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Where are we? Where are we going?

• Last few weeks = how to produce a single, best estimate of some population
parameter, drawing on our knowledge of probability.

• Now: what if we want to express uncertainty about estimates? What if we want
to give a range of values instead of a single value? (Interval estimation)

• Also, what if we want to assess the plausibility of a particular hypothesis about
our data (Hypothesis testing).

• This last goal is basically what we did in the Lady Tasting Tea example.

interval estimation
Interval estimation - what and why?

• Last week we talked about producing a single estimate of some population pa-
rameter. For example, we estimated the population difference in means using
the sample difference inmeans. But that gave us one number. Thatmight be our
“best guess” about the true value, but what is the probability that our estimate
will be equal to the true value? Zero!

• A different (complementary) approach to estimation is to produce a range of
values that will contain the truth with some fixed probability.
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• An interval estimate of the population mean, µ, consists of two bounds within
which we expect µ to reside:

LB ≤ µ ≤ UB

• A confidence interval is a kind of interval estimator that guarantees that the true
value of the parameters will be in interval in some fixed proportion of random
samples.

• How can we possibly figure out such an interval? We’ll rely on the distribu-
tional properties of estimators that we learned last week. Today we’ll focus on
developing these types of interval estimators for the sample mean, but the same
ideas apply to all estimators. Later in the course, we’ll see how they apply to
regression coefficients.

Estimating the standard error of the sample mean

• We’re going to make heavy use of the sampling distribution of the sample mean
to derive interval estimates, called confidence intervals, for the sample mean.

• By the CLT, we know that in large samples, we know that the sample mean will
be approximately Normally distributed:

Ȳ ∼ N(µ, SE[Ȳ ]2)

• By the properties of probability limits from last week, if we have a consistent
estimator, ŜE[Ȳ ]

p→ SE[Ȳ ], then when n is large, we know can replace the
true SE with the estimate in the approximating distribution:

Ȳ ∼ N(µ, ŜE[Ȳ ]2)

• For the sample mean, remember that the sampling variance is σ2

n . Remember
that we know n and we can estimate σ2 with the sample variance:

S2
n =

1

n− 1

n∑
i=1

(Yi − Ȳ )2

• To get an estimate of the population standard deviation, we just use the sample
standard deviation: Sn =

√
S2
n

• We can plug this into our formula for the standard error the sample mean:

ŜE[Ȳ ] =
S√
n
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Derivation of the Confidence Interval for the Population Mean

• Definition A 100(1− α)% confidence interval with confidence level 1− α is
an interval estimator for a population parameter θ that will contain/cover the
true value, θ, 100(1− α)% of the time.

• We going to use the above distributional results to come up with a rule for con-
structing a confidence interval. This rule will be an estimator just like the sam-
ple mean or the sample variance, but it will produce two values instead of one:
the upper and lower values of the intervals.

• If Y1, . . . , Yn are iid and n is large, then we have

Ȳ ∼ N(µ, ŜE[Ȳ ]2)

Ȳ − µ ∼ N(0, ŜE[Ȳ ]2)

Ȳ − µ

ŜE[Ȳ ]
∼ N(0, 1)

• One fact that you should memorize is that that 95% of the probability mass of a
standard Normal falls between -1.96 and 1.96, so we know that:

P(−1.96 ≤ Ȳ − µ

ŜE[Ȳ ]
≤ 1.96) = 0.95

• Let’s work backwards to derive the confidence interval:

P
(
− 1.96 ≤ Ȳ − µ

ŜE[Ȳ ]
≤ 1.96

)
= 0.95

P
(
− 1.96× ŜE[Ȳ ] ≤ Ȳ − µ ≤ 1.96× ŜE[Ȳ ]

)
= 0.95

P
(
− 1.96× ŜE[Ȳ ]− Ȳ ≤ −µ ≤ 1.96× ŜE[Ȳ ]− Ȳ

)
= 0.95

P
(
Ȳ − 1.96× ŜE[Ȳ ] ≤ µ ≤ Ȳ + 1.96× ŜE[Ȳ ]

)
= 0.95

Different confidence intervals

• Confidence intervals take the following form: Ȳ ± 1.96 × ŜE[Ȳ ], which is
shorthand for [LB,UB] where these are:

LB = Ȳ − 1.96× ŜE[Ȳ ]

UB = Ȳ + 1.96× ŜE[Ȳ ]
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• Where did the 1.96 come from?

