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Where are we? Where are we going?

= Last two weeks: randomized experiments.
= From here on: observational studies.
» What are they?

» How do they admit the possiblity of confounding?
» How can we adjust for confounding?



1/ Observational
studies



Experiment review

= An experiment is a study where assignment to treatment is
controlled by the researcher.

» p; = P[D; = 1] be the probability of treatment assignment
probability.
» p; is controlled and known by researcher in an experiment.

= A randomized experiment is an experiment with the following
properties:

1. Positivity: assignment is probabilistic: 0 < p; <1
> No deterministic assignment.
2. Unconfoundedness: P[D; = 1|Y(1), Y(0)] = P[D; = 1]

» Treatment assignment does not depend on any potential
outcomes.
» Sometimes written as D; 11 (Y(1),Y(0))



Observational studies

Many different sets of identification assumptions that we'll

cover.
To start, focus on studies that are similar to experiments, just

without a known and controlled treatment assignment.

> No guarantee that the treatment and control groups are

comparable.

. Positivity: assignment is probabilistic:
0 < P[D; = 11X, Y(1), Y(0)] < 1
2. No unmeasured confounding:
P[D; = 11X, Y(1), Y(0)] = P[D; = 1[X]
» For some observed X

» Also called: unconfoundedness, ignorability, selection on
observables, no omitted variables, exogenous, conditional

exchangeable, etc.
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Desighing observational studies

= Rubin (2008) argues that we should still “design” our
observational studies:
» Pick the ideal experiment to this observational study.
> Hide the outcome data.

> Try to estimate the randomization procedure.
> Analyze this as an experiment with this estimated procedure.

= Tries to minimize “snooping” by picking the best modeling
strategy before seeing the outcome.



Discrete covariates

= Suppose that we knew that D; was unconfounded within levels
of a binary X;.

= Then we could always estimate the causal effect using iterated
expectations as in a stratified randomized experiment:

]EX{IE[YilDi =1,X;] - E[YiID; =0, Xi]}

- (IE[YADZ- =1,X; = 1]~ E[Y;[D; = 0,X; = 1]) PLX; = 1]

————
share of X;=1

diff-in-means for X;=1

+ (BLYID; = 1,X; = 0] - ELY;ID; = 0,X; = 0]) PLX; = 0]

—— ——
share of X;=0

diff-in-means for X;=0

= Never used our knowledge of the randomization for this
quantity.



Continuous covariates

= So, great, we can stratify. Why not do this all the time?
= What if X; = income for unit i?

» Each unit has its own value of X;: $54,134, $123,043, $23,842.
» If X; =54134 is unique, will only observe 1 of these:

E[Y;D; = 1,X; = 54134] - E[Y;|D; = 0, X; = 54134]

» ~> cannot stratify to each unique value of X;:

= Practically, this is massively important: almost always have
data with unique values.



Going to a superpopulation

= From here on out, we'll focus less on the finite population
model.

» Harder with (functionally) continuous covariates.

= Assume that each unit i is drawn from an infinite
superpopulation,
» implies that (Y;(0), Y;(1), D;, X;) are a draw from their
population joint distribution.
= Potential outcomes are now typical random variables.
> pe(x) = E[Y;(0)IX; = x] and p,(x) = E[Y;(1)IX; = x]
> 02(x) = V[Y;(0)IX; = x] and o7(x) = V[Y{(DIX; = 1]
> = Bl () - pe(0)IX; = 1]



Assumptions in the superpopulation

= With an infinite superpopulation, worry less about
conditioning on the entire sample.

» Units are now independent due to random sampling from an
infinite population.

= No unmeasured confoudning implies that:
P(D; = 11Y;(0), Yi(1), X;) = P(D; = 11X;)
= Or, written using conditional independence:
D; 1L (Y(0), Y:(1))IX;

= Positivity can be written: 0 < P(D; = 1|X; = x) < 1 for all x in
the support of X;.



2/ Confounding



What is confounding?

Confounding is the bias caused by common causes of the
treatment and outcome.

» Leads to “spurious correlation.”

