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Where are we? Where are we
going?

• Last few weeks = how to produce a single, best estimate of
some population parameter, drawing on our knowledge of
probability.

• Now: what if we want to express uncertainty about estimates?
Standard error gives us some indication of how accurate our
estimate is, but it’s limited.

• What if we want to give a range of values instead of a single
value? (Interval estimation)

• Also, what if we want to assess the plausibility of a particular
hypothesis about our data (Hypothesis testing).

• This last goal is basically what we did in the Lady Tasting Tea
example.
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Midterm notes

• Midterm will go out 10/22 (next Thursday).
• Practice problems will go out soon.
• 3 questions, multiple parts per question.
• Available until the follow Thursday at 5pm, you have 5 hours

to complete it once you check it out.
• Rules: no working or corresponding with any human being

while taking the exam.
• If unsure about wording, make a clarifying assumption and

note it in your answer.
• No HW that week, obvi.

4 / 68



Social pressure effect
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Motivating Example
load("gerber_green_larimer.RData")
## turn turnout variable into a numeric
social$voted <- 1 * (social$voted == "Yes")
neigh.mean <- mean(social$voted[social$treatment ==

"Neighbors"])
neigh.mean

## [1] 0.378

contr.mean <- mean(social$voted[social$treatment ==
"Civic Duty"])

contr.mean

## [1] 0.315

neigh.mean - contr.mean

## [1] 0.0634

• What is a range of plausible values? Could this happen by
random chance?
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1/ Large Sample
Confidence
Intervals
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Interval estimation - what and
why?

• 𝑌𝑛 − 𝑋𝑛 is our best guess about 𝜇𝑦 − 𝜇𝑥
• But ℙ(𝑌𝑛 − 𝑋𝑛 = 𝜇𝑦 − 𝜇𝑥) = 0!
• Alternative: produce a range of values that will contain the

truth with some fixed probability
• An interval estimate of the population difference in means,
𝜇𝑦 − 𝜇𝑥, consists of two bounds within which we expect
𝜇𝑦 − 𝜇𝑥 to reside:

𝐿𝐵 ≤ 𝜇𝑦 − 𝜇𝑥 ≤ 𝑈𝐵

• How can we possibly figure out such an interval? We’ll rely on
the distributional properties of estimators. Ideas extend to all
estimators, including regression.
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Review of the difference in means

• Treated group 𝑌, 𝑌, … , 𝑌𝑛 i.i.d. with population mean 𝜇𝑦
and population variance 𝜎𝑦

• Control group 𝑋, 𝑋, … , 𝑋𝑛 i.i.d. with population mean 𝜇𝑥
and population variance 𝜎𝑥

• Look the at the difference in means:

𝐷𝑛 = 𝑌𝑛 − 𝑋𝑛
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Sampling distribution of the
difference

• From last week, we know in large samples, by the CLT:
𝐷𝑛 ∼ 𝑁 𝜇𝑦 − 𝜇𝑥, 𝕍[𝐷𝑛]

• Remember the variance:

𝕍[𝐷𝑛] = 𝕍[𝑌𝑛] + 𝕍[𝑋𝑛] =
𝜎𝑦
𝑛 + 𝜎


𝑥
𝑛

• Today, it’ll be easier to work with the standard error,
𝑆𝐸[𝐷𝑛] = √𝕍[𝐷𝑛]

• From last week, remember that we can replace the SE with an
estimate of the SE:

𝑆𝐸[𝐷𝑛] =
√

𝑆𝑦𝑛
𝑛 + 𝑆

𝑥𝑛
𝑛
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Deriving a probabilistic bound
• When 𝑛 is large, then we have

𝐷𝑛 ∼ 𝑁((𝜇𝑦 − 𝜇𝑥), 𝑆𝐸[𝐷𝑛])
𝐷𝑛 − (𝜇𝑦 − 𝜇𝑥) ∼ 𝑁(0, 𝑆𝐸[𝐷𝑛])
𝐷𝑛 − (𝜇𝑦 − 𝜇𝑥)

𝑆𝐸[𝐷𝑛]
∼ 𝑁(0, 1)