P
(
− 1.96 ≤ Ȳ − µ

ŜE[Ȳ ]
≤ 1.96

)
= 0.95

• What about confidence intervals other than 95%? Say we want an (1 − α)%
confidence interval:

P
(
− zα/2 ≤

Ȳ − µ

ŜE[Ȳ ]
≤ zα/2

)
= (1− α)

P
(
Ȳ − zα/2 × ŜE[Ȳ ] ≤ µ ≤ Ȳ + zα/2 × ŜE[Ȳ ]

)
= (1− α)

• General formula for a (1− α)% confidence interval:

Ȳ ± zα/2 × ŜE[Ȳ ]

• Here we call the zα/2 values the z-values for the particular confidence intervals.

Finding the z values

• How do we figure out what zα/2 will be? We will need to find the values such
that the following holds. Given a standard Normal variable, Z N(0, 1):

P(−zα/2 ≤ Z ≤ zα/2) = 1− α

• Thus, we want the values that puts α/2 in each of the tails.

• For example, with α = 0.05 for a 95% confidence interval, we want the z values
that put 0.025 (2.5%) in each of the tails:
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z = 1.96-z = -1.96

• But how did we find the 1.96 in this case? For these types of two-sided confi-
dence intervals, we will simply find the z-value that puts α/2 of the probability
mass above it or, equivalently, 1 − α/2 below it. Thus, we want to know the
value z, such that P(Z ≤ z) = 1− α/2:
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0.975

• This is just the CDF of the standard Normal evaluated at 1− α/2! We can find
this using the qnorm() function in R.

• Procedure:
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1. Choose a value α (0.1 for example) for a 100(1−α)% confidence interval
(90% in this case)

2. Convert this to 1− α/2 (0.95 in this case)
3. Plug this value into qnorm() to find zα/2:

qnorm(0.95)

## [1] 1.644854

• QuestionWhat happens to the size of the confidence interval when we increase
our confidence, from say 95% to 99%? Do confidence intervals get wider or
shorter?

Confidence intervals you should probably memorize

• For a 90% CI, we have α = 0.1 and z0.05 = 1.64
• For a 95% CI, we have α = 0.05 and z0.025 = 1.96
• For a 99% CI, we have α = 0.01 and z0.005 = 2.58

Interpreting the confidence interval

• Caution An often recited, but incorrect interpretation of a confidence interval
is the following: “I calculated a 95% confidence interval for the sample mean
of [0.05,0.13], which means that there is a 95% chance that the true population
mean in is that interval.” This is WRONG.

• The true value of the population mean, µ, is fixed. It is either in the interval or
it isn’t—there’s no room for probability at all. The randomness is in the interval:
Ȳ ± 1.96× ŜE[Ȳ ]. This is what varies from sample to sample.

• Correct interpretation: across 95% of random samples, the constructed confi-
dence interval will contain the true value.

Confidence interval simulation

• Let’s do a simulation to show how this works. We’re going to draw samples of
size 500 from a N(1, 10) and then calculate the confidence interval for popu-
lation mean and then calculate the proportion of the intervals that contain the
true value of the population mean.
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set.seed(02143)

sims<- 10000

cover <- rep(NA, times = sims)

low.bound <- up.bound <- rep(NA, times = sims)

for(i in 1:sims){

draws <- rnorm(500, mean=1, sd=sqrt(10))

low.bound[i] <- mean(draws) - sd(draws)/sqrt(500) * 1.96

up.bound[i] <- mean(draws) + sd(draws)/sqrt(500) * 1.96

if (low.bound[i] < 1 & up.bound[i] > 1) {

cover[i] <- 1

} else {

cover[i] <- 0

}

}

mean(cover)

## [1] 0.9498

• We can see that roughly 95% of the confidence intervals (across the samples)
contain the true value. Let’s plot the first 100 of these interval estimates from
the first 100 samples and then color code the intervals by whether they cover
the true value:

cols <- ifelse(cover == 1, ”dodgerblue”, ”indianred”)

plot(x = NULL, y = NULL, xlim = c(1,100), ylim = c(0.5, 1.5), bty = ”n”,

xlab = ”Trial”, ylab = ”Estimate”)

abline(h = 1, col = ”grey”, lwd = 3)

segments(x0 = 1:100, y0 = low.bound[1:100], y1 = up.bound[1:100],

col = cols[1:100], lwd = 3)
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- You can see that in these 100 samples, exactly 95 of the calculated confidence inter-
vals contains the true value.
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• Question What happens to the intervals when we increase n, the sample size?
Do the intervals get shorter or longer? Do more or fewer of them contain the
true value?