In observational studies, the goal is to avoid confounding
inherent in the data.
Pervasive in the social sciences:

» effect of income on voting (confounding: age)

» effect of job training program on employment (confounding:
motivation)

» effect of political institutions on economic development
(confounding: previous economic development)

No unmeasured confounding assumes that we've measured all
sources of confounding.



Big problem

= How can we determine if no unmeasured confounding holds if
we didn’t assign the treatment?
= Put differently:
» What covariates do we need to condition on?

» What covariates do we need to match on?
» What covaraites do we need to include in our regressions?

= One way, from the assumption itself:

» P[D; = 11X, Y(1), Y(0)] = P[D; = 1|X]

» Include covariates such that, conditional on them, the
treatment assignment does not depend on the potential
outcomes.

= Another way: use DAGs and look at back-door paths.



Backdoor paths and blocking paths

= Backdoor path: is a non-causal path from D to Y.

» Would remain if we removed any arrows pointing out of D.

= Backdoor paths between D and Y ~» common causes of D
and Y:

X
/\
D—Y

= Here there is a backdoor path D « X — Y, where X is a
common cause for the treatment and the outcome.



Other types of confounding

OU<«-C
KX

!

= D is enrolling in a job training program.

= Y is getting a job.

= U is being motivated

= X is number of job applications sent out.

= Big assumption here: no arrow from U to Y.



Other types of confounding

OU<«-C
KX

|

= D is exercise.

= Y is having a disease.

= U is lifestyle.

= X is smoking

= Big assumption here: no arrow from U to Y.



What’s the problem with backdoor
paths?

- _,

—Y

O<«-4g

= A path is blocked if:
1. we control for or stratify a non-collider on that path OR
2. we do not control for a collider.

= Unblocked backdoor paths ~~ confounding.

= |n the DAG here, if we condition on X, then the backdoor
path is blocked.



Not all backdoor paths

= Conditioning on the posttreatment covariates opens the
non-causal path.

» ~~ selection bias.



= Not all backdoor paths induce confounding.

= This backdoor path is blocked by the collider X; that we don’t
control for.

= |f we control for X; ~~ opens the path and induces
confounding.

» Sometimes called M-bias.
= Controversial because of differing views on what to control for:

» Rubin thinks that M-bias is a “mathematical curiosity” and we
should control for all pretreatment variables
> Pearl and others think M-bias is a real threat.



Backdoor criterion

= Can we use a DAG to evaluate no unmeasured confounders?
= Pearl answered yes, with the backdoor criterion, which states
that the effect of D on Y is identified if:

1. No backdoor paths from D to Y OR
2. Measured covariates are sufficient to block all backdoor paths

from D to Y.
= First is really only valid for randomized experiments.
= The backdoor criterion is fairly powerful. Tells us:

» if there confounding given this DAG,
» if it is possible to removing the confounding, and
» what variables to condition on to eliminate the confounding.



SWIGs

= |t's a little hard to see how the backdoor criterion implies no
unmeasured confounders.

> No potential outcomes on this graph!
= Richardson and Robins: Single World Intervention Graphs

» Split D node into natural value (D) and intervention value d.
» Let all effects of D take their potential value under
intervention Y (d).

= Now can see: are D and Y(d) related?

» D« U — X — Y(d) implies not independent
» Conditioning on X blocks that backdoor path ~~ D 1l Y(d)|X



No unmeasured confounders is not
testable

= No unmeasured confounding places no restrictions on the
observed data.

(Y, 0|D; = 1,X,) £ (Y,0)|D; = 0,X;)

unobserved observed

= Here, 2 means equal in distribution.

= No way to directly test this assumption without the
counterfactual data, which is missing by definition!

= With backdoor criterion, you must have the correct DAG.



