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Where are we? Where are we going?

• Last two weeks: randomized experiments.
• From here on: observational studies.

▶ What are they?
▶ How do they admit the possiblity of confounding?
▶ How can we adjust for confounding?



1/ Observational
studies



Experiment review

• An experiment is a study where assignment to treatment is
controlled by the researcher.

▶ 𝑝𝑖 = ℙ[𝐷𝑖 = 1] be the probability of treatment assignment
probability.

▶ 𝑝𝑖 is controlled and known by researcher in an experiment.
• A randomized experiment is an experiment with the following

properties:

1. Positivity: assignment is probabilistic: 0 < 𝑝𝑖 < 1
▶ No deterministic assignment.

2. Unconfoundedness: ℙ[𝐷𝑖 = 1|𝐘(1), 𝐘(0)] = ℙ[𝐷𝑖 = 1]
▶ Treatment assignment does not depend on any potential

outcomes.
▶ Sometimes written as 𝐷𝑖 ⟂⟂ (𝐘(1), 𝐘(0))



Observational studies

• Many different sets of identification assumptions that we’ll
cover.

• To start, focus on studies that are similar to experiments, just
without a known and controlled treatment assignment.

▶ No guarantee that the treatment and control groups are
comparable.

1. Positivity: assignment is probabilistic:
0 < ℙ[𝐷𝑖 = 1|𝐗, 𝐘(1), 𝐘(0)] < 1

2. No unmeasured confounding:
ℙ[𝐷𝑖 = 1|𝐗, 𝐘(1), 𝐘(0)] = ℙ[𝐷𝑖 = 1|𝐗]

▶ For some observed 𝐗
▶ Also called: unconfoundedness, ignorability, selection on

observables, no omitted variables, exogenous, conditional
exchangeable, etc.



Designing observational studies

• Rubin (2008) argues that we should still “design” our
observational studies:

▶ Pick the ideal experiment to this observational study.
▶ Hide the outcome data.
▶ Try to estimate the randomization procedure.
▶ Analyze this as an experiment with this estimated procedure.

• Tries to minimize “snooping” by picking the best modeling
strategy before seeing the outcome.



Discrete covariates

• Suppose that we knew that 𝐷𝑖 was unconfounded within levels
of a binary 𝑋𝑖.

• Then we could always estimate the causal effect using iterated
expectations as in a stratified randomized experiment:

𝔼𝑋􏿻𝔼[𝑌𝑖|𝐷𝑖 = 1,𝑋𝑖] − 𝔼[𝑌𝑖|𝐷𝑖 = 0,𝑋𝑖]􏿾

= 􏿵𝔼[𝑌𝑖|𝐷𝑖 = 1,𝑋𝑖 = 1] − 𝔼[𝑌𝑖|𝐷𝑖 = 0,𝑋𝑖 = 1]􏿸
􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍

diff-in-means for 𝑋𝑖=􏷠

ℙ[𝑋𝑖 = 1]􏿋􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏿍
share of 𝑋𝑖=􏷠

+ 􏿵𝔼[𝑌𝑖|𝐷𝑖 = 1,𝑋𝑖 = 0] − 𝔼[𝑌𝑖|𝐷𝑖 = 0,𝑋𝑖 = 0]􏿸
􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍

diff-in-means for 𝑋𝑖=􏷟

ℙ[𝑋𝑖 = 0]􏿋􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏿍
share of 𝑋𝑖=􏷟

• Never used our knowledge of the randomization for this
quantity.



Continuous covariates

• So, great, we can stratify. Why not do this all the time?
• What if 𝑋𝑖 = income for unit 𝑖?

▶ Each unit has its own value of 𝑋𝑖: $54,134, $123,043, $23,842.
▶ If 𝑋𝑖 = 54134 is unique, will only observe 1 of these:

𝔼[𝑌𝑖|𝐷𝑖 = 1,𝑋𝑖 = 54134] − 𝔼[𝑌𝑖|𝐷𝑖 = 0,𝑋𝑖 = 54134]

▶ ⇝ cannot stratify to each unique value of 𝑋𝑖:
• Practically, this is massively important: almost always have

data with unique values.



Going to a superpopulation

• From here on out, we’ll focus less on the finite population
model.

▶ Harder with (functionally) continuous covariates.
• Assume that each unit 𝑖 is drawn from an infinite

superpopulation,
▶ implies that (𝑌𝑖(0), 𝑌𝑖(1), 𝐷𝑖, 𝑋𝑖) are a draw from their

population joint distribution.
• Potential outcomes are now typical random variables.

