Gov 2002: 6. Posttreatment Bias and Weighting

Matthew Blackwell

October 8, 2015

Propensity score weighting

Post-treatment bias

Where are we? Where are we going?

- Discussed randomized experiments, started talking about observational data.
- Last week: matching under no unmeasured confoudners.
- This week: propensity score weighting, posttreatment bias.
- Coming weeks: regression for causal inference, what happens when n.u.c. doesn't hold.

1/ Propensity score weighting

Weighting

- Next of the ways to estimate the ATE under no unmeasured confounders.
- Intuition
 - Treated and control samples are unrepresentative of the overall population.
 - Leads to imbalance in the covariates.
 - Reweight them to be more representative.

Survey samples

- Useful to review survey samples to understand the logic
- Finite population: {1, ..., N}
- Suppose that we wanted estimate the population mean of Y_i :

$$\bar{Y}_N = \frac{1}{N} \sum_{i=1}^N Y_i$$

- We have a sample of size *n*, where $Z_i = 1$ indicates that *i* is included in the sample.
- Unequal sampling probability: $\mathbb{P}(Z_i = 1) = \pi_i$
 - ► ~ sample is not representative.

•
$$\sum_{i=1}^{N} \pi_i = n$$

Survey weights

Sample mean is biased:

$$\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{N}Z_{i}Y_{i}\right] = \frac{1}{n}\sum_{i=1}\pi_{i}Y_{i}$$

- Inverse probability weighting: To correct, weight each unit by the reciprocal of the probability of being included in the sample: Y_i/π_i.
- Horvitz-Thompson estimator is unbiased:

$$\mathbb{E}\left[\frac{1}{N}\sum_{i=1}^{N}\frac{Z_{i}Y_{i}}{\pi_{i}}\right] = \frac{1}{N}\sum_{i=1}^{N}\frac{\mathbb{E}[Z_{i}]Y_{i}}{\pi_{i}} = \frac{1}{N}\sum_{i=1}^{N}\frac{\pi_{i}Y_{i}}{\pi_{i}} = \bar{Y}_{N}$$

• Reweights the sample to be representative of the population.

Back to causal effects

E

• With a completely randomized experiment, we can just use the simple differences in means:

 $\mathbb{E}[Y_i|D_i = 1] - \mathbb{E}[Y_i|D_i = 0] = \mathbb{E}[Y_i(1)] - \mathbb{E}[Y_i(0)]$

• With no unmeasured confounders, we need to adjust for X_i.

$$Y_i(d)] = \mathbb{E} \left[\mathbb{E}[Y_i(d)|X_i] \right]$$

= $\sum_{x \in \mathscr{X}} \mathbb{E}[Y_i(d)|X_i = x] \mathbb{P}(X_i = x)$
= $\sum_{x \in \mathscr{X}} \mathbb{E}[Y_i(d)|D_i = d, X_i = x] \mathbb{P}(X_i = x)$
= $\sum_{x \in \mathscr{X}} \mathbb{E}[Y_i|D_i = d, X_i = x] \mathbb{P}(X_i = x)$

 With subclassification, we binned X_i, calculated within-bin differences and then averaged across the bins, just like this.

Searching for the weights

$$\mathbb{E}[Y_i(d)] = \sum_{x \in \mathscr{X}} \mathbb{E}[Y_i|D_i = d, X_i = x] \mathbb{P}(X_i = x)$$

Compare this to the the within treatment group average:

$$\mathbb{E}[Y_i|D_i = d] = \sum_{x \in \mathscr{X}} \mathbb{E}[Y_i|D_i = d, X_i = x] \mathbb{P}(X_i = x|D_i = d)$$
$$= \sum_{x \in \mathscr{X}} \mathbb{E}[Y_i|D_i = d, X_i = x] \frac{\mathbb{P}(D_i = d|X_i = x)\mathbb{P}(X_i = x)}{\mathbb{P}(D_i = d)}$$

- How should we reweight the data from an observational study?
- If we were to reweight the data by W_i = 1/ℙ(D_i = d|X_i), then we would break the relationship between D_i and X_i.

