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1/ Evaluation



Evaluation overview

• 35 responses
• Good mix between the different course numbers
• Overall, things are going OK, but definite room for

improvement



Pace
• How is the pace of the class? Are lectures too quick, too slow,

or just right?

barplot(table(evals$pace), border = NA)
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## [1] 1.7



Lecture Notes
• How have you found the lecture notes in the course so far?

barplot(table(evals$lecture.notes), border = NA)
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## [1] 4.1



How’s Matt doing?
• What overall rating would you give this instructor?

barplot(table(evals$instructor), border = NA)
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## [1] 4.4



HW Hours
• How difficult do you find the problem sets in the course so far?

hist(evals$hw.hours, border = "#ECF0F1", col = "grey",
main = "", xlab = "Number of Hours")
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## [1] 9



Course Overall
• What overall rating would you give the course?

barplot(table(evals$overall), border = NA)
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## [1] 3.9



Best things about the course

• “Mayya and Anton are THE BEST. So helpful, always make
time to help”

• “The diversity of materials and supplemental material”
• “The quality of instruction/explanation in both the lecture

and the section is superb.”



Ways to improve

• “very heavy workload”
• “The problem sets are taking far, far too long”
• “go through the examples a little faster so we don’t speed

through the last 15 mins of slides and concepts”
• “there’s quite a substantial gap in difficulty between the

material covered in the lectures and the problem sets.”
• “we got into the weeds a bit and Matt gave fewer examples of

how these things (all the weird distributions and PMFs) tie
back into actual research”

• “As I am an absolute beginner in R, I find the coding part
most challenging.”

• “It would help if we could see more examples in
lecture/sections that are similar to what we will see on
problem sets”



Our Plan

• More R!
• More connection between the lectures and problem sets
• More examples in lecture.
• No easing off the gas.
• But things should get easier with time.



Where are we? Where are we
going?

• Last few weeks: probability, learning how to think about r.v.s
• Now: how to estimate features of underlying distributions

with real data.
• Have to think about how much our estimate is due to chance

variation.



2/ Populations
and Samples



Motivating example

• Gerber, Green, and Larimer (APSR, 2008)



Motivating Example
load("gerber_green_larimer.RData")
## turn turnout variable into a numeric
social$voted <- 1 * (social$voted == "Yes")
neigh.mean <- mean(social$voted[social$treatment ==

"Neighbors"])
neigh.mean

## [1] 0.38

contr.mean <- mean(social$voted[social$treatment ==
"Civic Duty"])

contr.mean

## [1] 0.31

neigh.mean - contr.mean

## [1] 0.063

• Is this a “real”? Is it big?



Why study estimators?

• Goal 1: Inference
▶ How is this estimate related to the true/population difference

in means?
▶ How much uncertainty do we have in this estimate?

• Goal 2: Compare estimators
▶ In an experiment, use simple difference in sample means

(𝑌̅ − 𝑋̅)?
▶ Or the post-stratification estimator, where we estimate the

estimate the difference among two subsets of the data (male
and female, for instance) and then take the weighted average
of the two (𝑍̅ is the share of women):

𝜃̂𝑝𝑠 = (𝑌̄𝑓 − 𝑋̄𝑓)𝑍̄ + (𝑌̄𝑚 − 𝑋̄𝑚)(1 − 𝑍̄)

▶ Which (if either) is better? How would we know?



Samples from the DGP

• 𝑌𝑖 = 1 if citizen 𝑖 votes, 𝑌𝑖 = 0 otherwise.
• 𝑌􏷠, … , 𝑌𝑛 represent the sample
• Our goal: learn the data generating process that generated

the sample.
• DGP: 𝑌􏷠, … , 𝑌𝑛 are i.i.d. draws from the population

distribution with p.m.f. or p.d.f. 𝑓𝑌(𝑦).
▶ 𝑌𝑖 ∼𝑖𝑖𝑑 Bern(𝜇)
▶ “𝑌𝑖 are distributed i.i.d. Bernoulli with probability 𝜇”:

𝑓𝑌 (𝑦𝑖) = 𝜇𝑦𝑖 (1 − 𝜇)􏷠−𝑦𝑖

• 𝜇 is an unknown parameter of the population distribution.