• Let’s use this to calculate a lower bound for (𝜇𝑦 − 𝜇𝑥):

ℙ𝐿𝐵 < (𝜇𝑦 − 𝜇𝑥) = 0.95
• We want to find a value so that in 95% of random samples, it

will be lower than the true difference in means.
• Use the following fact:

ℙ
⎛
⎜⎜⎜⎜⎝
𝐷𝑛 − (𝜇𝑦 − 𝜇𝑥)

𝑆𝐸[𝐷𝑛]
≤ 1.64

⎞
⎟⎟⎟⎟⎠ = 0.95
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Getting a lower bound for the
effect

𝑃
𝐷𝑛 − (𝜇𝑦 − 𝜇𝑥)

𝑆𝐸[𝐷𝑛]
≤ 1.64 = 0.95

ℙ𝐷𝑛 − (𝜇𝑦 − 𝜇𝑥) ≤ 1.64 × 𝑆𝐸[𝐷𝑛] = 0.95

ℙ − (𝜇𝑦 − 𝜇𝑥) ≤ − 𝐷𝑛 + 1.64 × 𝑆𝐸[𝐷𝑛] = 0.95

ℙ(𝜇𝑦 − 𝜇𝑥) ≥ 𝐷𝑛 − 1.64 × 𝑆𝐸[𝐷𝑛] = 0.95

• Lower bound: 𝐷𝑛 − 1.64 × 𝑆𝐸[𝐷𝑛].
• In 95% of random samples, this lower bound will be below
(𝜇𝑦 − 𝜇𝑥).
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Getting an upper bound for the
effect

𝑃 − 1.64 ≤
𝐷𝑛 − (𝜇𝑦 − 𝜇𝑥)

𝑆𝐸[𝐷𝑛]
 = 0.95

ℙ − 1.64 × 𝑆𝐸[𝐷𝑛] ≤ 𝐷𝑛 − (𝜇𝑦 − 𝜇𝑥) = 0.95

ℙ − 𝐷𝑛 − 1.64 × 𝑆𝐸[𝐷𝑛] ≤ − (𝜇𝑦 − 𝜇𝑥) = 0.95

ℙ𝐷𝑛 + 1.64 × 𝑆𝐸[𝐷𝑛] ≥ (𝜇𝑦 − 𝜇𝑥) = 0.95

• Upper bound: 𝐷𝑛 + 1.64 × 𝑆𝐸[𝐷𝑛].
• In 95% of random samples, this upper bound will be above
(𝜇𝑦 − 𝜇𝑥).
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Putting the bounds together

• Let 𝐿𝐵 = 𝐷𝑛 − 1.64 × 𝑆𝐸[𝐷𝑛]
• Let 𝑈𝐵 = 𝐷𝑛 + 1.64 × 𝑆𝐸[𝐷𝑛]
• The probability of each bound is 0.95:

ℙ(𝜇𝑦 − 𝜇𝑥) ≤ 𝑈𝐵 = 0.95

ℙ 𝐿𝐵 ≤ (𝜇𝑦 − 𝜇𝑥) = 0.95
• But one of these might hold and the other might not, so:

ℙ𝐿𝐵 ≤ (𝜇𝑦 − 𝜇𝑥) ∩ (𝜇𝑦 − 𝜇𝑥) ≤ 𝑈𝐵 < 0.95
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What is a confidence interval?

• Definition A 100(1 − 𝛼)% confidence interval with is an
interval estimator for a population parameter 𝜃 that will
contain/cover the true value, 𝜃, 100(1 − 𝛼)% of the time.