Weights

• Single binary covariate. Define the weight function:

$$w(d, x) = \frac{1}{e(x)^d (1 - e(x))^{1 - a}}$$

- To get the weight for *i*, plug in observed treatment, covariate:
 W_i = w(D_i, X_i)
- If $(D_i, X_i) = (1, 1)$,

$$W_i = \frac{1}{e(1)} = \frac{1}{\mathbb{P}(D_i = 1 | X_i = 1)}$$

• If $(D_i, X_i) = (0, 0)$:

$$W_i = \frac{1}{1 - e(0)} = \frac{1}{\mathbb{P}(D_i = 0 | X_i = 0)}$$

Example

	$X_i = 0$	$X_i = 1$
$D_i = 0$	4	3
$D_i = 1$	4	9

•
$$\mathbb{P}(D_i = 1 | X_i = 0) = 0.5$$

•
$$\mathbb{P}(D_i = 1 | X_i = 1) = 0.75$$

Weights:

$$\begin{array}{c|c} X_i = 0 & X_i = 1 \\ \hline D_i = 0 & 1/0.5 & 1/0.25 \\ D_i = 1 & 1/0.5 & 1/0.75 \end{array}$$

Weighted data (the pseudo-population):

$$\begin{array}{c|cccc} X_i = 0 & X_i = 1 \\ \hline D_i = 0 & 8 & 12 \\ D_i = 1 & 8 & 12 \\ \end{array}$$

• $\mathbb{P}_W(D_i = 1 | X_i = x) = 0.5$ for all x

Properties of reweighted data

• Let's calculate the weighted probability that $D_i = 1$.

$$\begin{split} \mathbb{P}_{W}[D_{i} = 1 | X_{i} = x] \\ &= \frac{w(1, x) \cdot \mathbb{P}[D_{i} = 1 | X_{i} = x]}{\omega^{*}} \\ &= \frac{\frac{1}{\mathbb{P}[D_{i} = 1 | X_{i} = x]} \cdot \mathbb{P}[D_{i} = 1 | X_{i} = x]}{\omega^{*}} \\ &= \frac{1}{\omega^{*}}. \end{split}$$

- ω* is a normalization factor to make sure probabilities sum to 1.
- Important point: $\mathbb{P}_W(D_i = 1 | X_i = 1) = \mathbb{P}_W(D_i = 1 | X_i = 0) = \frac{1}{\omega^*}$
- $\rightsquigarrow D_i$ independent of X_i in the reweighted data.

Overall mean

- What is the weighted mean for the treated group?
- Use a similar approach to survey weights, where D_i is the "sampling indicator":

$$\overline{Y}_i^w = \frac{1}{N} \sum_{i=1}^N D_i W_i Y_i$$

- $W_i Y_i$ is the weighted outcome, D_i is there to select out the treated observations.
- We want to see what the conditional weighted mean identifies:

$$\mathbb{E}\left[\frac{1}{N}\sum_{i=1}^{N}W_{i}D_{i}Y_{i}\right] = \frac{1}{N}\sum_{i=1}^{N}\mathbb{E}[W_{i}D_{i}Y_{i}] = \mathbb{E}[W_{i}D_{i}Y_{i}]$$

Proving unbiasedness

• Weighted mean of treated units is mean of potential outcome:

$$\mathbb{E}[W_i D_i Y_i] = \mathbb{E}\left[\frac{D_i Y_i}{e(X_i)}\right]$$
(Weight Def.)
$$= E\left[\frac{D_i Y_i(1)}{e(X_i)}\right]$$
(Consistency)
$$= E\left[E\left[\frac{D_i Y_i(1)}{e(X_i)}|X_i\right]\right]$$
(Iterated Expectations)
$$= E\left[\frac{E[D_i|X_i]E[Y_i(1)|X_i]}{e(X_i)}\right]$$
(n.u.c.)
$$= E\left[\frac{e(X_i)E[Y_i(1)|X_i]}{e(X_i)}\right]$$
(Propensity Score Definition)
$$= E[Y_i(1)]$$
(Iterated Expectations)

