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1/ Evaluation



Evaluation overview

• 35 responses
• Good mix between the different course numbers
• Overall, things are going OK, but definite room for

improvement



Pace
• How is the pace of the class? Are lectures too quick, too slow,

or just right?

barplot(table(evals$pace), border = NA)
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## [1] 1.7



Lecture Notes
• How have you found the lecture notes in the course so far?

barplot(table(evals$lecture.notes), border = NA)
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## [1] 4.1



How’s Matt doing?
• What overall rating would you give this instructor?

barplot(table(evals$instructor), border = NA)
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## [1] 4.4



HW Hours
• How difficult do you find the problem sets in the course so far?

hist(evals$hw.hours, border = "#ECF0F1", col = "grey",
main = "", xlab = "Number of Hours")
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## [1] 9



Course Overall
• What overall rating would you give the course?

barplot(table(evals$overall), border = NA)
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## [1] 3.9



Best things about the course

• “Mayya and Anton are THE BEST. So helpful, always make
time to help”

• “The diversity of materials and supplemental material”
• “The quality of instruction/explanation in both the lecture

and the section is superb.”



Ways to improve

• “very heavy workload”
• “The problem sets are taking far, far too long”
• “go through the examples a little faster so we don’t speed

through the last 15 mins of slides and concepts”
• “there’s quite a substantial gap in difficulty between the

material covered in the lectures and the problem sets.”
• “we got into the weeds a bit and Matt gave fewer examples of

how these things (all the weird distributions and PMFs) tie
back into actual research”

• “As I am an absolute beginner in R, I find the coding part
most challenging.”

• “It would help if we could see more examples in
lecture/sections that are similar to what we will see on
problem sets”



Our Plan

• More R!
• More connection between the lectures and problem sets
• More examples in lecture.
• No easing off the gas.
• But things should get easier with time.



Where are we? Where are we
going?

• Last few weeks: probability, learning how to think about r.v.s
• Now: how to estimate features of underlying distributions

with real data.
• Have to think about how much our estimate is due to chance

variation.



2/ Populations
and Samples



Motivating example

• Gerber, Green, and Larimer (APSR, 2008)



Motivating Example
load("gerber_green_larimer.RData")
## turn turnout variable into a numeric
social$voted <- 1 * (social$voted == "Yes")
neigh.mean <- mean(social$voted[social$treatment ==

"Neighbors"])
neigh.mean

## [1] 0.38

contr.mean <- mean(social$voted[social$treatment ==
"Civic Duty"])

contr.mean

## [1] 0.31

neigh.mean - contr.mean

## [1] 0.063

• Is this a “real”? Is it big?



Why study estimators?

• Goal 1: Inference
▶ How is this estimate related to the true/population difference

in means?
▶ How much uncertainty do we have in this estimate?

• Goal 2: Compare estimators
▶ In an experiment, use simple difference in sample means

(�̅� − �̅�)?
▶ Or the post-stratification estimator, where we estimate the

estimate the difference among two subsets of the data (male
and female, for instance) and then take the weighted average
of the two (�̅� is the share of women):

�̂�𝑝𝑠 = (�̄�𝑓 − �̄�𝑓)�̄� + (�̄�𝑚 − �̄�𝑚)(1 − �̄�)

▶ Which (if either) is better? How would we know?



Samples from the DGP

• 𝑌𝑖 = 1 if citizen 𝑖 votes, 𝑌𝑖 = 0 otherwise.
• 𝑌, … , 𝑌𝑛 represent the sample
• Our goal: learn the data generating process that generated

the sample.
• DGP: 𝑌, … , 𝑌𝑛 are i.i.d. draws from the population

distribution with p.m.f. or p.d.f. 𝑓𝑌(𝑦).
▶ 𝑌𝑖 ∼𝑖𝑖𝑑 Bern(𝜇)
▶ “𝑌𝑖 are distributed i.i.d. Bernoulli with probability 𝜇”:

𝑓𝑌 (𝑦𝑖) = 𝜇𝑦𝑖 (1 − 𝜇)−𝑦𝑖

• 𝜇 is an unknown parameter of the population distribution.



