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Propensity score weighting

Post-treatment bias



Where are we? Where are we going?

• Discussed randomized experiments, started talking about
observational data.

• Last week: matching under no unmeasured confoudners.
• This week: propensity score weighting, posttreatment bias.
• Coming weeks: regression for causal inference, what happens

when n.u.c. doesn’t hold.



1/ Propensity score
weighting



Weighting

• Next of the ways to estimate the ATE under no unmeasured
confounders.

• Intuition
▶ Treated and control samples are unrepresentative of the overall

population.
▶ Leads to imbalance in the covariates.
▶ Reweight them to be more representative.



Survey samples

• Useful to review survey samples to understand the logic
• Finite population: {1, … ,𝑁}
• Suppose that we wanted estimate the population mean of 𝑌𝑖:

�̅�𝑁 = 1
𝑁

𝑁

𝑖=
𝑌𝑖

• We have a sample of size 𝑛, where 𝑍𝑖 = 1 indicates that 𝑖 is
included in the sample.

• Unequal sampling probability: ℙ(𝑍𝑖 = 1) = 𝜋𝑖
▶ ⇝ sample is not representative.
▶ ∑𝑁

𝑖= 𝜋𝑖 = 𝑛



Survey weights

• Sample mean is biased:

𝔼

⎡
⎢⎢⎢⎢⎢⎣
1
𝑛

𝑁

𝑖=
𝑍𝑖𝑌𝑖

⎤
⎥⎥⎥⎥⎥⎦ =

1
𝑛

𝑖=
𝜋𝑖𝑌𝑖

• Inverse probability weighting: To correct, weight each unit
by the reciprocal of the probability of being included in the
sample: 𝑌𝑖/𝜋𝑖.

• Horvitz-Thompson estimator is unbiased:

𝔼

⎡
⎢⎢⎢⎢⎢⎣
1
𝑁

𝑁

𝑖=

𝑍𝑖𝑌𝑖
𝜋𝑖

⎤
⎥⎥⎥⎥⎥⎦ =

1
𝑁

𝑁

𝑖=

𝔼[𝑍𝑖]𝑌𝑖
𝜋𝑖

= 1
𝑁

𝑁

𝑖=

𝜋𝑖𝑌𝑖
𝜋𝑖

= �̅�𝑁

• Reweights the sample to be representative of the population.



Back to causal effects

• With a completely randomized experiment, we can just use
the simple differences in means:

𝔼[𝑌𝑖|𝐷𝑖 = 1] − 𝔼[𝑌𝑖|𝐷𝑖 = 0] = 𝔼[𝑌𝑖(1)] − 𝔼[𝑌𝑖(0)]

• With no unmeasured confounders, we need to adjust for 𝑋𝑖.

𝔼[𝑌𝑖(𝑑)] = 𝔼 [𝔼[𝑌𝑖(𝑑)|𝑋𝑖]]
= 
𝑥∈𝒳

𝔼[𝑌𝑖(𝑑)|𝑋𝑖 = 𝑥]ℙ(𝑋𝑖 = 𝑥)

= 
𝑥∈𝒳

𝔼[𝑌𝑖(𝑑)|𝐷𝑖 = 𝑑,𝑋𝑖 = 𝑥]ℙ(𝑋𝑖 = 𝑥)

= 
𝑥∈𝒳

𝔼[𝑌𝑖|𝐷𝑖 = 𝑑,𝑋𝑖 = 𝑥]ℙ(𝑋𝑖 = 𝑥)

• With subclassification, we binned 𝑋𝑖, calclulated within-bin
differences and then averaged across the bins, just like this.



Searching for the weights

𝔼[𝑌𝑖(𝑑)] = 
𝑥∈𝒳

𝔼[𝑌𝑖|𝐷𝑖 = 𝑑,𝑋𝑖 = 𝑥]ℙ(𝑋𝑖 = 𝑥)

• Compare this to the the within treatment group average:

𝔼[𝑌𝑖|𝐷𝑖 = 𝑑] = 
𝑥∈𝒳

𝔼[𝑌𝑖|𝐷𝑖 = 𝑑,𝑋𝑖 = 𝑥]ℙ(𝑋𝑖 = 𝑥|𝐷𝑖 = 𝑑)

= 
𝑥∈𝒳

𝔼[𝑌𝑖|𝐷𝑖 = 𝑑,𝑋𝑖 = 𝑥]
ℙ(𝐷𝑖 = 𝑑|𝑋𝑖 = 𝑥)ℙ(𝑋𝑖 = 𝑥)

ℙ(𝐷𝑖 = 𝑑)

• How should we reweight the data from an observational study?
• If we were to reweight the data by 𝑊𝑖 = 1/ℙ(𝐷𝑖 = 𝑑|𝑋𝑖), then

we would break the relationship between 𝐷𝑖 and 𝑋𝑖.