Putting it all together

 The same logic would give us the mean potential outcomes under control:

$$E\left[\frac{(1-D_i)Y_i}{1-e(X_i)}\right] = E[Y_i(0)]$$

• These two facts provide an estimator for the average treatment effect:

$$\hat{\tau} = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{D_i Y_i}{e(X_i)} - \frac{(1 - D_i) Y_i}{1 - e(X_i)} \right)$$

- The above two results give us that this esimator is unbiased.
- This is sometimes called the Horvitz-Thompson estimator due to the close connection to the survey sampling estimator.

Estimation of the propensity score

$$\hat{\tau} = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{D_i Y_i}{e(X_i)} - \frac{(1 - D_i) Y_i}{1 - e(X_i)} \right)$$

- Need to know or estimate the propensity score, e(X_i). How do we do that?
- Discrete covariates estimate the within-strata propensity scores

$$\hat{e}(x) = \frac{N_{xd}}{N_x}$$

- Non-parametric estimate of the propensity score in each stratum of the data.
- **Continuous covariates** ~→ Logistic regression of *D_i* on *X_i*.

Estimated versus known pscores

```
ht.est <- function(y, d, w) {</pre>
    n <- length(y)</pre>
     (1/n) * sum((y * d * w) - (y * (1 - d) * w))
n <- 200
x \leftarrow rbinom(n, size = 1, prob = 0.5)
dprobs <- 0.5 * x + 0.4 * (1 - x)
d <- rbinom(n, size = 1, prob = dprobs)</pre>
y < -5 * d - 10 * x + rnorm(n, sd = 5)
true.w <- ifelse(d == 1, 1/dprobs, 1/(1 - dprobs))</pre>
pprobs <- predict(glm(d ~ x))</pre>
est.w <- ifelse(d == 1, 1/pprobs, 1/(1 - pprobs))</pre>
ht.est(y, d, est.w)
```

[1] 5.1

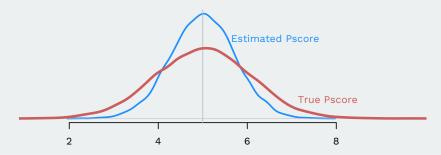
ht.est(y, d, true.w)

[1] 5.5

Sampling distribution of the HT estimators

```
sims <- 10000
true.holder <- rep(NA, sims)</pre>
est.holder <- rep(NA, sims)</pre>
for (i in 1:sims) {
    x \leftarrow rbinom(n, size = 1, prob = 0.5)
    dprobs <- 0.5 * x + 0.4 * (1 - x)
    d <- rbinom(n, size = 1, prob = dprobs)</pre>
    y < -5 * d - 10 * x + rnorm(n, sd = 5)
    true.w <- ifelse(d == 1, 1/dprobs, 1/(1 - dprobs))</pre>
    pprobs <- predict(glm(d ~ x))</pre>
    est.w <- ifelse(d == 1, 1/pprobs, 1/(1 - pprobs))</pre>
    est.holder[i] <- ht.est(y, d, est.w)</pre>
    true.holder[i] <- ht.est(y, d, true.w)</pre>
```

Sampling distribution of the HT estimators



var(est.holder)

[1] 0.52

var(true.holder)

[1] 1.2

Why use estimated pscores?

- Why does the estimated propensity score do better than the true propensity score?
- **Removing chance variations** using $\hat{e}(X_i)$ adjusts for any small imbalances that arise because of a finite sample.
- The true p-score only adjusts for the **expected** differences between samples.