What makes a good confidence interval?

Small-sample confidence intervals

• What if n is not large? Then we can’t rely on the large-sample properties of the
sample mean like consistency and asymptotic Normality. We can only rely on
finite sample properties unbiasedness and knowing that the standard error is
σ/

√
n.

• To take a somewhat canonical example, let’s say that we are trying to estimate
the percent alcohol by volume of Guinness beer, which let’s say that we know
is N(4.2, 0.09). Imagine that we could only take samples of six packs, so we
can only use n = 6. What happens when we apply the usual, Normal-based CI
formula to that data?

set.seed(02143)

sims<- 10000

cover <- rep(NA, times = sims)

low.bound <- up.bound <- rep(NA, times = sims)

for(i in 1:sims){

draws <- rnorm(6, mean=4.2, sd=sqrt(0.09))

low.bound[i] <- mean(draws) - sd(draws)/sqrt(6) * 1.96

up.bound[i] <- mean(draws) + sd(draws)/sqrt(6) * 1.96

if (low.bound[i] < 4.2 & up.bound[i] > 4.2) {

cover[i] <- 1

} else {

cover[i] <- 0

}

}

mean(cover)

## [1] 0.8903

• Let’s plot the first 100 confidence intervals again:
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cols <- ifelse(cover == 1, ”dodgerblue”, ”indianred”)

plot(x = NULL, y = NULL, xlim = c(1,100), ylim = c(3.6, 4.8), bty = ”n”,

xlab = ”Trial”, ylab = ”Estimate”)

abline(h = 4.2, col = ”grey”, lwd = 3)

segments(x0 = 1:100, y0 = low.bound[1:100], y1 = up.bound[1:100],

col = cols[1:100], lwd = 3)
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• Obviously, we can see here that far fewer than 95 of the 100 confidence intervals
contains the true value. We call this undercoverage.

• But what is the distribution of Ȳ in small samples: Ȳ ∼?(µ, σ2/n)

• If we’re given no other information we actually don’t know. But if know that
the Y1, . . . , Yn are iid samples from N(µ, σ2). With samples from the Normal
distribution, then we know what the sampling distribution of the mean will be:

Ȳ − µ
σ√
n

∼ N(0, 1)

• Usually we have to estimate σ because we don’t know it. Remember that in large
samples this didn’t affect the distribution of the estimator, but here it will:

Ȳ − µ
sn√
n

∼ tn−1

Student’s t distribution

• Here, tn−1 is the Student’s t-distribution (usually just called the t distribution)
with n− 1 degrees of freedom (df).

• Named after William Sealy Gossett who published under the pen name, Stu-
dent, while he was an employee at Guinness Brewery in Ireland. He devel-
oped the distributionwhile working on quality control problems in the brewery,
where sample sizes could be quite small.
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• The t distribution is completely summarized by its degrees of freedom, which
here is dictated by the sample size. As the degrees of freedom increases, the t
looks more and more like the standard Normal distribution.

• Similar shape to the Normal, but with fatter tails—it has slightly higher vari-
ance than the Normal. You can think of this extra variance as coming from the
extra variance of estimating the denominator of Ȳ−µ

sn√
n

. Sometimes the “extra”
sampling error will push our estimates out toward the extremes.
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• Let tn−1,α/2 be the value that put α/2 of the mass of the t distribution above
that value: P(T ≥ tn−1,α/2) = α/2, where T ∼ tn−1. We can get this from
the qt() function in R.