Weights

• Single binary covariate. Define the weight function:

𝑤(𝑑, 𝑥) = 1
𝑒(𝑥)𝑑(1 − 𝑒(𝑥))−𝑑

• To get the weight for 𝑖, plug in observed treatment, covariate:
𝑊𝑖 = 𝑤(𝐷𝑖, 𝑋𝑖)

• If (𝐷𝑖, 𝑋𝑖) = (1, 1),

𝑊𝑖 =
1
𝑒(1) =

1
ℙ(𝐷𝑖 = 1|𝑋𝑖 = 1)

• If (𝐷𝑖, 𝑋𝑖) = (0, 0):

𝑊𝑖 =
1

1 − 𝑒(0) =
1

ℙ(𝐷𝑖 = 0|𝑋𝑖 = 0)



Example

𝑋𝑖 = 0 𝑋𝑖 = 1
𝐷𝑖 = 0 4 3
𝐷𝑖 = 1 4 9

• ℙ(𝐷𝑖 = 1|𝑋𝑖 = 0) = 0.5
• ℙ(𝐷𝑖 = 1|𝑋𝑖 = 1) = 0.75
• Weights:

𝑋𝑖 = 0 𝑋𝑖 = 1
𝐷𝑖 = 0 1/0.5 1/0.25
𝐷𝑖 = 1 1/0.5 1/0.75

• Weighted data (the pseudo-population):
𝑋𝑖 = 0 𝑋𝑖 = 1

𝐷𝑖 = 0 8 12
𝐷𝑖 = 1 8 12

• ℙ𝑊 (𝐷𝑖 = 1|𝑋𝑖 = 𝑥) = 0.5 for all 𝑥



Properties of reweighted data

• Let’s calculate the weighted probability that 𝐷𝑖 = 1.

ℙ𝑊 [𝐷𝑖 = 1|𝑋𝑖 = 𝑥]

= 𝑤(1, 𝑥) ⋅ ℙ[𝐷𝑖 = 1|𝑋𝑖 = 𝑥]
𝜔∗

=


ℙ[𝐷𝑖=|𝑋𝑖=𝑥]
⋅ ℙ[𝐷𝑖 = 1|𝑋𝑖 = 𝑥]
𝜔∗

= 1
𝜔∗ .

• 𝜔∗ is a normalization factor to make sure probabilities sum to
1.

• Important point: ℙ𝑊 (𝐷𝑖 = 1|𝑋𝑖 = 1) = ℙ𝑊 (𝐷𝑖 = 1|𝑋𝑖 = 0) = 
𝜔∗

• ⇝ 𝐷𝑖 independent of 𝑋𝑖 in the reweighted data.



Overall mean

• What is the weighted mean for the treated group?
• Use a similar approach to survey weights, where 𝐷𝑖 is the

“sampling indicator”:

�̅�𝑤𝑖 =
1
𝑁

𝑁

𝑖=
𝐷𝑖𝑊𝑖𝑌𝑖

• 𝑊𝑖𝑌𝑖 is the weighted outcome, 𝐷𝑖 is there to select out the
treated observations.

• We want to see what the conditional weighted mean identifies:

𝔼

⎡
⎢⎢⎢⎢⎢⎣
1
𝑁

𝑁

𝑖=
𝑊𝑖𝐷𝑖𝑌𝑖

⎤
⎥⎥⎥⎥⎥⎦ =

1
𝑁

𝑁

𝑖=
𝔼[𝑊𝑖𝐷𝑖𝑌𝑖] = 𝔼[𝑊𝑖𝐷𝑖𝑌𝑖]



Proving unbiasedness

• Weighted mean of treated units is mean of potential outcome:

𝔼[𝑊𝑖𝐷𝑖𝑌𝑖] = 𝔼 
𝐷𝑖𝑌𝑖
𝑒(𝑋𝑖)

 (Weight Def.)

= 𝐸 
𝐷𝑖𝑌𝑖(1)
𝑒(𝑋𝑖)

 (Consistency)

= 𝐸 𝐸 
𝐷𝑖𝑌𝑖(1)
𝑒(𝑋𝑖)

|𝑋𝑖 (Iterated Expectations)

= 𝐸 
𝐸[𝐷𝑖|𝑋𝑖]𝐸[𝑌𝑖(1)|𝑋𝑖]

𝑒(𝑋𝑖)
 (n.u.c.)