Distribution of X in the weighed data

ht.est(x, d, est.w)

[1] 8.1e-16

ht.est(x, d, true.w)

[1] -0.2

Positivity violations

Remember the positivity assumption:

```
0 < p(D_i = 1|X_i) < 1
```

• What happens to the weights if this is violated? Then, $\hat{e}(x) = 0$ or $\hat{e}(x) = 1$ and

$$\frac{1}{\hat{e}(x)} = \frac{1}{0} = \infty$$

- **Structural** ~> population probability is 0.
- **Random** ~→ sample probability is 0.
 - ► Need to "borrow" information from other values of X_i to estimate e(X_i)
 - ▶ ~→ modeling via logit, etc.

Automated approaches

• Challenge: specifying the propensity score model.

 $\hat{e}(X_i) = \mathsf{logit}^{-1}(X_i'\beta)$

- What terms should we include?
- Big problem for weights: small changes to PS model lead to big changes in the weights.
- Entropy balancing (Hainmueller 2012):
 - Choose weights for each observation that maximize the balance between treatment and control groups.
- Covariate Balancing Propensity Scores (Imai and Ratkovic):
 - Estimate the propensity score subject to the additional constraint of maximizing balance.

Boostrapping to get the SEs

- Variance estimators are messy ~>> use the bootstrap!
 - 1. Draw a sample of the data with replacement, call this, S_b .
 - 2. Estimate the propensity scores in this sample, \hat{e}_b and create weights, W_b .
 - 3. Use the weights to get an estimate of the average treatment effect, τ_b in the sample S_b .
 - 4. Repeat.
- The distribution of the estimates,
 *î*_b, will give us the bootstrapped standard errors and confidence intervals.

Bootstrap in R

Compare bootstrapped variance to true sampling variance:

var(b.holder)

[1] 0.51

var(est.holder)

[1] 0.52

Reducing weight variation

- $e(X_i)$ close to 0 or 1 lead to very large weights, high standard errors.
- Potential solutions:

1. Trimming/Windsorizing the weights

• Pick some value w' and create trimmed weights which are:

$$W'_i = \begin{cases} W_i & \text{if } W_i < w' \\ w' & \text{if } W_i \ge w' \end{cases}$$

2. Stabilized weights

- We can actually put any other function of the treatment vector in the numerator, which can reduce the variation in the weights.
- We call these stabilized weights:

$$sw(d, x) = \frac{\mathbb{P}[D_i = 1]^d (1 - \mathbb{P}[D_i = 1])^{1-d}}{e(x)^d (1 - e(x))^{1-d}}$$

Stablized weights

• With a binary treatment, we can implement the stabilized weight by normalizing the weights:

$$SW_i = \frac{W_i}{\sum_{i=1}^N W_i}$$

This leads to the following estimator:

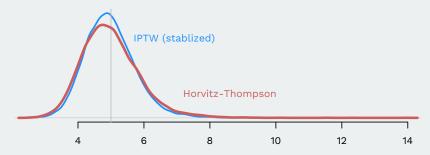
$$\begin{aligned} \hat{\tau}_{IPTW} &= \frac{1}{\sum_{i=1}^{N} W_i D_i} \sum_{i=1}^{N} W_i D_i Y_i - \frac{1}{\sum_{i=1}^{N} W_i (1 - D_i)} \sum_{i=1}^{N} W_i (1 - D_i) Y_i \\ &= \frac{1}{\sum_{i=1}^{N} D_i / \hat{e}(X_i)} \sum_{i=1}^{N} \frac{D_i Y_i}{\hat{e}(X_i)} \\ &- \frac{1}{\sum_{i=1}^{N} (1 - D_i) / (1 - \hat{e}(X_i))} \sum_{i=1}^{N} \frac{(1 - D_i) Y_i}{1 - \hat{e}(X_i)} \end{aligned}$$

 These are the means that the weighted.mean() function in R calculates. It normalizes the weights before calculating the mean.