Assessing no unmeasured confounders

TABLE VI
THE Fox NEWS EFFECT: INTERACTIONS AND PLACEBO SPECIFICATIONS
Interactions Placebo specifications
Presid. Rep. vote share Presidential Republican vote share
2000-1996 2000-1996 1996-1992 1992-1988
Dep. var. @ ) ) 4) )
Availability of Fox News via cable in 2000 0.0109 0.0105 0.0036 —0.0024 0.0026
(0.0042)%+* (0.0039)++* (0.0016)** (0.0031) (0.0026)
Availability of Fox News via cable in 2003 —0.0001
(0.0012)

= Can do “placebo” tests, where D; cannot have an effect

(lagged outcomes, etc)
= Della Vigna and Kaplan (2007, QJE): effect of Fox News
availability on Republican vote share

> Availability in 2000/2003 can't affect past vote shares.

= Unconfoundedness could still be violated even if you pass this
test!



Alternatives to no unmeasured
confounding

= Without explicit randomization, we need some way of
identifying causal effects.
= No unmeasured confounders ~ randomized experiment.

> Indentification results very similar to experiments.

= With unmeasured confounding are we doomed? Maybe not!
= Other approaches rely on finding plausibly exogenous variation
in assignment of D;:

» Instrumental variables (randomization + exclusion restriction)
» Over-time variation (diff-in-diff, fixed effects)
» Arbitrary thresholds for treatment assignment (RDD)



3/ No unmeasured
confounders and OLS



Justifying regression

= We know how randomized experiments imply that
differences-in-means identify the ATE.

= |n the next few weeks, we'll work through how no unmeasured
confounding justifies a number of estimation strategies.

= Today, it's useful to walk through what no unmeasured
confounding can buy us in a familiar setting: OLS.

» We'll cover regression more formally later.



Constant effects set up

= Assume a constant effects setup:
Yl(O) = 0(+Xl-/ﬁ+ Uu;
Y () =a+1t+X/p+u;
= Constant effects because Y;(1) — Y;(0) = 7 for all units.
= Use consistency to get the usual regression formula:
Y; =Y:(1)D; + Y;(0)(1 - D;)
Y;(0) + (Y:(1) - Y:(0)) - D;

0(+T'Dl‘+X;ﬂ+lli

= Does no unmeasured confounding help us identify the causal
parameter 77



Regression on residuals

= First estimate the residuals of regression of the treatment and
outcome on the covariates:

Y =Y, - E[YilX]]

D; = D; - E[D;|X;]

= Running a regression of Y; on D; is equivalent to controlling
for X;:
Yi=a+T-Dl-+Xi’ﬁ+ul-

Yi:a+T'Di+ﬂ,‘

= Here, i1; = u; — E[u;|X;].



What does OLS estimate?

= Using the usual OLS theory, we can show that the probability
limit of the OLS estimator of 7 is:

Cov(D;, Y))
Var(D;)
B Cov(D;,a + 7 - D; + 1))
- Var(D;)
7 - Cov(D;, D;) + Cov(D;, it;)
Var(D;)
Cov(D;, it;)
Var(D;)

plim Zors =




Key OLS assumption

Cov(D;, it;)

lim 1 =T+ =
pim tops =7 Var(D,)

= Key identification comes from: Cov(D;, ;) = 0
» Conditional on X;, no relationship between D; and ;.
= Note: u; is a function of X; and Y;(d).

> ui:Yi(O)—lX—X;ﬂWhen DiZO
>ui:Yi(l)—a—T—X;‘BWhenDizl
» ~~ condition on X;, only variation in u; comes from Y;(d)

= No unmeasured confounding implies this assumption:

D; 1L (Y;(1), Y;(0))X; = D; 1L u|X; = Cov(D;, &) =0



Omitted variable bias

= What happens when this is violated? Suppose that there is
one omitted variable (residualized from X;):

17[1' = /\tl + w;

= We'll assume that if we could measure L;, then no
unmeasured confounding would hold.
= Leads to inconsistency in the OLS estimator:

COV(Di/ i‘l)

lim To;g =7+ A =
pim Zors =7 Var(D))

= Bias here is terms multiplied together:

1. coefficient on L;, (A)
2. the coefficient of regression of D; on L; also controlling for X;



4/ Estimating causal

effects under no
Jnmeasureo
confounders



Basic approach to estimation

= Remember the usual approach to estimating the ATE with
covariates.
= Stratification:

» Stratify the units by the covariates
» Calculate CATE within these strata

= Standardization/direct adjustment:
» Average the CATEs across the strata to get ATE
= How to create strata when X has continuous components?