= 𝐸 
𝑒(𝑋𝑖)𝐸[𝑌𝑖(1)|𝑋𝑖]

𝑒(𝑋𝑖)
 (Propensity Score Definition)

= 𝐸[𝑌𝑖(1)] (Iterated Expectations)



Putting it all together

• The same logic would give us the mean potential outcomes
under control:

𝐸 
(1 − 𝐷𝑖)𝑌𝑖
1 − 𝑒(𝑋𝑖)

 = 𝐸[𝑌𝑖(0)]

• These two facts provide an estimator for the average
treatment effect:

�̂� = 1
𝑁

𝑁

𝑖=

𝐷𝑖𝑌𝑖
𝑒(𝑋𝑖)

− (1 − 𝐷𝑖)𝑌𝑖
1 − 𝑒(𝑋𝑖)



• The above two results give us that this esimator is unbiased.
• This is sometimes called the Horvitz-Thompson estimator

due to the close connection to the survey sampling estimator.



Estimation of the propensity score

�̂� = 1
𝑁

𝑁

𝑖=

𝐷𝑖𝑌𝑖
𝑒(𝑋𝑖)

− (1 − 𝐷𝑖)𝑌𝑖
1 − 𝑒(𝑋𝑖)



• Need to know or estimate the propensity score, 𝑒(𝑋𝑖). How do
we do that?

• Discrete covariates estimate the within-strata propensity
scores

�̂�(𝑥) = 𝑁𝑥𝑑
𝑁𝑥

▶ Non-parametric estimate of the propensity score in each
stratum of the data.

• Continuous covariates ⇝ Logistic regression of 𝐷𝑖 on 𝑋𝑖.



Estimated versus known pscores
ht.est <- function(y, d, w) {

n <- length(y)

(1/n) * sum((y * d * w) - (y * (1 - d) * w))

}

n <- 200

x <- rbinom(n, size = 1, prob = 0.5)

dprobs <- 0.5 * x + 0.4 * (1 - x)

d <- rbinom(n, size = 1, prob = dprobs)

y <- 5 * d - 10 * x + rnorm(n, sd = 5)

true.w <- ifelse(d == 1, 1/dprobs, 1/(1 - dprobs))

pprobs <- predict(glm(d ~ x))

est.w <- ifelse(d == 1, 1/pprobs, 1/(1 - pprobs))

ht.est(y, d, est.w)

## [1] 5.1

ht.est(y, d, true.w)

## [1] 5.5



Sampling distribution of the HT
estimators

sims <- 10000

true.holder <- rep(NA, sims)

est.holder <- rep(NA, sims)

for (i in 1:sims) {

x <- rbinom(n, size = 1, prob = 0.5)

dprobs <- 0.5 * x + 0.4 * (1 - x)

d <- rbinom(n, size = 1, prob = dprobs)

y <- 5 * d - 10 * x + rnorm(n, sd = 5)

true.w <- ifelse(d == 1, 1/dprobs, 1/(1 - dprobs))

pprobs <- predict(glm(d ~ x))

est.w <- ifelse(d == 1, 1/pprobs, 1/(1 - pprobs))

est.holder[i] <- ht.est(y, d, est.w)

true.holder[i] <- ht.est(y, d, true.w)

}



Sampling distribution of the HT
estimators

2 4 6 8

Estimated Pscore

True Pscore

var(est.holder)

## [1] 0.52

var(true.holder)

## [1] 1.2



Why use estimated pscores?

• Why does the estimated propensity score do better than the
true propensity score?

• Removing chance variations using �̂�(𝑋𝑖) adjusts for any
small imbalances that arise because of a finite sample.

• The true p-score only adjusts for the expected differences
between samples.



Distribution of X in the weighed data

ht.est(x, d, est.w)

## [1] 8.1e-16

ht.est(x, d, true.w)

## [1] -0.2



Positivity violations

• Remember the positivity assumption:

0 < 𝑝(𝐷𝑖 = 1|𝑋𝑖) < 1

• What happens to the weights if this is violated? Then,
�̂�(𝑥) = 0 or �̂�(𝑥) = 1 and

1
�̂�(𝑥) =

1
0 = ∞

• Structural ⇝ population probability is 0.
• Random ⇝ sample probability is 0.