Stablized weights

```
n <- 1000
sims <- 10000
est2.holder <- rep(NA, sims)</pre>
sw.holder <- rep(NA, sims)</pre>
for (i in 1:sims) {
    x < - rnorm(n)
    dprobs <- boot::inv.logit(-1 + x)</pre>
    d <- rbinom(n, size = 1, prob = dprobs)</pre>
    v < -5 * d - 10 * x + rnorm(n. sd = 5)
    pprobs <- glm(d ~ x, family = binomial())$fitted</pre>
    est.w <- ifelse(d == 1, 1/pprobs, 1/(1 - pprobs))</pre>
    est2.holder[i] <- ht.est(y, d, est.w)</pre>
    sw.holder[i] <- weighted.mean(y[d == 1], est.w[d ==</pre>
         1]) - weighted.mean(y[d == 0], est.w[d == 0])
```

Stabilized weights



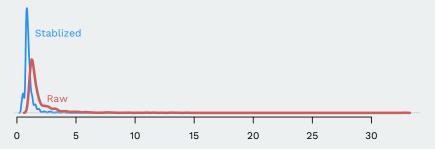
var(est2.holder)

[1] 0.78

var(sw.holder)

[1] 0.59

Distribution of the weights



tail(est.w[order(est.w)])

[1] 12 13 13 14 14 33

tail(est.sw[order(est.sw)])

[1] 3.9 3.9 4.0 4.1 4.3 9.9

2/ Post-treatment bias

Post-treatment bias

- Rule of matching/weighting/regression: don't condition on posttreatment variables.
- Usual intuition:
 - You might "control away" part of the effect of D_i on Y_i that "flows through" Z_i where Z_i is the posttreatment variable.
 - Can be misleading.
- Two big problems with conditioning on these:
 - Changes the quantity of interest (see above).
 - Induces selection bias.
- We'll go through Rosenbaum (1984) logic.

Setup

- Posttreatment variable Z_i
- Has potential outcomes because it is affected by treatment:
 (Z_i(1), Z_i(0)).
- Consistency for the posttreatment variable:

$$Z_i = D_i Z_i(1) + (1 - D_i) Z_i(0)$$

- Example:
 - Effect of campaign negativity (D_i) fixing polling later in the campaign (Z_i)

Assumptions and estimators

Assume no unmeasured confounders:

 $(Y_i(1), Y_i(0)) \perp D_i | X_i$

Usually estimate the CATE:

 $\tau(x) = E[Y_i | D_i = 1, X_i = x] - E[Y_i | D_i = 0, X_i = x]$

Average to get the ATE: τ = E[τ(X_i)].

Condition on a posttreatment variable

• What happens when we control for the post-treatment variable:

$$\begin{aligned} \Delta(x,z) &= E[Y_i|D_i = 1, Z_i = z, X_i = x] - E[Y_i|D_i = 0, Z_i = z, X_i = x] \\ &= E[Y_i(1)|D_i = 1, Z_i = z, X_i = x] - E[Y_i(0)|D_i = 0, Z_i = z, X_i = x] \\ &= E[Y_i(1)|D_i = 1, Z_i(1) = z, X_i = x] - E[Y_i(0)|D_i = 0, Z_i(0) = z, X_i = x] \end{aligned}$$

- Average these over the distribution of (X, Z): $\Delta = E[\Delta(X, Z)]$.
- Compare this estimator Δ to the average treatment effect τ .

Controlled direct effect

Define the net treatment difference ν(x, z):

 $\nu(x, z) = E[Y_i(1)|Z_i(1) = z, X_i = x] - E[Y_i(0)|Z_i(0) = z, X_i = x]$

Similar to the controlled direct effect, or the effect of D_i fixing Z_i(1) = Z_i(0) = z, removing the arrow from D_i to Z_i:

- Intuitively (if not precisely): if ν(x, z) = 0 and τ > 0, the effect of D_i on Y_i flows entirely through Z_i.
- Again, we'll take the average over (X_i, Z_i) : $\nu = E[\nu(X_i, Z_i)]$.