DGP

• Data generating process (DGP) ⇝ population distribution of
the data

• Where do DGPs come from?
• First principles:

▶ Waiting time between random events ⇝ Exponential
distribution

▶ Number of events in a fixed interval ⇝ Poisson distribution
• Random sampling from a population.

▶ 𝑌𝑖 randomly selected from the population with mean 𝜇 is an
r.v. with expectation 𝜇



Partial probability models

• We don’t always need to specify a full probability model,
𝑓𝑌(𝑦), just the mean/variance.

▶ 𝑌𝑖, … , 𝑌𝑛 i.i.d. with mean 𝔼[𝑌𝑖] = 𝜇 and variance 𝕍[𝑌𝑖] = 𝜎􏷡
▶ Could be justified from random sampling

• Don’t have to pick a distribution from Bernoulli, uniform,
normal, etc.

• Why is this useful?
▶ We can learn about part of the distribution (𝔼[𝑌𝑖]) without

having to know about other parts of the distribution.



3/ Point
Estimation



Parameters

• Trying to estimate parameters of population distributions:
▶ 𝜇 = 𝔼[𝑌]: the mean
▶ 𝜎􏷡 = 𝕍[𝑋]: the variance
▶ 𝜎: the standard deviation
▶ 𝜇𝑦 − 𝜇𝑥 = 𝔼[𝑌] − 𝔼[𝑋]: the difference in means between two

groups
▶ 𝔼[𝑌|𝑋] = 𝛼 + 𝛽𝑋: intercept (𝛼) and slope (𝛽) of the

regression line
• We’ll generically refer to the parameter we’re trying to

estimate as 𝜃.
• These are the things we want to learn about.



Estimators

• Definition: An estimator , 𝜃̂ of some parameter 𝜃, is a
function of the sample: 𝜃̂ = ℎ(𝑌􏷠, … , 𝑌𝑛).

▶ Note: 𝜃̂ is a r.v. because it is a function of r.v.s.
• Question Why is the following statement wrong: “My

estimate was the sample mean and my estimator was 0.38”?



Examples of Estimators

• For the population mean, 𝜇, we have many different possible
estimators:

▶ 𝜃̂ = 𝑌̄ the sample mean
▶ 𝜃̂ = 𝑌􏷠 just use the first observation
▶ 𝜃̂ = max(𝑌􏷠, … , 𝑌𝑛)
▶ 𝜃̂ = 3 always guess 3



# mean
mean(social$voted[social$treatment == "Neighbors"])

## [1] 0.38

# first observation
social$voted[social$treatment == "Neighbors"][1]

## [1] 1

# maximum
max(social$voted[social$treatment == "Neighbors"])

## [1] 1

# always choose 3
3

## [1] 3



The Three Distributions

• Population Distribution: the data-generating process
▶ Bernoulli in the case of the social pressure/voter turnout

example)
• Sample distribution: 𝑌􏷠, … , 𝑌𝑛

▶ series of 1s and 0s in the sample
• Sampling distribution: distribution of the estimator over

repeated samples from the population distribution
▶ the 0.38 sample mean in the “Neighbors” group is one draw

from this distribution



• Question: If 𝑌􏷠, … , 𝑌𝑛 is a random sample from a
(population) Bernoulli distribution with mean/probability 𝜇,
will sampling distribution of the sample mean (𝑌̄) be Bernoulli
as well?



Population Distribution
## population distribution is Bernoulli with
## probability of success 0.4
barplot(dbinom(0:1, size = 1, prob = 0.4), names.arg = c(0,

1), border = NA, ylab = "P(x)", xlab = "x")
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Sample Distribution
my.samp <- rbinom(n = 10, size = 1, prob = 0.4)
table(my.samp)

## my.samp
## 0 1
## 8 2

plot(table(my.samp), type = "h", lwd = 5, bty = "n")
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Sampling Distribution

## now we take the mean of the this sample, which is
## one draw from the **sampling distribution**
mean(my.samp)

## [1] 0.2

## let's take another draw from the population dist
my.samp.2 <- rbinom(n = 10, size = 1, prob = 0.4)

## Let's feed this sample to the sample mean
## estimator to get another estimate, which is
## another draw from the sampling distribution
mean(my.samp.2)