▶ Need to “borrow” information from other values of 𝑋𝑖 to
estimate 𝑒(𝑋𝑖)

▶ ⇝ modeling via logit, etc.



Automated approaches

• Challenge: specifying the propensity score model.

�̂�(𝑋𝑖) = logit−(𝑋′
𝑖 𝛽)

• What terms should we include?
• Big problem for weights: small changes to PS model lead to

big changes in the weights.
• Entropy balancing (Hainmueller 2012):

▶ Choose weights for each observation that maximize the
balance between treatment and control groups.

• Covariate Balancing Propensity Scores (Imai and Ratkovic):
▶ Estimate the propensity score subject to the additional

constraint of maximizing balance.



Boostrapping to get the SEs

• How to get the standard error for �̂�?
• Variance estimators are messy ⇝ use the bootstrap!

1. Draw a sample of the data with replacement, call this, 𝑆𝑏.
2. Estimate the propensity scores in this sample, �̂�𝑏 and create

weights, 𝑊𝑏.
3. Use the weights to get an estimate of the average treatment

effect, 𝜏𝑏 in the sample 𝑆𝑏.
4. Repeat.

• The distribution of the estimates, �̂�𝑏, will give us the
bootstrapped standard errors and confidence intervals.



Bootstrap in R
mydata <- data.frame(y, d, x)

boots <- 1000

b.holder <- rep(NA)

for (i in 1:boots) {

S.b <- sample(1:n, size = n, replace = TRUE)

data.b <- mydata[S.b, ]

pprobs <- predict(glm(d ~ x, data = data.b))

est.w <- ifelse(data.b$d == 1, 1/pprobs, 1/(1 -

pprobs))

b.holder[i] <- ht.est(data.b$y, data.b$d, est.w)

}

• Compare bootstrapped variance to true sampling variance:

var(b.holder)

## [1] 0.51

var(est.holder)

## [1] 0.52



Reducing weight variation
• 𝑒(𝑋𝑖) close to 0 or 1 lead to very large weights, high standard

errors.
• Potential solutions:

1. Trimming/Windsorizing the weights
▶ Pick some value 𝑤′ and create trimmed weights which are:

𝑊 ′
𝑖 =

⎧⎪⎪⎨
⎪⎪⎩
𝑊𝑖 if 𝑊𝑖 < 𝑤′

𝑤′ if 𝑊𝑖 ≥ 𝑤′

2. Stabilized weights
▶ We can actually put any other function of the treatment vector

in the numerator, which can reduce the variation in the
weights.

▶ We call these stabilized weights:

𝑠𝑤(𝑑, 𝑥) = ℙ[𝐷𝑖 = 1]𝑑(1 − ℙ[𝐷𝑖 = 1])−𝑑
𝑒(𝑥)𝑑(1 − 𝑒(𝑥))−𝑑



Stablized weights
• With a binary treatment, we can implement the stabilized

weight by normalizing the weights:

𝑆𝑊𝑖 =
𝑊𝑖

∑𝑁
𝑖=𝑊𝑖

• This leads to the following estimator:

�̂�𝐼𝑃𝑇𝑊 = 1
∑𝑁
𝑖=𝑊𝑖𝐷𝑖

𝑁

𝑖=
𝑊𝑖𝐷𝑖𝑌𝑖 −

1
∑𝑁
𝑖=𝑊𝑖(1 − 𝐷𝑖)

𝑁

𝑖=
𝑊𝑖(1 − 𝐷𝑖)𝑌𝑖

= 1
∑𝑁
𝑖=𝐷𝑖/�̂�(𝑋𝑖)

𝑁

𝑖=

𝐷𝑖𝑌𝑖
�̂�(𝑋𝑖)

− 1
∑𝑁
𝑖=(1 − 𝐷𝑖)/(1 − �̂�(𝑋𝑖))

𝑁

𝑖=

(1 − 𝐷𝑖)𝑌𝑖
1 − �̂�(𝑋𝑖)

• These are the means that the weighted.mean() function in R
calculates. It normalizes the weights before calculating the
mean.