• For example, if we have a sample size of 6 and we wanted α = 0.05. We know
that we want to find the value such that 0.025 of the probability mass is above
that value. Now, we know that this is the points that puts 0.975 below that value
(qt() is the CDF, so it gives us the value such that a certain mass is below that
value):

qt(0.975, df = 6 - 1)

## [1] 2.570582

• Note that this is different the value we would get with a Normal:
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qnorm(0.975)

## [1] 1.959964

• Then,

P
(
− tn−1,α/2 ≤

Ȳ − µ

ŜE[Ȳ ]
≤ tn−1,α/2

)
= (1− α)

P
(
Ȳ − tn−1,α/2 × ŜE[Ȳ ] ≤ µ ≤ Ȳ + tn−1,α/2 × ŜE[Ȳ ]

)
= (1− α)

• Thus, whenhave small samples, butwe know that the sample is from theNormal
distribution, we can formulate confidence intervals like so: Ȳ ± tn−1,α/2× s√

n
.

• Revisiting the simulation, let’s change how we calculate the confidence interval,
using the qt() function to get the critical value of the t distribution.

sims<- 10000

cover <- rep(NA, times = sims)

low.bound <- up.bound <- rep(NA, times = sims)

for(i in 1:sims){

draws <- rnorm(6, mean=4.2, sd=sqrt(0.09))

tval <- qt(0.975, df = 6 - 1)

low.bound[i] <- mean(draws) - sd(draws)/sqrt(6) * tval

up.bound[i] <- mean(draws) + sd(draws)/sqrt(6) * tval

if (low.bound[i] < 4.2 & up.bound[i] > 4.2) {

cover[i] <- 1

} else {

cover[i] <- 0

}

}

mean(cover)

## [1] 0.9508
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cols <- ifelse(cover == 1, ”dodgerblue”, ”indianred”)

plot(x = NULL, y = NULL, xlim = c(1,100), ylim = c(3.6, 4.8), bty = ”n”,

xlab = ”Trial”, ylab = ”Estimate”)

abline(h = 4.2, col = ”grey”, lwd = 3)

segments(x0 = 1:100, y0 = low.bound[1:100], y1 = up.bound[1:100],

col = cols[1:100], lwd = 3)
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• Here we can see that our coverage is back on track even though we have really
small samples!

Interval estimation of the difference in means

• Suppose we have two iid samples (also independent from each other) from pos-
sibly different distributions:

– Y11, Y12, . . . , Y1n1 with population mean µ1 and population variance σ2
1

– Y21, Y22, . . . , Y2n2 with population mean µ2 and population variance σ2
2

• Last week we saw that the sample difference in means is unbiased so we know
that E[Ȳ1 − Ȳ2] = µ1 − µ2.

• Let’s calculate the sampling variance of the difference in means:

Var[Ȳ1 − Ȳ2] = Var[Ȳ1] + Var[Ȳ2] (independence + variance properties)

=
1

n2
1

n1∑
i=1

Var[Y1i] +
1

n2
2

n2∑
i=1

Var[Y2i]

=
1

n2
1

n1∑
i=1

σ2
1 +

1

n2
2

n2∑
i=1

σ2
2

=
σ2
1

n1
+

σ2
2

n2
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• Putting all of this together, we know that in large samples, we have the following:

Ȳ1 − Ȳ2 ∼ N(µ1 − µ2,
σ2
1

n1
+

σ2
2

n2
)

• Using the logic from the last section, we can replace the true population vari-
ances with sample estimates:

Ȳ1 − Ȳ2 ∼ N(µ1 − µ2,
s21
n1

+
s22
n2

)

• Combining this with the arguments above, we can construct the following con-
fidence interval for the difference in means in large samples:

(Ȳ1 − Ȳ2)± zα/2 ×

√
s21
n1

+
s22
n2

Interval estimation of the population proportion

• Let’s say that we have a sample of iid Bernoulli random variables, Y1, . . . , Yn,
where each takesYi = 1with probabilityπ. Note that this is also thepopulation
proportion of ones. We have shown in previous weeks that the expectation of
one of these variable is just the probability of seeing a 1: E[Yi] = π.

• The variance of a Bernoulli random variable is a simple function of its mean:
Var(Yi) = π(1− π).

• Problem Show that the sample proportion, π̂ = 1
n

∑n
i=1 Yi, of the above iid

Bernoulli sample, is unbiased for the true population proportion, π, and that
the sampling variance is equal to π(1−π)

n .

• Note that if we have an estimate of the population proportion, π̂, then we also
have an estimate of the sampling variance: π̂(1−π̂)

n .