Posttreatment bias decomposition

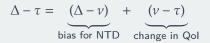
$$\Delta - \tau = \underbrace{(\Delta - \nu)}_{\text{bias for NTD}} + \underbrace{(\nu - \tau)}_{\text{change in Qol}}$$

- The bias of ∆ is two terms.
- $(\Delta \nu)$ measures our inability to estimate the net treatment difference.
- Why? Maybe Z_i is a collider. If we condition on Z_i, it opens a backdoor path between D_i and Y_i:

$$\begin{array}{c} U \longrightarrow Z \\ \downarrow \swarrow \uparrow \uparrow \\ D \longrightarrow Y \end{array}$$

 In this case, conditioning on Z opens the backdoor path from *D* ← *U* → *Z* ← *Y*. Thus, (Δ − ν) represents the bias due to unmeasured confounding between *D_i* and *Z_i*.

Posttreatment bias



- (ν τ): difference between the net treatment difference and the average treatment effect.
- The change in the quantity of interest.
- Might call this the effect of intervening on Z_i.
- Under some conditions, this difference can be thought of as the indirect effect of D_i on Y_i through Z_i, but not always.
 - ► ~→ Causal mediation/mechanisms
 - Very tricky assumptions, we'll talk about later.

Conditions that eliminate post-treatment bias

- When will there be no posttreatment bias?
- Under two assumptions:
 - 1. No unmeasured confounders for post-treatment variable:

 $(Y_i(0), Z_i(0), Y_i(1), Z_i(1)) \perp D_i | X_i$

2. No effect of treatment on the post-treatment variable: $Z_i(1) = Z_i(0) = Z_i$ for all units.

No unmeasured confounders, II

$(Y_i(0), Z_i(0), Y_i(1), Z_i(1)) \perp D_i | X_i$

- This extends no unmeasured confounders to the post-treatment variable.
- Most likely satisfied under randomization.
- Implies that $\Delta = \nu$. Why?
 - ▶ No unblocked backdoor paths from *D_i* to *Z_i*
 - $\rightsquigarrow Z_i$ cannot be a collider on a back-door path.
 - No collider bias for NTD
- Still could change the quantity of interest.

$$\begin{array}{c} X \longrightarrow Z \\ \downarrow \swarrow & \downarrow \\ D \longrightarrow Y \end{array}$$

No effect on Z

- No effect of treatment on the post-treatment variable:
 Z_i(1) = Z_i(0) = Z_i for all units.
- Under this condition, we have NTD = ATE.
 - The effect of D_i cannot go through Z_i since it doesn't affect Z_i :

$$\begin{aligned} \nu(x,z) &= \mathbb{E}[Y(1)|Z(1) = z, X = x] - \mathbb{E}[Y(0)|Z(0) = z, X = x] \\ &= \mathbb{E}[Y(1) - Y(0)|Z = z, X = x]. \end{aligned}$$

 So that when we take the average over (X_i, Z_i), we get ν = τ. In this case the above DAGs would be:

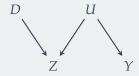
$$\begin{array}{cccc} X \longrightarrow Z & & X \longrightarrow Z \\ \downarrow & \downarrow & & \downarrow & \uparrow \\ D \longrightarrow Y & & D \longrightarrow Y \end{array}$$

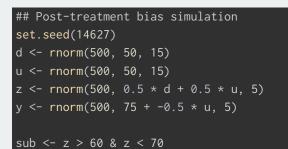
Essentially assumes Z_i is pretreatment.

Posttreatment bias overview

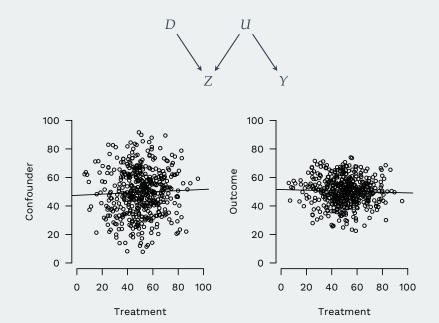
- Found two assumptions under which condition on Z_i doesn't matter.
- But, these two assumptions buy us nothing:
 - ▶ Requires no unmeasured confounders ~→ could have estimated the ATE in the usual way.

Simulation





Posttreatment bias example



Posttreatment bias example