Stablized weights

n <- 1000

sims <- 10000

est2.holder <- rep(NA, sims)

sw.holder <- rep(NA, sims)

for (i in 1:sims) {

x <- rnorm(n)

dprobs <- boot::inv.logit(-1 + x)

d <- rbinom(n, size = 1, prob = dprobs)

y <- 5 * d - 10 * x + rnorm(n, sd = 5)

pprobs <- glm(d ~ x, family = binomial())$fitted

est.w <- ifelse(d == 1, 1/pprobs, 1/(1 - pprobs))

est2.holder[i] <- ht.est(y, d, est.w)

sw.holder[i] <- weighted.mean(y[d == 1], est.w[d ==

1]) - weighted.mean(y[d == 0], est.w[d == 0])

}



Stabilized weights

4 6 8 10 12 14

IPTW (stablized)

Horvitz-Thompson

var(est2.holder)

## [1] 0.78

var(sw.holder)

## [1] 0.59



Distribution of the weights

0 5 10 15 20 25 30

Stablized

Raw

tail(est.w[order(est.w)])

## [1] 12 13 13 14 14 33

tail(est.sw[order(est.sw)])

## [1] 3.9 3.9 4.0 4.1 4.3 9.9



2/ Post-treatment
bias



Post-treatment bias

• Rule of matching/weighting/regression: don’t condition on
posttreatment variables.

• Usual intuition:
▶ You might “control away” part of the effect of 𝐷𝑖 on 𝑌𝑖 that

“flows through” 𝑍𝑖 where 𝑍𝑖 is the posttreatment variable.
▶ Can be misleading.

• Two big problems with conditioning on these:
▶ Changes the quantity of interest (see above).
▶ Induces selection bias.

• We’ll go through Rosenbaum (1984) logic.



Setup

• Posttreatment variable 𝑍𝑖
• Has potential outcomes because it is affected by treatment:
(𝑍𝑖(1), 𝑍𝑖(0)).

• Consistency for the posttreatment variable:

𝑍𝑖 = 𝐷𝑖𝑍𝑖(1) + (1 − 𝐷𝑖)𝑍𝑖(0)

• Example:
▶ Effect of campaign negativity (𝐷𝑖) fixing polling later in the

campaign (𝑍𝑖)



Assumptions and estimators

• Assume no unmeasured confounders:

𝑌𝑖(1), 𝑌𝑖(0) ⟂⟂ 𝐷𝑖|𝑋𝑖

• Usually estimate the CATE:

𝜏(𝑥) = 𝐸[𝑌𝑖|𝐷𝑖 = 1,𝑋𝑖 = 𝑥] − 𝐸[𝑌𝑖|𝐷𝑖 = 0,𝑋𝑖 = 𝑥]

• Average to get the ATE: 𝜏 = 𝐸[𝜏(𝑋𝑖)].



Condition on a posttreatment variable

• What happens when we control for the post-treatment
variable:

Δ(𝑥, 𝑧) = 𝐸[𝑌𝑖|𝐷𝑖 = 1, 𝑍𝑖 = 𝑧,𝑋𝑖 = 𝑥] − 𝐸[𝑌𝑖|𝐷𝑖 = 0, 𝑍𝑖 = 𝑧,𝑋𝑖 = 𝑥]
= 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑍𝑖 = 𝑧,𝑋𝑖 = 𝑥] − 𝐸[𝑌𝑖(0)|𝐷𝑖 = 0, 𝑍𝑖 = 𝑧,𝑋𝑖 = 𝑥]
= 𝐸[𝑌𝑖(1)|𝐷𝑖 = 1, 𝑍𝑖(1) = 𝑧, 𝑋𝑖 = 𝑥] − 𝐸[𝑌𝑖(0)|𝐷𝑖 = 0, 𝑍𝑖(0) = 𝑧, 𝑋𝑖 = 𝑥]

• Average these over the distribution of (𝑋, 𝑍): Δ = 𝐸[Δ(𝑋, 𝑍)].
• Compare this estimator Δ to the average treatment effect 𝜏.



Controlled direct effect

• Define the net treatment difference 𝜈(𝑥, 𝑧):

𝜈(𝑥, 𝑧) = 𝐸[𝑌𝑖(1)|𝑍𝑖(1) = 𝑧, 𝑋𝑖 = 𝑥] − 𝐸[𝑌𝑖(0)|𝑍𝑖(0) = 𝑧, 𝑋𝑖 = 𝑥]

• Similar to the controlled direct effect, or the effect of 𝐷𝑖
fixing 𝑍𝑖(1) = 𝑍𝑖(0) = 𝑧, removing the arrow from 𝐷𝑖 to 𝑍𝑖:

𝐷

𝑍

𝑌

• Intuitively (if not precisely): if 𝜈(𝑥, 𝑧) = 0 and 𝜏 > 0, the effect
of 𝐷𝑖 on 𝑌𝑖 flows entirely through 𝑍𝑖.