▶ 𝜇𝑐(𝑥) = 𝔼[𝑌𝑖(0)|𝑋𝑖 = 𝑥] and 𝜇𝑡(𝑥) = 𝔼[𝑌𝑖(1)|𝑋𝑖 = 𝑥]
▶ 𝜎􏷡𝑐 (𝑥) = 𝕍[𝑌𝑖(0)|𝑋𝑖 = 𝑥] and 𝜎􏷡𝑡 (𝑥) = 𝕍[𝑌𝑖(1)|𝑋𝑖 = 𝑥]
▶ 𝜏 = 𝔼[𝜇𝑡(𝑥) − 𝜇𝑐(𝑥)|𝑋𝑖 = 𝑥]



Assumptions in the superpopulation

• With an infinite superpopulation, worry less about
conditioning on the entire sample.

▶ Units are now independent due to random sampling from an
infinite population.

• No unmeasured confoudning implies that:

ℙ(𝐷𝑖 = 1|𝑌𝑖(0), 𝑌𝑖(1), 𝑋𝑖) = ℙ(𝐷𝑖 = 1|𝑋𝑖)

• Or, written using conditional independence:

𝐷𝑖 ⟂⟂ 􏿴𝑌𝑖(0), 𝑌𝑖(1)􏿷|𝑋𝑖

• Positivity can be written: 0 < ℙ(𝐷𝑖 = 1|𝑋𝑖 = 𝑥) < 1 for all 𝑥 in
the support of 𝑋𝑖.



2/ Confounding



What is confounding?

• Confounding is the bias caused by common causes of the
treatment and outcome.

▶ Leads to “spurious correlation.”
• In observational studies, the goal is to avoid confounding

inherent in the data.
• Pervasive in the social sciences:

▶ effect of income on voting (confounding: age)
▶ effect of job training program on employment (confounding:

motivation)
▶ effect of political institutions on economic development

(confounding: previous economic development)
• No unmeasured confounding assumes that we’ve measured all

sources of confounding.



Big problem

• How can we determine if no unmeasured confounding holds if
we didn’t assign the treatment?

• Put differently:
▶ What covariates do we need to condition on?
▶ What covariates do we need to match on?
▶ What covaraites do we need to include in our regressions?

• One way, from the assumption itself:
▶ ℙ[𝐷𝑖 = 1|𝐗, 𝐘(1), 𝐘(0)] = ℙ[𝐷𝑖 = 1|𝐗]
▶ Include covariates such that, conditional on them, the

treatment assignment does not depend on the potential
outcomes.

• Another way: use DAGs and look at back-door paths.



Backdoor paths and blocking paths

• Backdoor path: is a non-causal path from 𝐷 to 𝑌.
▶ Would remain if we removed any arrows pointing out of 𝐷.

• Backdoor paths between 𝐷 and 𝑌 ⇝ common causes of 𝐷
and 𝑌:

𝐷

𝑋

𝑌

• Here there is a backdoor path 𝐷 ← 𝑋 → 𝑌, where 𝑋 is a
common cause for the treatment and the outcome.



Other types of confounding

𝐷

𝑈 𝑋

𝑌

• 𝐷 is enrolling in a job training program.
• 𝑌 is getting a job.
• 𝑈 is being motivated
• 𝑋 is number of job applications sent out.
• Big assumption here: no arrow from 𝑈 to 𝑌.



Other types of confounding

𝐷

𝑈 𝑋

𝑌

• 𝐷 is exercise.
• 𝑌 is having a disease.
• 𝑈 is lifestyle.
• 𝑋 is smoking
• Big assumption here: no arrow from 𝑈 to 𝑌.



What’s the problem with backdoor
paths?

𝐷

𝑈 𝑋

𝑌

• A path is blocked if:
1. we control for or stratify a non-collider on that path OR
2. we do not control for a collider.

• Unblocked backdoor paths ⇝ confounding.
• In the DAG here, if we condition on 𝑋, then the backdoor

path is blocked.



Not all backdoor paths

𝐷

𝑈􏷠
𝑋𝑋

𝑌

• Conditioning on the posttreatment covariates opens the
non-causal path.

▶ ⇝ selection bias.



M-bias

𝐷

𝑈􏷠 𝑈􏷡
𝑋𝑋

𝑌

• Not all backdoor paths induce confounding.
• This backdoor path is blocked by the collider 𝑋𝑖 that we don’t

control for.
• If we control for 𝑋𝑖 ⇝ opens the path and induces

confounding.
▶ Sometimes called M-bias.