• This rule will be an estimator just like the sample mean or the
sample variance, but it will produce two values instead of one:
the upper and lower values of the intervals.
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Confidence intervals
• Remember, by the CLT, we have the following:

𝐷𝑛 − (𝜇𝑦 − 𝜇𝑥)
𝑆𝐸[𝐷𝑛]

∼ 𝑁(0, 1)

• We know that the probability of being between -1.64 and 1.64
(from pnorm()):

ℙ
⎛
⎜⎜⎜⎜⎝−1.64 ≤

𝐷𝑛 − (𝜇𝑦 − 𝜇𝑥)
𝑆𝐸[𝐷𝑛]

≤ 1.64
⎞
⎟⎟⎟⎟⎠ = 0.90

• Implies that:

ℙ𝐷𝑛 − 1.64 × 𝑆𝐸[𝐷𝑛] ≤ (𝜇𝑦 − 𝜇𝑥) ≤ 𝐷𝑛 + 1.64 × 𝑆𝐸[𝐷𝑛] = 0.90

• 90% Confidence Interval: 𝐷𝑛 ± 1.64 × 𝑆𝐸[𝐷𝑛]
• Bounds are random! Not (𝜇𝑦 − 𝜇𝑥)!
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Different confidence intervals

• What about confidence intervals other than 90%? Say we
want an 100(1 − 𝛼)% confidence interval:

ℙ
⎛
⎜⎜⎜⎜⎝−𝑧𝛼/ ≤

𝐷𝑛 − (𝜇𝑦 − 𝜇𝑥)
𝑆𝐸[𝐷𝑛]

≤ 𝑧𝛼/

⎞
⎟⎟⎟⎟⎠ = (1 − 𝛼)

• General formula for a 100(1 − 𝛼)% confidence interval:

𝐷𝑛 ± 𝑧𝛼/ × 𝑆𝐸[𝐷𝑛]

• Here we call the 𝑧𝛼/ values the z-values for the particular
confidence intervals.
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Finding the z values

-4 -2 0 2 4

-0.1

0.0

0.1

0.2

0.3

0.4

0.5
dn

or
m

(x
)

0.9

z = 1.64-z = -1.64

• How do we figure out what 𝑧𝛼/ will be? Need to find the
values such that for 𝑍 ∼ 𝑁(0, 1):

ℙ(−𝑧𝛼/ ≤ 𝑍 ≤ 𝑧𝛼/) = 1 − 𝛼
• Intuitively, we want the 𝑧 values that puts 𝛼/2 in each of the

tails.
• For example, with 𝛼 = 0.1 for a 90% confidence interval, we

want the 𝑧 values that put 0.05 (5%) in each of the tails.
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Putting it in the tails
• How to get the 𝑧 values? Put 𝛼 probability in the tails:

ℙ({𝑍 < −𝑧𝛼/} ∪ {𝑍 > 𝑧𝛼/}) = 𝛼
ℙ(𝑍 < −𝑧𝛼/) + ℙ(𝑍 > 𝑧𝛼/) = 𝛼 (additivity)

2 × ℙ(𝑍 > 𝑧𝛼/) = 𝛼 (symmetry)
ℙ(𝑍 < 𝑧𝛼/) = 1 − 𝛼/2

• Find the 𝑧-value that puts probability 1 − 𝛼/2 below it:
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Calculating z-values in R
• Inverse of the CDF of the standard Normal evaluated at
1 − 𝛼/2!

• We can find this using the qnorm() function in R.
• Procedure for a 95% confidence interval:

1. Choose a value 𝛼 (0.05 for example) for a 100(1 − 𝛼)%
confidence interval (95% in this case)

2. Convert this to 1 − 𝛼/2 (0.975 in this case)
3. Plug this value into qnorm() to find 𝑧𝛼/:

qnorm(0.975)

## [1] 1.96

• 95% CI: 𝐷𝑛 ± 1.96 × 𝑆𝐸[𝐷𝑛]
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Question

• Question What happens to the size of the confidence interval
when we increase our confidence, from say 95% to 99%? Do
confidence intervals get wider or shorter?

• Answer Wider!
• Decreases 𝛼⇝ increases 1 − 𝛼/2⇝ increases 𝑧𝛼/
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Interpreting the confidence
interval

• Caution! An often recited, but incorrect interpretation of a
confidence interval is the following:

▶ “I calculated a 95% confidence interval of [0.05,0.13], which
means that there is a 95% chance that the true difference in
means in is that interval.”