• Again, we’ll take the average over (𝑋𝑖, 𝑍𝑖): 𝜈 = 𝐸[𝜈(𝑋𝑖, 𝑍𝑖)].



Posttreatment bias decomposition

Δ − 𝜏 = (Δ − 𝜈)
bias for NTD

+ (𝜈 − 𝜏)
change in QoI

• The bias of Δ is two terms.
• (Δ − 𝜈) measures our inability to estimate the net treatment

difference.
• Why? Maybe 𝑍𝑖 is a collider. If we condition on 𝑍𝑖, it opens a

backdoor path between 𝐷𝑖 and 𝑌𝑖:

𝐷

𝑈 𝑍

𝑌

• In this case, conditioning on 𝑍 opens the backdoor path from
𝐷 ← 𝑈 → 𝑍 ← 𝑌. Thus, (Δ − 𝜈) represents the bias due to
unmeasured confounding between 𝐷𝑖 and 𝑍𝑖.



Posttreatment bias

Δ − 𝜏 = (Δ − 𝜈)
bias for NTD

+ (𝜈 − 𝜏)
change in QoI

• (𝜈 − 𝜏): difference between the net treatment difference and
the average treatment effect.

• The change in the quantity of interest.
• Might call this the effect of intervening on 𝑍𝑖.
• Under some conditions, this difference can be thought of as

the indirect effect of 𝐷𝑖 on 𝑌𝑖 through 𝑍𝑖, but not always.
▶ ⇝ Causal mediation/mechanisms
▶ Very tricky assumptions, we’ll talk about later.



Conditions that eliminate
post-treatment bias

• When will there be no posttreatment bias?
• Under two assumptions:

1. No unmeasured confounders for post-treatment variable:

(𝑌𝑖(0), 𝑍𝑖(0), 𝑌𝑖(1), 𝑍𝑖(1)) ⟂⟂ 𝐷𝑖|𝑋𝑖

2. No effect of treatment on the post-treatment variable:
𝑍𝑖(1) = 𝑍𝑖(0) = 𝑍𝑖 for all units.



No unmeasured confounders, II

𝑌𝑖(0), 𝑍𝑖(0), 𝑌𝑖(1), 𝑍𝑖(1) ⟂⟂ 𝐷𝑖|𝑋𝑖

• This extends no unmeasured confounders to the
post-treatment variable.

• Most likely satisfied under randomization.
• Implies that Δ = 𝜈. Why?

▶ No unblocked backdoor paths from 𝐷𝑖 to 𝑍𝑖
▶ ⇝ 𝑍𝑖 cannot be a collider on a back-door path.
▶ No collider bias for NTD

• Still could change the quantity of interest.

𝐷

𝑋 𝑍

𝑌



No effect on Z

• No effect of treatment on the post-treatment variable:
𝑍𝑖(1) = 𝑍𝑖(0) = 𝑍𝑖 for all units.

• Under this condition, we have NTD = ATE.
▶ The effect of 𝐷𝑖 cannot go through 𝑍𝑖 since it doesn’t affect 𝑍𝑖:

𝜈(𝑥, 𝑧) = 𝔼[𝑌(1)|𝑍(1) = 𝑧, 𝑋 = 𝑥] − 𝔼[𝑌(0)|𝑍(0) = 𝑧, 𝑋 = 𝑥]
= 𝔼[𝑌(1) − 𝑌(0)|𝑍 = 𝑧, 𝑋 = 𝑥].

• So that when we take the average over (𝑋𝑖, 𝑍𝑖), we get 𝜈 = 𝜏.
In this case the above DAGs would be:

𝐷

𝑋 𝑍

𝑌 𝐷

𝑋 𝑍

𝑌

• Essentially assumes 𝑍𝑖 is pretreatment.



Posttreatment bias overview

• Found two assumptions under which condition on 𝑍𝑖 doesn’t
matter.

• But, these two assumptions buy us nothing:
▶ Requires no unmeasured confounders ⇝ could have estimated

the ATE in the usual way.



Simulation

𝐷 𝑈

𝑍 𝑌

## Post-treatment bias simulation

set.seed(14627)

d <- rnorm(500, 50, 15)

u <- rnorm(500, 50, 15)

z <- rnorm(500, 0.5 * d + 0.5 * u, 5)

y <- rnorm(500, 75 + -0.5 * u, 5)

sub <- z > 60 & z < 70



Posttreatment bias example
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Posttreatment bias example
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