• Given the facts from the previous problem, we just apply the same logic from
the population mean to show that the following confidence interval:

P

(
π̂ − zα/2 ×

√
π̂(1− π̂)

n
≤ π ≤ π̂ + zα/2 ×

√
π̂(1− π̂)

n

)
= (1− α)
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Gerber, Green, and Larimer experiment

• Let’s go back to the Gerber, Green, and Larimer experiment from last week.
Here are the results of their experiment:

• Let’s use what we have learned up until now and the information in the table
to calculate a 95% confidence interval for the difference in proportions voting
between the Neighbors group and the Civic Duty group.

• Youmay assume that the samples with in each group are iid and the two samples
are independent.

• First, we know that the sample proportion for the Civic Duty π̂C group will be
approximately Normal around the populationmean πC with sampling variance
(πC(1−πC))/n. Same goes for the sample proportion in the Neighbors group,
π̂N .

• Given that these are just samplemeans (of the underlyingBernoulli voter turnout
variables), we can apply the difference in means results from above to show that
the difference in proportions has the following distribution:

π̂N − π̂C ∼ N

(
πN − πC ,

πN (1− πN )

nN
+

πC(1− πC)

nC

)
• We can replace the variances with our estimates from the sample proportions:

π̂N − π̂C ∼ N

(
πN − πC ,

π̂N (1− π̂N )

nN
+

π̂C(1− π̂C)

nC

)
• Now, we can use this in the same way as every other example to calculate the

95% confidence interval:

(π̂N − π̂C)± 1.96×

√
π̂N (1− π̂N )

nN
+

π̂C(1− π̂C)

nC

• Let’s plug in the values into R and go!
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n.n <- 38201

samp.var.n <- (0.378 * (1 - 0.378))/n.n

n.c <- 38218

samp.var.c <- (0.315 * (1 - 0.315))/n.c

se.diff <- sqrt(samp.var.n + samp.var.c)

se.diff

## [1] 0.003435201

## lower bound

lb <- (0.378 - 0.315) - 1.96 * se.diff

lb

## [1] 0.05626701

## upper bound

ub <- (0.378 - 0.315) + 1.96 * se.diff

ub

## [1] 0.06973299

• Thus, the confidence interval for the effect is [0.056267, 0.069733].

Interval estimation of the population variance

• Challenge Problem Suppose that you have an iid sample, Y1, . . . , Yn, from a
population with variance, σ2. Derive a (1 − α)% confidence interval for the
sample variance, S2

n. (Hint: you may have to look in Wooldridge and learn
about a new distribution.)
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hypothesis tests
What is a hypothesis test?

• A hypothesis test is just an evaluation of a particular hypothesis about the pop-
ulation distribution.

• These are just statistical thought experiments where we assume that we know
how the data generating process works (we know the population distribution)
and we compare our observed data to the data we would expect in that thought
experiment.

• Would our data be common or rare in the statistical thought experiment? The
hypothesis test will formulate exactly how unusual our observed data would
have to be in the thought experiment in order to “reject” the thought experiment
as plausible.

• This is exactly like the Lady Tasting Tea.

What is a hypothesis?

• Definition A hypothesis is just a statement about population parameters.

• We might have hypotheses about causal inferences

– Does social pressure induce higher voter turnout? (mean turnout higher
in social pressure group compared to Civic Duty group?)

– Do daughters cause politicians to bemore liberal onwomen’s issues? (vot-
ing behavior different among members of Congress with daughters?)

– Do treaties constrain countries? (behavior different among treaty sign-
ers?)

• We might also have hypotheses about other parameters:

– Is the share of Hillary Clinton supporters more than 50%?
– Are traits of treatment and control groups different?
– Is there evidence of electoral manipulation (Iran HW question)?

Null and alternative hypotheses

• Defintion The null hypothesis is a proposed, conservative value for a popula-
tion parameter. This is usually “no effect/difference/relationship.” We denote
this hypothesis as H0 : µ = a.
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• DefinitionThe alternative hypothesis for a given null hypothesis is the research
claimwe are interested in supporting. Usually, “there is a relationship/difference/effect.”
We denote this as Ha : µ ̸= a.

• Always mutually exclusive
• Causal inference: Does social pressure (Neighbors) mailer affect turnout?

– H0: Social pressure doesn’t affect turnout (No difference in mean turnout
between Neighbors group and Civic Duty group)

– Ha: Social pressure affects turnout (Difference in mean turnout between
Neighbors group and Civic Duty group)

• Parameters: presence of electoral manipulation?