DGP

• Data generating process (DGP) ⇝ population distribution of
the data

• Where do DGPs come from?
• First principles:

▶ Waiting time between random events ⇝ Exponential
distribution

▶ Number of events in a fixed interval ⇝ Poisson distribution
• Random sampling from a population.

▶ 𝑌𝑖 randomly selected from the population with mean 𝜇 is an
r.v. with expectation 𝜇



Partial probability models

• We don’t always need to specify a full probability model,
𝑓𝑌(𝑦), just the mean/variance.

▶ 𝑌𝑖, … , 𝑌𝑛 i.i.d. with mean 𝔼[𝑌𝑖] = 𝜇 and variance 𝕍[𝑌𝑖] = 𝜎
▶ Could be justified from random sampling

• Don’t have to pick a distribution from Bernoulli, uniform,
normal, etc.

• Why is this useful?
▶ We can learn about part of the distribution (𝔼[𝑌𝑖]) without

having to know about other parts of the distribution.



3/ Point
Estimation



Parameters

• Trying to estimate parameters of population distributions:
▶ 𝜇 = 𝔼[𝑌]: the mean
▶ 𝜎 = 𝕍[𝑋]: the variance
▶ 𝜎: the standard deviation
▶ 𝜇𝑦 − 𝜇𝑥 = 𝔼[𝑌] − 𝔼[𝑋]: the difference in means between two

groups
▶ 𝔼[𝑌|𝑋] = 𝛼 + 𝛽𝑋: intercept (𝛼) and slope (𝛽) of the

regression line
• We’ll generically refer to the parameter we’re trying to

estimate as 𝜃.
• These are the things we want to learn about.



Estimators

• Definition: An estimator , �̂� of some parameter 𝜃, is a
function of the sample: �̂� = ℎ(𝑌, … , 𝑌𝑛).

▶ Note: �̂� is a r.v. because it is a function of r.v.s.
• Question Why is the following statement wrong: “My

estimate was the sample mean and my estimator was 0.38”?



Examples of Estimators

• For the population mean, 𝜇, we have many different possible
estimators:

▶ �̂� = �̄� the sample mean
▶ �̂� = 𝑌 just use the first observation
▶ �̂� = max(𝑌, … , 𝑌𝑛)
▶ �̂� = 3 always guess 3



# mean
mean(social$voted[social$treatment == "Neighbors"])

## [1] 0.38

# first observation
social$voted[social$treatment == "Neighbors"][1]

## [1] 1

# maximum
max(social$voted[social$treatment == "Neighbors"])

## [1] 1

# always choose 3
3

## [1] 3



The Three Distributions

• Population Distribution: the data-generating process
▶ Bernoulli in the case of the social pressure/voter turnout

example)
• Sample distribution: 𝑌, … , 𝑌𝑛

▶ series of 1s and 0s in the sample
• Sampling distribution: distribution of the estimator over

repeated samples from the population distribution
▶ the 0.38 sample mean in the “Neighbors” group is one draw

from this distribution



• Question: If 𝑌, … , 𝑌𝑛 is a random sample from a
(population) Bernoulli distribution with mean/probability 𝜇,
will sampling distribution of the sample mean (�̄�) be Bernoulli
as well?



Population Distribution
## population distribution is Bernoulli with
## probability of success 0.4
barplot(dbinom(0:1, size = 1, prob = 0.4), names.arg = c(0,

1), border = NA, ylab = "P(x)", xlab = "x")
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Sample Distribution
my.samp <- rbinom(n = 10, size = 1, prob = 0.4)
table(my.samp)

## my.samp
## 0 1
## 8 2

plot(table(my.samp), type = "h", lwd = 5, bty = "n")
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Sampling Distribution