▶ This is WRONG.
• The true value of the population difference in means, 𝜇𝑦 − 𝜇𝑥,

is fixed.
▶ It is either in the interval or it isn’t—there’s no room for

probability at all.
• The randomness is in the interval: 𝐷𝑛 ± 1.64 × 𝑆𝐸[𝐷𝑛]. This

is what varies from sample to sample.
• Correct interpretation: across 95% of random samples, the

constructed confidence interval will contain the true
value.
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Confidence interval simulation
• Draw samples of size 500 (pretty big) from 𝑁(1, 10)
• Calculate confidence intervals for the sample mean:

𝑌𝑛 ± 1.96 × 𝑆𝐸[𝑌𝑛]⇝ 𝑌𝑛 ± 1.96 × 𝑆𝑛/√𝑛

set.seed(2143)
sims <- 10000
cover <- rep(0, times = sims)
low.bound <- up.bound <- rep(NA, times = sims)
for (i in 1:sims) {

draws <- rnorm(500, mean = 1, sd = sqrt(10))
low.bound[i] <- mean(draws) - sd(draws)/sqrt(500) *

1.96
up.bound[i] <- mean(draws) + sd(draws)/sqrt(500) *

1.96
if (low.bound[i] < 1 & up.bound[i] > 1) {

cover[i] <- 1
}

}
mean(cover)

## [1] 0.95 23 / 68



Plotting the CIs
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Plotting the CIs
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Plotting the CIs
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Plotting the CIs
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Plotting the CIs

0.6

0.8

1.0

1.2

1.4

Trial

E
st
im

at
e

• You can see that in these 100 samples, exactly 95 of the
calculated confidence intervals contains the true value.
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Understanding check

• Question What happens to the intervals when we increase 𝑛,
the sample size? Do more or fewer of them contain the true
value?
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2/ Confidence
Intervals Example
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Gerber, Green, and Larimer
experiment

• Let’s go back to the Gerber, Green, and Larimer experiment
from last week. Here are the results of their experiment:

• Let’s use what we have learned up until now and the
information in the table to calculate a 95% confidence interval
for the difference in mean turnout between the Neighbors
group and the Civic Duty group.
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Interval estimation of the
population proportion

• Note that 𝑌𝑖 and 𝑋𝑖 are Bernoulli with probability 𝜇𝑦 and 𝜇𝑥
▶ Different sample sizes: 𝑛𝑦 and 𝑛𝑥

• 𝜇𝑦 is the population proportion of turnout in the Neighbors
group.

• 𝑌𝑛𝑦 is the sample proportion (and sample mean).
• Bernoulli party trick: 𝜎𝑦 = 𝕍[𝑌𝑖] = 𝜇𝑦(1 − 𝜇𝑦).
• ⇝ sampling variance is a function of the mean:

𝕍[𝑌𝑛𝑦] =
𝜇𝑦(1 − 𝜇𝑦)

𝑛𝑦
• ⇝ easy estimate of the SE:

𝑆𝐸[𝑌𝑛𝑦] =

⃓
⃓
⎷

𝑌𝑛𝑦(1 − 𝑌𝑛𝑦)
𝑛𝑦

32 / 68



Calculating the CI for social
pressure effect

• Putting this together, we have that the estimated SE for 𝐷 is:

𝑆𝐸[𝐷] =
√
𝑆𝐸


[𝑌𝑛𝑦] + 𝑆𝐸


[𝑋𝑛𝑥]

=

⃓
⃓
⎷

𝑌𝑛𝑦(1 − 𝑌𝑛𝑦)
𝑛𝑦

+
𝑋𝑛𝑥(1 − 𝑋𝑛𝑥)

𝑛𝑥

• Apply usual formula to get 95% confidence interval:

𝐷 ± 1.96 × 𝑆𝐸[𝐷]
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Calculating the CI for social
pressure effect (II)

n.n <- 38201
samp.var.n <- (0.378 * (1 - 0.378))/n.n
n.c <- 38218
samp.var.c <- (0.315 * (1 - 0.315))/n.c
se.diff <- sqrt(samp.var.n + samp.var.c)
## lower bound
(0.378 - 0.315) - 1.96 * se.diff

## [1] 0.0563

## upper bound
(0.378 - 0.315) + 1.96 * se.diff

## [1] 0.0697
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3/ Hypothesis
Tests
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What is a hypothesis test?