– H0: no electoral manipulation (7s in the last digit occur with probability
1/10)

– Ha: electoral manipulation (proportion of 7s higher than 1/10)

General framework

• We need a set of rules to adjudicate between the null and alternative hypotheses.
• Definition We base these rules on a test statistic, T (Y ) = T (Y1, . . . , Yn),

which is just some function of the data (a statistic) calculated to perform a hy-
pothesis test.

• DefinitionThe rejection region to the values ofT (Y ) forwhichwewould reject
the null hypothesis.

• If T (Y ) is outside the rejection region, we retain (or fail to reject) the null hy-
pothesis.

• The rejection region represents values of the test statistic that cast doubt on the
validity of the null hypothesis

The Lady Tasting Tea redux

• Let’s go all the way back to the Lady Tasting Tea. Remember that the goal there
was to determine if the Lady was able to determine if the tea was poured first or
the milk was poured first.

• Simplification of the problem: the Lady tastes n cups of tea and either guesses
the ith cup correctly Yi = 1 or incorrectly, Yi = 0.

• Parameter of interest: π = probability of a correct guess.

– π = 0.5 guessing at random
– π > 0.5 able to discern tea-first vs milk-first
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– π < 0.5 worse than random

• Null and alternative hypotheses:

– H0 : π ≤ 0.5
– Ha : π > 0.5

• Assume she tastes LOTS of cups, son is large, so that we have Ȳ ∼ N(π, σ2/n).

• If we have an estimate of the variance, like the sample variance S2
n, then we

know (by the usual arguments in the confidence intervals section), that:

Ȳ − π

Sn/
√
n
∼ N(0, 1)

• But now our statistic depends on the true parameter, π, so what do we do?

• Statistical thought experiment time! Calculate the test statistic as if the null
hypothesis were true.

• Definition The distribution of the test statistic under the null is call the null
distribution.

• We can use this distribution to tell how unusual/weird our sample was com-
pared to the null distribution.

Type I and Type II errors

• Definition A Type I error is when we reject the null hypothesis when it is in
fact true.

• Guess the Lady is discerning when she is just guessing.

• Definition A Type II error is when we fail to reject the null hypothesis when it
is false.

• Guess that the Lady is just guessing when she is truly discerning.
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Size, power, and errors

H0 True H0 False
Retain H0 Awesome! Type II error
Reject H0 Type I error Good stuff!

• Defintion The level of the test, or α, is the probability of a Type I error.

• Definition The rejection region are the values of the test statistic for which we
would reject the null hypothesis.

• Choose a level α based on aversion to false discovery:

– Convention in social sciences is α = 0.05, but nothing magical there
– Particle physicists at CERN use α ≈ 1

1,750,000
– Higher values guard against “flukes” but increase barriers to discovery

Deriving the rejection region

• Let’s go to our statistical thought experiment where we are assuming that the
null is true, so that µ = 0.5.

• Then with the Lady Tasting Tea: T (Y ) = Ȳ−0.5
Sn/

√
n
∼ N(0, 1).

• When should we reject our null (H0 : π ≤ 0.5)? When the test statistic is con-
sistent with the alternative (Ha : π > 0.5)! Thus, when T (Y ) big.

• We want to choose a rejection region that rejects the null in α of the cases when
the null is true. So we want to find the rejection region that will contain α of
the random draws of the test statistic.

• Are the guesses of the Lady sufficient good to make us reject the null?
• Definition The critical value, c is the value the marks the start of the rejection

region.
• Let’s say that we were happy with α = 0.05 in this case. We would need to

find the value above which there would only be 0.05 chance of seeing the test
statistic: P (T (Y ) > c) = 0.05. Since we know this is normal, we can plot it:
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Retain Reject

• To determine the critical value here, use the fact that P(T (Y ) ≤ c) = 1 − α,
so that we can use the CDF functions in R to calculate the critical values:

qnorm(0.95)

## [1] 1.644854

• Note that we are assuming large samples, but if we have small samples, then we
have to rely on the t distribution in a similar way to with confidence intervals.
There, we just use the t instead of the Normal to derive critical values.