## [1] 0.5



Sampling distribution by
simulation

• Let’s generate 10,000 draws from the sampling distribution of
the sample mean here when 𝑛 = 100.

nsims <- 10000
mean.holder <- rep(NA, times = nsims)
first.holder <- rep(NA, times = nsims)
for (i in 1:nsims) {

my.samp <- rbinom(n = 100, size = 1, prob = 0.4)
mean.holder[i] <- mean(my.samp) ## sample mean
first.holder[i] <- my.samp[1] ## first obs

}



Sampling distribution versus
population distribution
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• We only get one draw from the sampling distribution, 𝜃̂.
• Ideally, the sampling distribution would put most of its mass

close to the true value of 𝜃.

• Question The sampling distribution refers to the distribution
of 𝜃, true or false.



Properties of estimators

• We want to learn about true difference in means, but we only
have the sample difference in means.

• Is our estimator good? It is better than some other
estimators?

• How do we evaluation these little machines that take in
samples and output estimates?

• There are two ways we evaluate estimators:
▶ Finite sample: the properties of its sampling distribution for a

fixed sample size 𝑛.
▶ Large sample: the properties of the sampling distribution as

we let 𝑛 → ∞.



Running example

• 𝑌􏷠, … , 𝑌𝑛 are i.i.d. with mean 𝜇𝑦 and variance 𝜎􏷡𝑦
• 𝑋􏷠, … , 𝑋𝑛 are i.i.d. with mean 𝜇𝑥 and variance 𝜎􏷡𝑥
• Assume samples are independent.
• Differences in sample means:

􏾧𝐷𝑛 = 𝑌̅𝑛 − 𝑋̅𝑛

• 􏾧𝐷𝑛 is a random variable!
• What we’ll try to figure out: the sampling distribution of 􏾧𝐷𝑛:

􏾧𝐷𝑛 ∼ ?(𝔼[𝐷̂𝑛],𝕍[𝐷̂𝑛])



4/ Finite-Sample
Properties of
Estimators



Unbiasedness

• Definition: The bias of an estimator 𝜃̂ for population
parameter 𝜃 is

bias(𝜃̂) = 𝔼[𝜃̂] − 𝜃
• Definition: An estimator 𝜃̂ of 𝜃 is unbiased if

𝔼[𝜃̂] = 𝜃



Difference in means

• We want to estimate the population difference in means,
𝜇𝑦 − 𝜇𝑥

▶ True difference between those who received mailers and those
who didn’t.

• We know from last week and the reading that 𝔼[𝑋̅𝑛] = 𝜇𝑥 and
𝔼[𝑌̅𝑛] = 𝜇𝑦.

• What’s the expected value of the difference in means?

𝔼[􏾧𝐷𝑛] = 𝔼[𝑌̅𝑛 − 𝑋̅𝑛]
= 𝔼[𝑌̅𝑛] − 𝔼[𝑋̅𝑛]
= 𝜇𝑦 − 𝜇𝑥

• ⇝ sample difference in means is unbiased for the population
difference in means.



• We can also check the bias of an estimator using simulation:

nsims <- 10000
mean.holder <- rep(NA, times = nsims)
first.holder <- rep(NA, times = nsims)
for (i in 1:nsims) {

my.samp.y <- rbinom(n = 100, size = 1, prob = 0.5)
my.samp.x <- rbinom(n = 100, size = 1, prob = 0.3)
mean.holder[i] <- mean(my.samp.y) - mean(my.samp.x)
first.holder[i] <- my.samp.y[1] - my.samp.x[1]

}

mean(mean.holder) - 0.2

## [1] 0.0012

mean(first.holder) - 0.2

## [1] 0.0027

• Both are pretty close to 0!



Sampling variance

• Unbiasedness is about the center/expectation of the sampling
distribution of 𝜃̂.

• What about the spread of the sampling distribution?

• Definition: The sampling variance of an estimator is simply
its variance over repeated samples, 𝕍[𝜃̂].

• Definition: The standard error of an estimator is the
standard deviation of the sampling distribution,
𝑆𝐸[𝜃̂] = √𝕍[𝜃̂]



Sampling variance of the
difference in means

• Can we get a measure of uncertainty in our difference in
sample means?