» If X is discrete with only a few levels, can use the exact values
of X.
» Otherwise, we may have to subclassify/coarsen the data.



Classic example: cigars/pipes versus
cigarettes

= D; =1 for pipe/cigar smokers, D; = 0 for cigarette smokers.
= Y; = death in the first year of follow-up
= Naive positive effect: cigar/pipe smokers more likely to die.

» What's the confounder here? Age!
» Pipe/cigar smokers much older than cigarette smokers.

= Cochran’s approach: stratify based on coarsened age:

» Divide age into k strata: S; € 1,5y, ..., Sk
» s; might be 18-25, s, might be 26-35, and so on.
» Calculate effect within strata and aggregate.

= Key assumption: no unmeasured confounders using stratified
version of age.
D; 1L (Y(0), Yi(D))IS;



Stratification on the propensity score

= What about when X has has many dimensions?

= Curse of dimensionality: there will be very few, if any, units in
a given stratum of X;.

= Stratify on a low-dimensional summary, the propensity score:

e(x) = ]P[Dl = 1|XZ = JC]

» PS = unit’s probability of being treated, conditional on X;

= For a particular unit, this is e(X;) = P[D; = 1|X;]
= Rosenbaum and Rubin (1983) showed that:

D; 1L (Yi(0), (1)) | X; = D; 1L (Yi(0), Yi(1)) | e(Xy)

» ~ stratifying on e; is the same as stratifying on the full X;.



Propensity score as balancing score

= The propensity score is actually a balancing score, which
means that
D; 11 X;|e(X;)
= Conditional on the propensity score, treatment is independent
of the covariates.

> Treatment status is said to be balanced
> f(XiID; = 1,e(Xy) = f(XiID; = 0, e(X;))

= Of course, we have to know the true PS to have all these
results work!



Estimating the propensity score

= Of course, in observational studies, we don't know the
propensity score.

= We would run a parametric model with parameters y to
estimate the propensity scores:

1. Estimate
2. Create ; = Pr[D; = 1|X;; 7]

= For instance, in R, we could easily calculate the propensity
scores using the glm function:

pscores <- glm(treat ~ varl + var2 + var3, data = mydata,

family = binomial())$fitted.values



Propensity score specifics

= What variables do we include in the propensity score model?
» Any set of variables that blocks all the backdoor paths from D;
to Yi'

= Check balance within strata of ¢;. Covariates should be
balanced:

fXilD; = 1,8) = f(XiID; = 0,2)
= Can also use automated/nonparametric tools for estimating ;.

» Covariate Balancing Propensity Scores (Imai and Ratkovic)



Stratifying by the propensity score

= How will we use the propensity score?

» Matching (next week), Weighting (two weeks), Regression
(three weeks)

= Today: coarsening the propensity score and stratifying
= Choose boundary points: 0 =by < by < .. <bg_; <bg =1.
= Create block indicators:

Bl(k) _ {1 if bk—l < é(XZ) < bk/
0 otherwise

Calculate within-strata effect estimates:

7, = E[Y;|D; = 1, B;(k) = 1] - E[Y;|D; = 0, B;(k) = 1]



Standardization/direct adjustment

= We calculated the CATEs for each strata of the PS, 7.
= We can use law of iterated expectations to back out the ATE.
= Take the average of the CATEs over the distribution of X:

K
T =Y, iP[Bi(k) = 1]
k=1

Note that P[B;(k) = 1] is just the proportion of units in block k:

YN, Bi(k)
P[B;(k) = 1] = - N



5/ Wrapping Up



Summary

= Defined observational studies

= Defined confounding and assessed when no unmeasured
confounding holds

= Saw how no unmeasured confounding helps with OLS

= Saw how to estimate causal effects under no unmeasured
confounding using the propensity score.



Next few weeks

= Learn how to estimate causal effects under no unmeasured
confounders via:
» Matching
> Weighting
> Regression
= Then we move onto situations where no unmeasured
confounders is violated.
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