## now we take the mean of the this sample, which is
## one draw from the **sampling distribution**
mean(my.samp)

## [1] 0.2

## let's take another draw from the population dist
my.samp.2 <- rbinom(n = 10, size = 1, prob = 0.4)

## Let's feed this sample to the sample mean
## estimator to get another estimate, which is
## another draw from the sampling distribution
mean(my.samp.2)

## [1] 0.5



Sampling distribution by
simulation

• Let’s generate 10,000 draws from the sampling distribution of
the sample mean here when 𝑛 = 100.

nsims <- 10000
mean.holder <- rep(NA, times = nsims)
first.holder <- rep(NA, times = nsims)
for (i in 1:nsims) {

my.samp <- rbinom(n = 100, size = 1, prob = 0.4)
mean.holder[i] <- mean(my.samp) ## sample mean
first.holder[i] <- my.samp[1] ## first obs

}



Sampling distribution versus
population distribution
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• We only get one draw from the sampling distribution, �̂�.
• Ideally, the sampling distribution would put most of its mass

close to the true value of 𝜃.

• Question The sampling distribution refers to the distribution
of 𝜃, true or false.



Properties of estimators

• We want to learn about true difference in means, but we only
have the sample difference in means.

• Is our estimator good? It is better than some other
estimators?

• How do we evaluation these little machines that take in
samples and output estimates?

• There are two ways we evaluate estimators:
▶ Finite sample: the properties of its sampling distribution for a

fixed sample size 𝑛.
▶ Large sample: the properties of the sampling distribution as

we let 𝑛 → ∞.



Running example

• 𝑌, … , 𝑌𝑛 are i.i.d. with mean 𝜇𝑦 and variance 𝜎𝑦
• 𝑋, … , 𝑋𝑛 are i.i.d. with mean 𝜇𝑥 and variance 𝜎𝑥
• Assume samples are independent.
• Differences in sample means:

𝐷𝑛 = �̅�𝑛 − �̅�𝑛

• 𝐷𝑛 is a random variable!
• What we’ll try to figure out: the sampling distribution of 𝐷𝑛:

𝐷𝑛 ∼ ?(𝔼[�̂�𝑛],𝕍[�̂�𝑛])



4/ Finite-Sample
Properties of
Estimators



Unbiasedness

• Definition: The bias of an estimator �̂� for population
parameter 𝜃 is

bias(�̂�) = 𝔼[�̂�] − 𝜃
• Definition: An estimator �̂� of 𝜃 is unbiased if

𝔼[�̂�] = 𝜃



Difference in means

• We want to estimate the population difference in means,
𝜇𝑦 − 𝜇𝑥

▶ True difference between those who received mailers and those
who didn’t.

• We know from last week and the reading that 𝔼[�̅�𝑛] = 𝜇𝑥 and
𝔼[�̅�𝑛] = 𝜇𝑦.

• What’s the expected value of the difference in means?

𝔼[𝐷𝑛] = 𝔼[�̅�𝑛 − �̅�𝑛]
= 𝔼[�̅�𝑛] − 𝔼[�̅�𝑛]
= 𝜇𝑦 − 𝜇𝑥

• ⇝ sample difference in means is unbiased for the population
difference in means.



• We can also check the bias of an estimator using simulation:

nsims <- 10000
mean.holder <- rep(NA, times = nsims)
first.holder <- rep(NA, times = nsims)
for (i in 1:nsims) {

my.samp.y <- rbinom(n = 100, size = 1, prob = 0.5)
my.samp.x <- rbinom(n = 100, size = 1, prob = 0.3)
mean.holder[i] <- mean(my.samp.y) - mean(my.samp.x)
first.holder[i] <- my.samp.y[1] - my.samp.x[1]

}

mean(mean.holder) - 0.2

## [1] 0.0012

mean(first.holder) - 0.2

## [1] 0.0027

• Both are pretty close to 0!



Sampling variance

• Unbiasedness is about the center/expectation of the sampling
distribution of �̂�.

• What about the spread of the sampling distribution?

• Definition: The sampling variance of an estimator is simply
its variance over repeated samples, 𝕍[�̂�].