• Variance of the difference in means:
𝕍[􏾧𝐷𝑛] = 𝕍[𝑌̅𝑛 − 𝑋̅𝑛] = 𝕍[𝑌̅𝑛] + 𝕍[𝑋̅𝑛]

• What is the sampling variance of the sample mean?

𝕍[𝑌̅𝑛] = 𝕍
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• Variance of the sample mean is the variance of each
observation divided by the number of observations.

• Difference, redux:
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• We can also investigate the sampling variance by simulation.
Take the above code and let’s look at the variance of the two
sampling distributions:

var(mean.holder)

## [1] 0.0047

var(first.holder)

## [1] 0.46

• Obviously, the sample mean has a much lower variance than
just using the first observation. And since they are both
unbiased, this means that our estimates will be closer to the
truth on average.



Sampling distribution

• Putting things together, we can see that:

􏾧𝐷𝑛 ∼ ?
⎛
⎜⎜⎜⎝𝜇𝑦 − 𝜇𝑥,

𝜎􏷡𝑦
𝑛 + 𝜎

􏷡
𝑥
𝑛

⎞
⎟⎟⎟⎠

• Sample difference in means is an r.v. with expectation 𝜇𝑦 − 𝜇𝑥
and variance 𝜎􏷫𝑦

𝑛 +
𝜎􏷫𝑥
𝑛

• Awesome, we know it gets the right answer on average.
• Two problems:

1. We don’t get to observe 𝜎􏷡𝑦 or 𝜎􏷡𝑥
2. We don’t know what distribution it follows (yet)



Estimating the Sampling
Variance/Standard Error

• To estimate 𝕍[𝑌̅𝑛] = 𝜎􏷡𝑦/𝑛 we need and estimate for 𝜎􏷡𝑦.
• Use the sample variance of 𝑌𝑖:

𝑆􏷡𝑦𝑛 =
1

𝑛 − 1

𝑛
􏾜
𝑖=􏷠
(𝑌𝑖 − 𝑌̅𝑛)􏷡

• Thus, our estimate of the sampling variance of the sample
mean is 􏾧𝕍[𝑌̅𝑛] = 𝑆􏷡𝑦𝑛/𝑛 and the standard error of the sample
mean is the 𝜎̂𝑦 = 𝑆𝑦𝑛/√𝑛.

• These are estimates of how uncertain our estimates are.
• (𝑆􏷡𝑦𝑛 is unbiased for 𝜎􏷡𝑦)



Estimated sampling distribution

• Our best guess about the sampling distribution of 􏾧𝐷𝑛:

􏾧𝐷𝑛 ∼ ?
⎛
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𝑆􏷡𝑦𝑛
𝑛 + 𝑆

􏷡
𝑥𝑛
𝑛

⎞
⎟⎟⎟⎠

• What is the distribution???????



5/ Large-Sample
Properties of
Estimators



Sequences of estimators

• So far: fixed sample size 𝑛.
• But how does the estimator perform as we give it more data

(increase 𝑛)?
• Need to think about sequences of estimators with increasing
𝑛:

𝑌̅􏷠 = 𝑌􏷠
𝑌̅􏷡 = (1/2) ⋅ (𝑌􏷠 + 𝑌􏷡)
𝑌̅􏷢 = (1/3) ⋅ (𝑌􏷠 + 𝑌􏷡 + 𝑌􏷢)
𝑌̅􏷣 = (1/4) ⋅ (𝑌􏷠 + 𝑌􏷡 + 𝑌􏷢 + 𝑌􏷣)
𝑌̅􏷤 = (1/5) ⋅ (𝑌􏷠 + 𝑌􏷡 + 𝑌􏷢 + 𝑌􏷣 + 𝑌􏷤)
⋮

𝑌̅𝑛 = (1/𝑛) ⋅ (𝑌􏷠 + 𝑌􏷡 + 𝑌􏷢 + 𝑌􏷣 + 𝑌􏷤 +⋯+ 𝑌𝑛)

• Note: this is a sequence of random variables!



Question

• Question From what we know, how does the distribution of
the sample mean change as 𝑛 increases?