• A hypothesis test is just an evaluation of a particular
hypothesis about the population distribution.

• These are just statistical thought experiments:
▶ Assume we know the true DGP
▶ See how likely the observed data is under that assumed DGP

• Key question: how unusual would our data be in this
statistical thought experiment?

• We will “reject” the assumed DGP if the data is too unusual
under it.

• This is exactly like the Lady Tasting Tea.
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What is a hypothesis?
• Definition A hypothesis is just a statement about population

parameters.
• We might have hypotheses about causal inferences

▶ Does social pressure induce higher voter turnout? (mean
turnout higher in social pressure group compared to Civic Duty
group?)

▶ Do daughters cause politicians to be more liberal on women’s
issues? (voting behavior different among members of Congress
with daughters?)

▶ Do treaties constrain countries? (behavior different among
treaty signers?)

• We might also have hypotheses about other parameters:
▶ Is the share of Hillary Clinton supporters more than 50%?
▶ Are traits of treatment and control groups different?
▶ Is there evidence of electoral manipulation (Iran HW question)?
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Null and alternative hypotheses

• Defintion The null hypothesis is a proposed, conservative
value for a population parameter.

▶ This is usually “no effect/difference/relationship.”
▶ We denote this hypothesis as 𝐻 ∶ 𝜇 = 𝑎.

• Definition The alternative hypothesis for a given null
hypothesis is the research claim we are interested in
supporting.

▶ Usually, “there is a relationship/difference/effect.”
▶ We denote this as 𝐻𝑎 ∶ 𝜇 ≠ 𝑎.

• Always mutually exclusive
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Null and alternative examples

• Causal inference: Does social pressure (Neighbors) mailer
affect turnout?

▶ 𝐻: Social pressure doesn’t affect turnout (𝜇𝑦 − 𝜇𝑥 = 0)
▶ 𝐻𝑎: Social pressure affects turnout (𝜇𝑦 − 𝜇𝑥 ≠ 0)

• Parameters: presence of electoral manipulation?
▶ 𝐻: no electoral manipulation (7s in the last digit occur with

probability 1/10)
▶ 𝐻𝑎: electoral manipulation (proportion of 7s higher than 1/10)
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General framework

• A hypothesis test chooses whether or not to reject the null
hypothesis based on the data we observe.

• Definition We base these rules on a test statistic,
𝑇(𝑌) = 𝑇(𝑌, … , 𝑌𝑛).

▶ Will help us adjudicate between the null and the alternative.
▶ Typically: larger values of 𝑇(𝑌)⇝ null less plausible.
▶ A test statistic is a r.v.

• Definition The null/reference distribution is the
distribution of 𝑇(𝑌) under the null.

▶ We’ll write as ℙ(𝑇(𝑌) > 𝑡).
• Definition The critical value is the value that determines our

rejection of the null:
▶ 𝑇(𝑌) > 𝑐⇝ we reject the null hypothesis
▶ 𝑇(𝑌) < 𝑐⇝ we retain (or fail to reject) the null hypothesis.
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Lady Tasting Tea redux

• Your advisor tastes 𝑛 cups of tea and either guesses the 𝑖th
cup correctly 𝑌𝑖 = 1 or incorrectly, 𝑌𝑖 = 0.

• Parameter of interest: 𝜋 = probability of a correct guess.
▶ 𝜋 = 0.5 guessing at random
▶ 𝜋 > 0.5 able to discern tea-first vs milk-first
▶ 𝜋 < 0.5 worse than random

• Null and alternative hypotheses:
▶ 𝐻 ∶ 𝜋 = 0.5
▶ 𝐻𝑎 ∶ 𝜋 > 0.5

• Assume she tastes LOTS of cups, so 𝑛 is large, so that we
have

𝑌𝑛 ∼ 𝑁(𝜋, 𝑆𝑛/𝑛)
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Type I and Type II errors

• Definition A Type I error is when we reject the null
hypothesis when it is in fact true.

▶ We say that the Lady is discerning when she is just guessing.
▶ A false discovery.

• Definition A Type II error is when we fail to reject the null
hypothesis when it is false.

▶ We say that the Lady is just guessing when she is truly
discerning.