• Definition: The standard error of an estimator is the
standard deviation of the sampling distribution,
𝑆𝐸[�̂�] = √𝕍[�̂�]



Sampling variance of the
difference in means

• Can we get a measure of uncertainty in our difference in
sample means?

• Variance of the difference in means:
𝕍[𝐷𝑛] = 𝕍[�̅�𝑛 − �̅�𝑛] = 𝕍[�̅�𝑛] + 𝕍[�̅�𝑛]

• What is the sampling variance of the sample mean?

𝕍[�̅�𝑛] = 𝕍

⎡
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⎤
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𝑖=
𝕍[𝑌𝑖] =

1
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𝑦 =

𝜎𝑦
𝑛

• Variance of the sample mean is the variance of each
observation divided by the number of observations.

• Difference, redux:

𝕍[𝐷𝑛] =
𝜎𝑦
𝑛 + 𝜎


𝑥
𝑛



• We can also investigate the sampling variance by simulation.
Take the above code and let’s look at the variance of the two
sampling distributions:

var(mean.holder)

## [1] 0.0047

var(first.holder)

## [1] 0.46

• Obviously, the sample mean has a much lower variance than
just using the first observation. And since they are both
unbiased, this means that our estimates will be closer to the
truth on average.



Sampling distribution

• Putting things together, we can see that:

𝐷𝑛 ∼ ?
⎛
⎜⎜⎜⎝𝜇𝑦 − 𝜇𝑥,

𝜎𝑦
𝑛 + 𝜎


𝑥
𝑛

⎞
⎟⎟⎟⎠

• Sample difference in means is an r.v. with expectation 𝜇𝑦 − 𝜇𝑥
and variance 𝜎𝑦

𝑛 +
𝜎𝑥
𝑛

• Awesome, we know it gets the right answer on average.
• Two problems:

1. We don’t get to observe 𝜎𝑦 or 𝜎𝑥
2. We don’t know what distribution it follows (yet)



Estimating the Sampling
Variance/Standard Error

• To estimate 𝕍[�̅�𝑛] = 𝜎𝑦/𝑛 we need and estimate for 𝜎𝑦.
• Use the sample variance of 𝑌𝑖:

𝑆𝑦𝑛 =
1

𝑛 − 1

𝑛

𝑖=
(𝑌𝑖 − �̅�𝑛)

• Thus, our estimate of the sampling variance of the sample
mean is 𝕍[�̅�𝑛] = 𝑆𝑦𝑛/𝑛 and the standard error of the sample
mean is the �̂�𝑦 = 𝑆𝑦𝑛/√𝑛.

• These are estimates of how uncertain our estimates are.
• (𝑆𝑦𝑛 is unbiased for 𝜎𝑦)



Estimated sampling distribution

• Our best guess about the sampling distribution of 𝐷𝑛:

𝐷𝑛 ∼ ?
⎛
⎜⎜⎜⎝𝜇𝑦 − 𝜇𝑥,

𝑆𝑦𝑛
𝑛 + 𝑆


𝑥𝑛
𝑛

⎞
⎟⎟⎟⎠

• What is the distribution???????



5/ Large-Sample
Properties of
Estimators



Sequences of estimators

• So far: fixed sample size 𝑛.
• But how does the estimator perform as we give it more data

(increase 𝑛)?
• Need to think about sequences of estimators with increasing
𝑛:

�̅� = 𝑌
�̅� = (1/2) ⋅ (𝑌 + 𝑌)
�̅� = (1/3) ⋅ (𝑌 + 𝑌 + 𝑌)
�̅� = (1/4) ⋅ (𝑌 + 𝑌 + 𝑌 + 𝑌)
�̅� = (1/5) ⋅ (𝑌 + 𝑌 + 𝑌 + 𝑌 + 𝑌)
⋮

�̅�𝑛 = (1/𝑛) ⋅ (𝑌 + 𝑌 + 𝑌 + 𝑌 + 𝑌 +⋯+ 𝑌𝑛)

• Note: this is a sequence of random variables!