Convergence in Probability

• Definition: A sequence of random variables, 𝑋􏷠, 𝑋􏷡, …, is said
to converge in probability to a value 𝑐 if for every 𝜀 > 0,

ℙ(|𝑋𝑛 − 𝑐| > 𝜀) → 0,

as 𝑛 → ∞. We write this 𝑋𝑛
𝑝
→ 𝑐.

• Wooldridge writes plim(𝑋𝑛) = 𝑐 if 𝑋𝑛
𝑝
→ 𝑐.



Consistency

• Definition An estimator 𝜃̂𝑛 is consistent for 𝜃 if 𝜃̂𝑛
𝑝
→ 𝜃.

• An unbiased estimator is consistent if the sampling variance
goes to 0 as 𝑛 → ∞ or lim𝑛→∞𝕍[𝜃̂𝑛] = 0.

• Theorem (Weak Law of Large Numbers) Let 𝑌􏷠, … , 𝑌𝑛 be a
an iid draws from a distribution with mean 𝜇 and let

𝑌̅𝑛 = 􏷠
𝑛 ∑

𝑛
𝑖=􏷠 𝑌𝑖. Then, 𝑌̄𝑛

𝑝
→ 𝜇.



Consistency vs. unbiasedness
• The “first observation” estimator, 𝜃̂𝑓𝑛 = 𝑌􏷠 is unbiased,
𝔼[𝑌􏷠] = 𝜇

• But it is inconsistent.
• The sampling distribution never collapses to any value. As we

add more observations, only use the first:

𝜃̂𝑓􏷠 = 𝑌􏷠
𝜃̂𝑓􏷡 = 𝑌􏷠
𝜃̂𝑓􏷢 = 𝑌􏷠
⋮

𝜃̂𝑓𝑛 = 𝑌􏷠

• Distribution of 𝜃̂𝑓𝑛 never changes so ℙ(|𝜃̂𝑓𝑛 − 𝜇| > 𝜀) never
changes ⇝ never converges.



Consistency example
• Suppose that we are interested in how long a government

lasts in parliamentary democracies.
• Now, suppose that the distribution of 𝑋 is Exponential with

rate 0.5.

curve(dexp(x, rate = 0.5), from = 0, to = 12, col = "orange",
lwd = 3, bty = "n", ylab = "f(x)", xlab = "x")
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• Now imagine two data collection schemes:
1. wait until we’ve collected 𝑛 observations from the process (this

is just an iid sample)
2. stop collecting after 3 years, which we call a censored sample.

• What are the properties of these two approaches?
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Convergence in Distribution

• Definition: A sequence of random variables, 𝑋􏷠, 𝑋􏷡, …, is said
to converge in distribution to 𝑍 if

lim
𝑛→∞

ℙ(𝑋𝑛 ≤ 𝑥) = ℙ(𝑍 ≤ 𝑥),

which we write as 𝑋𝑛
𝑑→ 𝑍.



Asymptotic Normality

• Definition: An estimator is said to be asymptotically
normal if

𝜃̂ − 𝜃

√𝕍(𝜃̂)
𝑑→ 𝑁(0, 1).

• Facts about normal r.v.s: ∼ 𝑁(𝜇, 𝜎􏷡), then:
▶ (𝑋 − 𝜇) ∼ 𝑁(0, 𝜎􏷡)
▶ (𝑋 − 𝜇)/𝜎 ∼ 𝑁(0, 1)



Central Limit Theorem

• Theorem (Central Limit Theorem) Let 𝑌􏷠, … , 𝑌𝑛 be a an iid
draws from a distribution with mean 𝜇 and variance 𝜎􏷡. Then

𝑍𝑛 =
𝑌̄𝑛 − 𝜇
𝜎/√𝑛

𝑑→ 𝑁(0, 1)



Empirical Rule for the Normal
Distribution
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• If 𝑍 ∼ 𝑁(0, 1), then the following are roughly true:



Empirical Rule for the Normal
Distribution

-4 -2 0 2 4

0.68

• If 𝑍 ∼ 𝑁(0, 1), then the following are roughly true:
• Roughly 68% of the distribution of 𝑍 is between -1 and 1.
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• If 𝑍 ∼ 𝑁(0, 1), then the following are roughly true:
• Roughly 68% of the distribution of 𝑍 is between -1 and 1.
• Roughly 95% of the distribution of 𝑍 is between -2 and 2.