▶ An undetected finding.
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Size, power, and errors
𝐻 True 𝐻 False

Retain 𝐻 Awesome! Type II error
Reject 𝐻 Type I error Good stuff!

• Defintion The level/size of the test, or 𝛼, is the probability
of a Type I error.

• Choose a level 𝛼 based on aversion to false discovery:
▶ Convention in social sciences is 𝛼 = 0.05, but nothing magical

there
▶ Particle physicists at CERN use 𝛼 ≈ 

,,
▶ Lower values of 𝛼 guard against “flukes” but increase barriers

to discovery
• Definition The power of a test is the probability that a test

correctly rejects the null.
▶ Power = 1 − ℙ(Type II error)
▶ Better tests = higher power.
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Hypothesis testing procedure

1. Choose null and alternative hypotheses
2. Choose a test statistic, 𝑇(𝑌)
3. Choose a level, 𝛼
4. Find the critical value, 𝑐, which is ℙ(𝑇(𝑌) > 𝑐) = 𝛼
5. Reject if 𝑇(𝑌) > 𝑐, fail to reject otherwise
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Deriving the test statistic
• Null hypothesis: 𝐻 ∶ 𝜋 = 0.5
• Alternative hypothesis: 𝐻𝑎 ∶ 𝜋 > 0.5
• Test statistic should be big/unusual under the null when the

null is false:
𝑇(𝑌) = 𝑌𝑛 − 0.5

𝑆𝑛/√𝑛

• If she can discern, then 𝑌𝑛 will be high and thus 𝑇(𝑌) will be
high.

▶ ⇝ null hypothesis less plausible
• Note that in “null world” (null is true), then we know the

distribution of 𝑇(𝑌):

𝑇(𝑌) ∼ 𝑁(0, 1)
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The critical value

• Definition The critical value, 𝑐 is the value that determines
rejection of the null.

▶ How large should 𝑇(𝑌) before we reject?
• Let’s say that we were happy with 𝛼 = 0.05 in this case.
• We would need to find the value, 𝑐: ℙ(𝑇(𝑌) > 𝑐) = 0.05.

Since we know this is normal, we can plot it:
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The critical value and the rejection
region (II)

• If we want ℙ(𝑇(𝑌) > 𝑐) = 𝛼, need to find 𝑐 so that
ℙ(𝑇(𝑌) ≤ 𝑐) = 1 − 𝛼.

• As with CIs, use the inverse of the CDF:

qnorm(0.95)

## [1] 1.64
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p-values

• Definition The p-value for an observed test statistic is the
probability of seeing a test statistic at least as extreme as
observed statistic, given that the null hypothesis is correct.

▶ If we have 𝑇(𝑌) = 𝑡obs in our sample, then p-value is
ℙ(𝑇(𝑌) > 𝑡obs).

• The smallest value of 𝛼 that we could still reject the null.
• What p-values are not:

▶ An indication of a large substantive effect
▶ The probability that the null hypothesis is false
▶ The probability that the alternative hypothesis is true

• Can use pnorm() in many cases with 𝑇(𝑌) ∼ 𝑁(0, 1) under
the null.
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One-sided tests

• Definition A one-sided test is a test of an alternative
hypothesis that only goes in one direction.

▶ In the Lady Tasting Tea (redux) example, we are interested in
a one-sided test.

• Only deviations from the null hypothesis in one direction cast
doubt on the null hypothesis.

▶ 𝑇(𝑌) only rejected when it was big and so 𝜋 > 0.5
• A two-sided test allows for evidence against the null in either

direction.
▶ Null: 𝐻 ∶ 𝜋 = 0.5, Alternative: 𝐻𝑎 ∶ 𝜋 ≠ 0.5
▶ Test statistic needs to be large when null is false ⇝ use

absolute value: |𝑇(𝑌)|.
• Two-sided tests are almost always the right thing to do, since

one-sided easier to reject at the same 𝛼
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Connection between confidence
intervals and hypothesis tests

• CI/Test duality: A 100(1 − 𝛼)% confidence interval
represents all null hypotheses that we would not reject with a
𝛼-level test.