What happens under the null (stays under the null?)

samp.teststats <- rnorm(100, mean = 0, sd = 1)

c.val <- qnorm(0.95)

mean(samp.teststats > c.val)

## [1] 0.07

p-values

• DefinitionThe p-value for an observed test statistic is the probability of seeing a
test statistic at least as extreme as observed statistic, given that the null hypothesis
is correct.
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• “Extreme” is determined by the alternative hypothesis.

• Alternative: the smallest value of α that we could still reject the null.

• What p-values are not:

– An indication of a large substantive effect
– The probability that the null hypothesis is false
– The probability that the alternative hypothesis is true

• Just the P(T (Y ) > c|H0).

One-sided tests

• In the Lady Tasting Tea (redux) example, we are interested in a one-sided test.
• Definition A one-sided test is a test of an alternative hypothesis that only goes

in one direction.
• What does this mean? It means that only deviations from the null hypothesis

in one direction cast doubt on the null hypothesis. In the LTT(r) example, the
rejection region only ended up being large values of T (Y ).

• But if the null is that she’s randomly guessing, why not allow for her being dis-
cerning in the opposite direction as evidence against the null? That is, why don’t
we have the following alternative: Ha : π ̸== 0.5.

• This two-sided alternative is almost always the right thing to do in the social
sciences. One-sided tests are usually used to cheat—easier to reject without
changing α.

Example of a two-sided test: Social pressure experiment

• Let’s go back to the social pressure mobilization experiment. Again, remember
that we are trying to see if there was an effect of theNeighbors treatment relative
to the Civic Duty treatment on turnout.

• πN is the proportion of the Neighbors group that turned out and πC is the pro-
portion of the Civic Duty group that turned out.

• H0 : πN − πC = 0 (no effect/difference in turnout)

• Ha : πN − πC ̸= 0 (some effect/difference)

• We’ll set α = 0.05 to be standard.
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• Let’s go to the statistical thought experiment—under the null, we haveπN = πC
so that

(π̂N − π̂C)− 0

SE[π̂N − π̂C ]
∼ N(0, 1)

• What’s the rejection region? Because the alternative is two-sided, we have to
allow for very positive values of T and very negative values of T to be evidence
against the null. Thus, we’ll derive two equally sized rejection regions on either
side:
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Retain RejectReject

0.025 0.025

c = 1.96-c = -1.96

• Under the null, we have a 0.05 probability of being more than 1.96 standard
errors away from 0. Thus, our critical value becomes 1.96

• Earlier we got an estimate of the standard error, ŜE = 0.0034 and we have
π̂N = 0.378 and π̂C = 0.315. Then our observed test statistic is:

(0.378− 0.315)

0.0034
= 18.5294118

• Is 18.5 large relative to the null distribution (which is a standard Normal)?
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Retain RejectReject

T = 18.5

• Quite obviously, we would reject the null in this case. How unlikely would it
be to get a difference this extreme or more extreme (either above or below 0)?
That is, what is the p-value?

• Use the pnorm() function and the fact that P(T (Y ) > 18.5) = P(T (Y ) <
−18.5):

2 * pnorm(-18.5)

## [1] 2.06474e-76

Connection between confidence intervals and hypothesis tests

• Reject if:

Ȳ − µ0

S√
n

< −zα/2 or
Ȳ − µ0

S√
n

> zα/2

Ȳ − µ0 < −zα/2 ×
S√
n

or Ȳ − µ0 > zα/2 ×
S√
n

Ȳ + zα/2 ×
S√
n
< µ0 or Ȳ − zα/2 ×

S√
n
> µ0

• What does this say? Basically we reject µ0 if is outside the (1−α)% confidence
interval: Ȳ ± zα/2 × S√

n
.
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• This means that all rejected null hypotheses at the α level fall outside the (1 −
α)% confidence interval. And all values inside the (1−α)% confidence interval
must be those that are not rejected at the α level.

Pitfalls of hypothesis testing

1. Size of the effect often more important than whether it exists or not
2. Only relevant when there is a specific hypothesis to test

• DefinitionWe say that an effect/difference is statistically significant if we reject
the null hypothesis of no effect/difference.

• Just because an effect is statistically significant doesn’t make it substantively sig-
nificant! How big is the effect relative to other effects or relative to the cost of
intervening.

• Often, a point estimate and a confidence interval will be better tools than a hy-
pothesis test.
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