Question

• Question From what we know, how does the distribution of
the sample mean change as 𝑛 increases?



Convergence in Probability

• Definition: A sequence of random variables, 𝑋, 𝑋, …, is said
to converge in probability to a value 𝑐 if for every 𝜀 > 0,

ℙ(|𝑋𝑛 − 𝑐| > 𝜀) → 0,

as 𝑛 → ∞. We write this 𝑋𝑛
𝑝
→ 𝑐.

• Wooldridge writes plim(𝑋𝑛) = 𝑐 if 𝑋𝑛
𝑝
→ 𝑐.



Consistency

• Definition An estimator �̂�𝑛 is consistent for 𝜃 if �̂�𝑛
𝑝
→ 𝜃.

• An unbiased estimator is consistent if the sampling variance
goes to 0 as 𝑛 → ∞ or lim𝑛→∞𝕍[�̂�𝑛] = 0.

• Theorem (Weak Law of Large Numbers) Let 𝑌, … , 𝑌𝑛 be a
an iid draws from a distribution with mean 𝜇 and let

�̅�𝑛 = 
𝑛 ∑

𝑛
𝑖= 𝑌𝑖. Then, �̄�𝑛

𝑝
→ 𝜇.



Consistency vs. unbiasedness
• The “first observation” estimator, �̂�𝑓𝑛 = 𝑌 is unbiased,
𝔼[𝑌] = 𝜇

• But it is inconsistent.
• The sampling distribution never collapses to any value. As we

add more observations, only use the first:

�̂�𝑓 = 𝑌
�̂�𝑓 = 𝑌
�̂�𝑓 = 𝑌
⋮

�̂�𝑓𝑛 = 𝑌

• Distribution of �̂�𝑓𝑛 never changes so ℙ(|�̂�𝑓𝑛 − 𝜇| > 𝜀) never
changes ⇝ never converges.



Consistency example
• Suppose that we are interested in how long a government

lasts in parliamentary democracies.
• Now, suppose that the distribution of 𝑋 is Exponential with

rate 0.5.

curve(dexp(x, rate = 0.5), from = 0, to = 12, col = "orange",
lwd = 3, bty = "n", ylab = "f(x)", xlab = "x")
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• Now imagine two data collection schemes:
1. wait until we’ve collected 𝑛 observations from the process (this

is just an iid sample)
2. stop collecting after 3 years, which we call a censored sample.

• What are the properties of these two approaches?
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Convergence in Distribution

• Definition: A sequence of random variables, 𝑋, 𝑋, …, is said
to converge in distribution to 𝑍 if

lim
𝑛→∞

ℙ(𝑋𝑛 ≤ 𝑥) = ℙ(𝑍 ≤ 𝑥),

which we write as 𝑋𝑛
𝑑→ 𝑍.



Asymptotic Normality

• Definition: An estimator is said to be asymptotically
normal if

�̂� − 𝜃

√𝕍(�̂�)
𝑑→ 𝑁(0, 1).

• Facts about normal r.v.s: ∼ 𝑁(𝜇, 𝜎), then:
▶ (𝑋 − 𝜇) ∼ 𝑁(0, 𝜎)
▶ (𝑋 − 𝜇)/𝜎 ∼ 𝑁(0, 1)



Central Limit Theorem

• Theorem (Central Limit Theorem) Let 𝑌, … , 𝑌𝑛 be a an iid
draws from a distribution with mean 𝜇 and variance 𝜎. Then

𝑍𝑛 =
�̄�𝑛 − 𝜇
𝜎/√𝑛

𝑑→ 𝑁(0, 1)



Empirical Rule for the Normal
Distribution
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• If 𝑍 ∼ 𝑁(0, 1), then the following are roughly true:



Empirical Rule for the Normal
Distribution
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0.68

• If 𝑍 ∼ 𝑁(0, 1), then the following are roughly true:
• Roughly 68% of the distribution of 𝑍 is between -1 and 1.