• Example:
▶ Construct a 95% CI (𝑎, 𝑏) for 𝜇𝑦 − 𝜇𝑥.
▶ If 0 ∈ (𝑎, 𝑏)⇝ cannot reject 𝐻 ∶ 𝜇𝑦 − 𝜇𝑥 = 0 at 𝛼 = 0.05
▶ If 0 ∉ (𝑎, 𝑏)⇝ reject 𝐻 ∶ 𝜇𝑦 − 𝜇𝑥 = 0 at 𝛼 = 0.05

• Two-sided CIs ⟺ two-sided tests.
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4/ Hypothesis
Testing Example
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Example of a two-sided test:
Social pressure experiment

• Step 1: Write down null and alternative hypotheses:
▶ 𝐻 ∶ 𝜇𝑦 − 𝜇𝑥 = 0 (no effect/difference in turnout)
▶ 𝐻𝑎 ∶ 𝜇𝑦 − 𝜇𝑥 ≠ 0 (some effect/difference)

• Step 2: choose test statistic, using the difference in means
𝐷 = 𝑌𝑛𝑦 − 𝑋𝑛𝑥 :

𝑇 =
𝐷 − 0
𝑆𝐸[𝐷]

• We want a two-sided alternative, so we’ll use 𝑇 ∗ = |𝑇| as our
test statistic.

• Step 3: We’ll set 𝛼 = 0.05 to be standard.
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Social pressure test, continued

• Step 4: Calculate the critical value.
• Note that under the null, 𝑇 ∼ 𝑁(0, 1), and we can use this to

figure out distribution of 𝑇 ∗

• What’s the critical value? We need 𝑐 such that
ℙ(𝑇 ∗ > 𝑐) = 𝛼.

𝛼 = ℙ(𝑇 ∗ > 𝑐)
= ℙ(|𝑇| > 𝑐)
= ℙ({𝑇 > 𝑐} ∪ {𝑇 < −𝑐})
= ℙ(𝑇 > 𝑐) + ℙ(𝑇 < −𝑐)
= 2 × ℙ(𝑇 > 𝑐)

• Implies we need to find the value such that ℙ(𝑇 > 𝑐) = 𝛼/2
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The two-sided test critical values
• Implies we need to find the value such that puts 𝛼/2 in each

of the tails.
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• Again, CDF evaluated at 1 − 𝛼/2
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Social pressure test, continued
• 1 − 𝛼/2 = 0.975⇝ 𝑐 = qnorm(0.975) = 1.96
• Earlier we got an estimate of the standard error:

n.n <- 38201
samp.var.n <- (0.378 * (1 - 0.378))/n.n
n.c <- 38218
samp.var.c <- (0.315 * (1 - 0.315))/n.c
se.diff <- sqrt(samp.var.n + samp.var.c)
se.diff

## [1] 0.00344

## Calcuate test statistic
(0.378 - 0.315)/se.diff

## [1] 18.3
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Perform the test
• Step 5: Is 18.5 large relative to the null distribution? Is it

bigger than 𝑐?
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• Obviously an easy reject!
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Calculate the p-value
• How unlikely would it be to get a difference this extreme or

more extreme (either above or below 0)? That is, what is the
p-value?

• Remember two-tailed alternative:
ℙ(𝑇 ∗ > 18.5) = ℙ(|𝑇| > 18.5)

= ℙ(𝑇 > 18.5) + ℙ(𝑇 < −18.5)
= 2 × ℙ(𝑇 < −18.5)

• Use the pnorm() function:

2 * pnorm(-18.5)

## [1] 2.06e-76

• Likely?
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5/ Small-Sample
Problems
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Small sample complications

• What if 𝑛 is not large?
▶ CLT doesn’t hold
▶ 𝐷𝑛 not approximately normal.

