi|Xi] = β̂0 + β̂1Xi

• Definition The residual is the difference between the actual value of Yi and the
predicted value, Ŷi:

ûi = Yi − Ŷi = Yi − β̂0 − β̂1Xi

Minimize the residuals

• The residuals, ûi = Yi − β̂0 − β̂1Xi, tell us how well the line fits the data.

– Larger magnitude residuals means that points are very far from the line
– Residuals close to 0 mean points very close to the line

• The smaller themagnitude of the residuals, the better we are doing at predicting
Y

• Choose the line that minimizes the residuals
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Minimizing the residuals

• Let β̃0 and β̃1 be possible values of the intercept and slope

• Least absolute deviations (LAD) regression:

(β̂LAD
0 , β̂LAD

1 ) = arg min
β̃0,β̃1

n∑
i=1

|Yi − β̃0 − β̃1Xi|

• Least squares (LS) regression:

(β̂0, β̂1) = arg min
β̃0,β̃1

n∑
i=1

(Yi − β̃0 − β̃1Xi)
2

• Sometimes called ordinary least squares (OLS)

Why least squares?

• Easy to derive the least squares estimator
• East to investigate the properties of the least squares estimator
• Least squares is optimal in a certain sense that we’ll see in the coming weeks

Least squares and the mean

• Let’s understand how to calculate least squares analytically
• Consider the simplest case: minimizing the least squares for a single variable Y
• n sample observations: Y1, Y2, Y3, . . . , Yn.
• What is a single number µ̃ that summarizes all Y ’s?
• Find µ̃ that minimizes the sum of squared residuals (SSR)

S(µ̃) =
n∑

i=1

(Yi − µ̃)2.

• How do we solve this?

1. Calculate the derivative of S with respect to µ̃
2. Set the derivative equal to 0
3. Solve for µ̃ and replace µ̃ with the solution

• What does the sum of the squared residuals (SSR) function look like?
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Minimize the SSR

1. Calculate the derivative

S(µ̃) =

n∑
i=1

(Yi − µ̃)2

=
n∑

i=1

(Y 2
i − 2Yiµ̃+ µ̃2)

∂S(µ̃)

∂µ̃
=

n∑
i=1

(−2Yi + 2µ̃)

2. Setting it to zero:

0 =

n∑
i=1

(−2Yi + 2µ̃)
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3. And solve:

0 =

n∑
i=1

(−2Yi + 2µ̂)

0 = −2

(
n∑

i=1

Yi

)
+ 2nµ̂

−2nµ̂ = −2

n∑
i=1

Yi

µ̂ =
1

n

n∑
i=1

Yi

• Therefore, the sample average is the least squares estimator.

Deriving the OLS estimator

• Now we look at two variables, Y and X

• n pairs of sample observations: (Y1, X1), (Y2, X2), . . . , (Y )n, Xn)

• Let {β̃0, β̃1} be possible values for {β0, β1}

• Define the least squares objective function:

S(β̃0, β̃1) =

n∑
i=1

(Yi − β̃0 −Xiβ̃1)
2.

• How do we derive the LS estimators for β0 and β1?

1. Take partial derivatives of S with respect to β̃0 and β̃1.
2. Set each of the partial derivatives to 0
3. Solve for {β̃0, β̃1} and replace them with the solutions

Taking the partial derivatives

S(β̃0, β̃1) =

n∑
i=1

(Yi − β̃0 −Xiβ̃1)
2

=
n∑

i=1

(Y 2
i − 2Yiβ̃0 − 2Yiβ̃1Xi + β̃2

0 + 2β̃0β̃1Xi + β̃2
1X

2
i )
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∂S(β̃0, β̃1)

∂β̃0
=

n∑
i=1

(−2Yi + 2β̃0 + 2β̃1Xi)

∂S(β̃0, β̃1)

∂β̃1
=

n∑
i=1

(−2YiXi + 2β̃0Xi + 2β̃1X
2
i )

First order conditions

• The first order conditions are:

0 =
n∑

i=1

(−2Yi + 2β̃0 + 2β̃1Xi)

0 =

n∑
i=1

(−2YiXi + 2β̃0Xi + 2β̃1X
2
i )

now solving for β̃0 and β̃1 yields the normal equations:

β̂0n =

(
n∑

i=1

Yi

)
− β̂1

(
n∑

i=1

Xi

)

β̂1

n∑
i=1

X2
1 =

(
n∑

i=1

XiYi

)
− β̂0

(
n∑

i=1

Xi

)
rearranged yield the OLS estimators:

β̂0 = Y − β̂1X

β̂1 =

∑n
i=1(Xi −X)(Yi − Y )∑n

i=1(Xi −X)2

• Note that:

β̂1 =

∑n
i=1(Xi −X)(Yi − Y )∑n

i=1(Xi −X)2
=

Sample Covariance between X and Y

Sample Variance of X
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Mechanical properties of least squares

• The residuals will be 0 on average:

n∑
i=1

ûi = 0

• The residuals will be uncorrelated with the predictor:

n∑
i=1

Xiûi = 0

• The residuals will be uncorrelated with the fitted values:
n∑

i=1

Ŷiûi =
n∑

i=1

Ŷiûi − n
n∑

i=1

Ŷi

n∑
i=1

ûi = (n− 1)Cov(Ŷi, ûi) = 0

AJR Example in R

• Let’s use those simple formulas we just learned:

cov.xy <- cov(ajr$logem4, ajr$logpgp95, use = ”pair”)

var.x <- var(ajr$logem4, na.rm = TRUE)

cov.xy/var.x

## [1] -0.5816937

mean(ajr$logpgp95, na.rm = TRUE) - cov.xy/var.x * mean(ajr$logem4, na.rm = TRUE)

## [1] 10.97596

• Compare it to what lm(), the OLS function in R produces:

coef(lm(logpgp95 ~ logem4, data = ajr))

## (Intercept) logem4

## 10.6602465 -0.5641215

• Why aren’t these equal?
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• Note that when one variable is 0 on average, then multiplication and adding is
equal to the covariance

Cov(Xi, ûi) =
1

n− 1

n∑
i=1

(Xi −X)(ûi − û)

=
1

n− 1

n∑
i=1

(Xi −X)ûi

=
1

n− 1

n∑
i=1

Xiûi −
1

n− 1

n∑
i=1

Xûi

=
1

n− 1

n∑
i=1

Xiûi −
1

n− 1
X

n∑
i=1

ûi

=
1

n− 1

n∑
i=1

Xiûi

= 0

• The same principal applies to the relationship between the residuals and the
fitted values.

Mechanical properties of least squares in R

mod <- lm(logpgp95 ~ logem4, data = ajr)

mean(residuals(mod))

## [1] -2.623502e-18

## mod$model is the data used in the lm() call

cor(mod$model$logem4, residuals(mod))

## [1] -3.184875e-17

cor(fitted(mod), residuals(mod))

## [1] -1.160489e-16
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appendix
Normal equations to OLS estimators

• For the intercept, just divide by n:

β̂0n =

(
n∑

i=1

Yi

)
− β̂1

(
n∑

i=1

Xi

)
β̂0 = Y − β̂1X

Normal equations to OLS estimators

• Now, rearrange this equation a bit:

β̂0n =

(
n∑

i=1

Yi

)
− β̂1

(
n∑

i=1

Xi

)
β̂0 = Y − β̂1X

β̂0

(
n∑

i=1

Xi

)
= Y

(
n∑

i=1

Xi

)
− β̂1X

(
n∑

i=1

Xi

)

β̂0

(
n∑

i=1

Xi

)
=

(
n∑

i=1

Y Xi

)
− β̂1

(
n∑

i=1

XXi

)
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• Plug this into the second normal equation:

β̂1

n∑
i=1

X2
i =

(
n∑

i=1

XiYi

)
− β̂0

(
n∑

i=1

Xi

)

β̂1

n∑
i=1

X2
i =

(
n∑

i=1

XiYi

)
−

(
n∑

i=1

Y Xi

)
+ β̂1

(
n∑

i=1

XXi

)

β̂1

[
n∑

i=1

(
X2

i −XXi

)]
=

(
n∑

i=1

XiYi − Y Xi

)

β̂1

n∑
i=1

Xi

(
Xi −X

)
=

n∑
i=1

Xi(Yi − Y )

β̂1

n∑
i=1

Xi

(
Xi −X

)
− β̂1X

n∑
i=1

(
Xi −X

)
=

n∑
i=1

Xi(Yi − Y )−X

n∑
i=1

(Yi − Y )

β̂1

n∑
i=1

(
Xi(Xi −X)−X(Xi −X)

)
=

n∑
i=1

(
Xi(Yi − Y )−X(Yi − Y )

)
β̂1

n∑
i=1

(
Xi −X

)2
=

n∑
i=1

(Xi −Xi)(Yi − Y )

• Question Here in the second to last line, we used the fact that the sum of devi-
ations from the mean is equal to 0:

∑n
i=1(Yi − Y ). Can you show that this is

true?

• And rearrange them to get the OLS estimators:

β̂1 =

∑n
i=1(Xi −X)(Yi − Y )∑n

i=1(Xi −X)2
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