Empirical Rule for the Normal
Distribution
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• If 𝑍 ∼ 𝑁(0, 1), then the following are roughly true:
• Roughly 68% of the distribution of 𝑍 is between -1 and 1.
• Roughly 95% of the distribution of 𝑍 is between -2 and 2.
• Roughly 99.7% of the distribution of 𝑍 is between -3 and 3.

• You can use the pnorm() function in R to figure out any
probability questions about the Normal distribution.



Final sampling distribution

• Putting everything together, we know that as 𝑛 gets large,
the distribution of 􏾧𝐷𝑛 will be approximately:

􏾧𝐷𝑛 ∼ 𝑁
⎛
⎜⎜⎜⎝𝜇𝑦 − 𝜇𝑥,

𝜎􏷡𝑦
𝑛 + 𝜎

􏷡
𝑥
𝑛

⎞
⎟⎟⎟⎠

• Using the properties of normals, we also know that:

􏾧𝐷𝑛 − (𝜇𝑦 − 𝜇𝑥)

√𝜎
􏷡𝑦/𝑛 + 𝜎􏷡𝑥/𝑛

∼ 𝑁 (0, 1)



Application: planning an
experiment

• Suppose we know that 𝜎􏷡𝑥 = 𝜎􏷡𝑦 = 0.25
• What if we wanted the sample difference in means within 0.01

of the true difference in means with high probability?
▶ ⇝ ℙ􏿴−0.01 ≤ 􏾧𝐷𝑛 − (𝜇𝑦 − 𝜇𝑥) ≤ 0.01􏿷 = 0.95

• How big does 𝑛 need to be to ensure this?
• What is the variance:

𝕍[􏾧𝐷𝑛] =
𝜎􏷡𝑦
𝑛 + 𝜎

􏷡
𝑥
𝑛 = 0.25

𝑛 + 0.25𝑛 = 1
2𝑛



Application: planning an
experiment

• In large samples, 􏾧𝐷𝑛 − (𝜇𝑦 − 𝜇𝑥) will be 𝑁(0, 1/2𝑛)
• ⇝ 𝑍 = √2𝑛 􏿴􏾧𝐷𝑛 − (𝜇𝑦 − 𝜇𝑥)􏿷 ∼ 𝑁(0, 1)
• Then, we want 𝑛 such that:

ℙ􏿴−0.01 ⋅ √2𝑛 ≤ 𝑍 ≤ 0.01 ⋅ √2𝑛􏿷 = 0.95



Application: planning an
experiment

ℙ􏿴−0.01 ⋅ √2𝑛 ≤ 𝑍 ≤ 0.01 ⋅ √2𝑛􏿷 = 0.95

• But, notice by the empirical rule: ℙ(−2 ≤ 𝑍 ≤ 2) = 0.95

-4 -2 0 2 4

0.95

• So, we need 0.01 ⋅ √2𝑛 > 2 or 𝑛 > 20000
• 0.95 is convenient with the empirical rule, use qnorm() for

other values.



6/ Comparing
estimators



Efficiency

• Definition: If 𝜃̂􏷠 and 𝜃̂􏷡 are two unbiased estimators of 𝜃,
then 𝜃̂􏷠 is efficient relative to 𝜃̂􏷡 when 𝕍[𝜃̂􏷠] ≤ 𝕍[𝜃̂􏷡] for
any possible value of 𝜃 with strict inequality for at least one
value of 𝜃.



Bias-Variance Tradeoff

• In many situations, there is tradeoff between bias and
variance.

• Extreme example:
▶ Sample mean, 𝜃̂􏷠 = 𝑌̅𝑛 vs. always-choose-3 𝜃̂􏷡 = 3.
▶ Variance of always choose 3 is 0, which is better than 𝑌̅𝑛
▶ But bias is high if 𝜇 ≠ 3



Mean Squared Error

• Definition: The mean squared error (MSE) of an estimator
𝜃̂ for 𝜃 is MSE(𝜃̂) = 𝔼[(𝜃̂ − 𝜃)􏷡]. We can write this as:

MSE(𝜃̂) = 𝕍[𝜃̂] + [bias(𝜃̂)]􏷡

• Problem What is the mean squared error of an unbiased
estimator?
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