• To take a somewhat canonical example, let’s say that we are
trying to estimate the percent alcohol by volume of Guinness
beer

• A can of Guinness has alcohol distributed 𝑁(4.2, 0.09).
• Imagine that we could only take samples of six packs, so we

can only use 𝑛 = 6.
• What happens when we apply the usual, normal-based CI

formula to that data?
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If you’re having small-sample
problems, I feel bad for you son…

set.seed(2143)
sims <- 10000
cover <- rep(NA, times = sims)
low.bound <- up.bound <- rep(NA, times = sims)
for (i in 1:sims) {

draws <- rnorm(6, mean = 4.2, sd = sqrt(0.09))
low.bound[i] <- mean(draws) - sd(draws)/sqrt(6) *

1.96
up.bound[i] <- mean(draws) + sd(draws)/sqrt(6) *

1.96
if (low.bound[i] < 4.2 & up.bound[i] > 4.2) {

cover[i] <- 1
} else {

cover[i] <- 0
}

}
mean(cover)

## [1] 0.89
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Plotting the CIs
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• Obviously, we can see here that far fewer than 95 of the 100
confidence intervals contains the true value. We call this
undercoverage.
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Small samples break us out of
asymptopia

• But what is the distribution of 𝑌𝑛 in small samples?

𝑌𝑛 ∼ ?(𝜇, 𝜎/𝑛)

• If we’re given no other information we actually don’t know.
• Can make progress if 𝑌, … , 𝑌𝑛 are i.i.d. samples from
𝑁(𝜇, 𝜎), then:

𝑌𝑛 − 𝜇
𝜎
√𝑛

∼ 𝑁(0, 1)

• Have to estimate 𝜎, which changes the sampling distribution
in small samples:

𝑌𝑛 − 𝜇
𝑆𝑛
√𝑛

∼ 𝑡𝑛−
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Student’s t distribution

• Here, 𝑡𝑛− is the Student’s t-distribution (usually just called
the 𝑡 distribution) with 𝑛 − 1 degrees of freedom (df).

▶ Family of distributions with parameter df.
• Named after William Sealy Gossett who published under the

pen name, Student, while he was an employee at Guinness
Brewery in Ireland. He developed the distribution while
working on quality control problems in the brewery, where
sample sizes could be quite small.
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The shape of the t
• The 𝑡 distribution is completely summarized by its degrees of

freedom, which here is dictated by the sample size.
• As sample sizes increase, tends toward the 𝑁(0, 1)
• Similar shape to the Normal, but with fatter tails.
• You can think of this extra variance as coming from the extra

variance of estimating 𝑆𝐸.
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Using the t for small sample
confidence intervals

• We need to figure this out:

ℙ − ? ≤ 𝑌𝑛 − 𝜇
𝑆𝐸[𝑌𝑛]

≤ ? = (1 − 𝛼)

• Using same logic as above, find 𝑡𝑛−,𝛼/ such that
ℙ(𝑇𝑛− ≤ 𝑡𝑛−,𝛼/) = 1 − 𝛼/2
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• Find 𝑡𝑛−,𝛼/ such that

ℙ(𝑇𝑛− ≤ 𝑡𝑛−,𝛼/) = 1 − 𝛼/2

• Here, 𝑇𝑛− has a 𝑡 distribution with 𝑛 − 1 d.f.s
• Use the qt() function in R:

qt(0.975, df = 6 - 1)

## [1] 2.57

• Note that this is different the value we would get with a
Normal:

qnorm(0.975)

## [1] 1.96
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Small sample simulation redux
• Calculate the CIs using the 𝑡 distribution: 𝑌𝑛 ± 𝑡𝑛−,𝛼/ × 𝑠

√𝑛

sims <- 10000
cover <- rep(NA, times = sims)
low.bound <- up.bound <- rep(NA, times = sims)
for (i in 1:sims) {

draws <- rnorm(6, mean = 4.2, sd = sqrt(0.09))
tval <- qt(0.975, df = 6 - 1)
low.bound[i] <- mean(draws) - sd(draws)/sqrt(6) *

tval
up.bound[i] <- mean(draws) + sd(draws)/sqrt(6) *

tval
if (low.bound[i] < 4.2 & up.bound[i] > 4.2) {

cover[i] <- 1
} else {

cover[i] <- 0
}

}
mean(cover)

## [1] 0.951
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Plotting the (correct) CIs
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• Here we can see that our coverage is back on track even
though we have really small samples!

• Same ideas apply to calculating critical values for tests with
small samples.
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