Empirical Rule for the Normal
Distribution
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0.95

• If 𝑍 ∼ 𝑁(0, 1), then the following are roughly true:
• Roughly 68% of the distribution of 𝑍 is between -1 and 1.
• Roughly 95% of the distribution of 𝑍 is between -2 and 2.



Empirical Rule for the Normal
Distribution
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0.997

• If 𝑍 ∼ 𝑁(0, 1), then the following are roughly true:
• Roughly 68% of the distribution of 𝑍 is between -1 and 1.
• Roughly 95% of the distribution of 𝑍 is between -2 and 2.
• Roughly 99.7% of the distribution of 𝑍 is between -3 and 3.

• You can use the pnorm() function in R to figure out any
probability questions about the Normal distribution.



Final sampling distribution

• Putting everything together, we know that as 𝑛 gets large,
the distribution of 𝐷𝑛 will be approximately:

𝐷𝑛 ∼ 𝑁
⎛
⎜⎜⎜⎝𝜇𝑦 − 𝜇𝑥,

𝜎𝑦
𝑛 + 𝜎


𝑥
𝑛

⎞
⎟⎟⎟⎠

• Using the properties of normals, we also know that:

𝐷𝑛 − (𝜇𝑦 − 𝜇𝑥)

√𝜎
𝑦/𝑛 + 𝜎𝑥/𝑛

∼ 𝑁 (0, 1)



Application: planning an
experiment

• Suppose we know that 𝜎𝑥 = 𝜎𝑦 = 0.25
• What if we wanted the sample difference in means within 0.01

of the true difference in means with high probability?
▶ ⇝ ℙ−0.01 ≤ 𝐷𝑛 − (𝜇𝑦 − 𝜇𝑥) ≤ 0.01 = 0.95

• How big does 𝑛 need to be to ensure this?
• What is the variance:

𝕍[𝐷𝑛] =
𝜎𝑦
𝑛 + 𝜎


𝑥
𝑛 = 0.25

𝑛 + 0.25𝑛 = 1
2𝑛



Application: planning an
experiment

• In large samples, 𝐷𝑛 − (𝜇𝑦 − 𝜇𝑥) will be 𝑁(0, 1/2𝑛)
• ⇝ 𝑍 = √2𝑛 𝐷𝑛 − (𝜇𝑦 − 𝜇𝑥) ∼ 𝑁(0, 1)
• Then, we want 𝑛 such that:

ℙ−0.01 ⋅ √2𝑛 ≤ 𝑍 ≤ 0.01 ⋅ √2𝑛 = 0.95



Application: planning an
experiment

ℙ−0.01 ⋅ √2𝑛 ≤ 𝑍 ≤ 0.01 ⋅ √2𝑛 = 0.95

• But, notice by the empirical rule: ℙ(−2 ≤ 𝑍 ≤ 2) = 0.95

-4 -2 0 2 4

0.95

• So, we need 0.01 ⋅ √2𝑛 > 2 or 𝑛 > 20000
• 0.95 is convenient with the empirical rule, use qnorm() for

other values.



6/ Comparing
estimators



Efficiency

• Definition: If �̂� and �̂� are two unbiased estimators of 𝜃,
then �̂� is efficient relative to �̂� when 𝕍[�̂�] ≤ 𝕍[�̂�] for
any possible value of 𝜃 with strict inequality for at least one
value of 𝜃.



Bias-Variance Tradeoff

• In many situations, there is tradeoff between bias and
variance.

• Extreme example:
▶ Sample mean, �̂� = �̅�𝑛 vs. always-choose-3 �̂� = 3.
▶ Variance of always choose 3 is 0, which is better than �̅�𝑛
▶ But bias is high if 𝜇 ≠ 3



Mean Squared Error

• Definition: The mean squared error (MSE) of an estimator
�̂� for 𝜃 is MSE(�̂�) = 𝔼[(�̂� − 𝜃)]. We can write this as:

MSE(�̂�) = 𝕍[�̂�] + [bias(�̂�)]

• Problem What is the mean squared error of an unbiased
estimator?
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