• Controversial because of differing views on what to control for:
▶ Rubin thinks that M-bias is a “mathematical curiosity” and we

should control for all pretreatment variables
▶ Pearl and others think M-bias is a real threat.



Backdoor criterion

• Can we use a DAG to evaluate no unmeasured confounders?
• Pearl answered yes, with the backdoor criterion, which states

that the effect of 𝐷 on 𝑌 is identified if:
1. No backdoor paths from 𝐷 to 𝑌 OR
2. Measured covariates are sufficient to block all backdoor paths

from 𝐷 to 𝑌.

• First is really only valid for randomized experiments.
• The backdoor criterion is fairly powerful. Tells us:

▶ if there confounding given this DAG,
▶ if it is possible to removing the confounding, and
▶ what variables to condition on to eliminate the confounding.



SWIGs

𝐷 | 𝑑 𝑌(𝑑)

𝑈 𝑋

𝑌

• It’s a little hard to see how the backdoor criterion implies no
unmeasured confounders.

▶ No potential outcomes on this graph!
• Richardson and Robins: Single World Intervention Graphs

▶ Split 𝐷 node into natural value (𝐷) and intervention value 𝑑.
▶ Let all effects of 𝐷 take their potential value under

intervention 𝑌(𝑑).
• Now can see: are 𝐷 and 𝑌(𝑑) related?

▶ 𝐷 ← 𝑈 → 𝑋 → 𝑌(𝑑) implies not independent
▶ Conditioning on 𝑋 blocks that backdoor path ⇝ 𝐷 ⟂⟂ 𝑌(𝑑)|𝑋



No unmeasured confounders is not
testable

• No unmeasured confounding places no restrictions on the
observed data.

􏿴𝑌𝑖(0)|𝐷𝑖 = 1,𝑋𝑖􏿷􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍
unobserved

𝑑= 􏿴𝑌𝑖(0)|𝐷𝑖 = 0,𝑋𝑖􏿷􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍
observed

• Here, 𝑑= means equal in distribution.
• No way to directly test this assumption without the

counterfactual data, which is missing by definition!
• With backdoor criterion, you must have the correct DAG.



Assessing no unmeasured confounders

• Can do “placebo” tests, where 𝐷𝑖 cannot have an effect
(lagged outcomes, etc)

• Della Vigna and Kaplan (2007, QJE): effect of Fox News
availability on Republican vote share

▶ Availability in 2000/2003 can’t affect past vote shares.
• Unconfoundedness could still be violated even if you pass this

test!



Alternatives to no unmeasured
confounding

• Without explicit randomization, we need some way of
identifying causal effects.

• No unmeasured confounders ≈ randomized experiment.
▶ Indentification results very similar to experiments.

• With unmeasured confounding are we doomed? Maybe not!
• Other approaches rely on finding plausibly exogenous variation

in assignment of 𝐷𝑖:
▶ Instrumental variables (randomization + exclusion restriction)
▶ Over-time variation (diff-in-diff, fixed effects)
▶ Arbitrary thresholds for treatment assignment (RDD)



3/ No unmeasured
confounders and OLS



Justifying regression

• We know how randomized experiments imply that
differences-in-means identify the ATE.

• In the next few weeks, we’ll work through how no unmeasured
confounding justifies a number of estimation strategies.

• Today, it’s useful to walk through what no unmeasured
confounding can buy us in a familiar setting: OLS.

▶ We’ll cover regression more formally later.



Constant effects set up

• Assume a constant effects setup:

𝑌𝑖(0) = 𝛼 + 𝑋′
𝑖 𝛽 + 𝑢𝑖

𝑌𝑖(1) = 𝛼 + 𝜏 + 𝑋′
𝑖 𝛽 + 𝑢𝑖

• Constant effects because 𝑌𝑖(1) − 𝑌𝑖(0) = 𝜏 for all units.
• Use consistency to get the usual regression formula:

𝑌𝑖 = 𝑌𝑖(1)𝐷𝑖 + 𝑌𝑖(0)(1 − 𝐷𝑖)
= 𝑌𝑖(0) + 􏿴𝑌𝑖(1) − 𝑌𝑖(0)􏿷 ⋅ 𝐷𝑖

= 𝛼 + 𝜏 ⋅ 𝐷𝑖 + 𝑋′
𝑖 𝛽 + 𝑢𝑖

• Does no unmeasured confounding help us identify the causal
parameter 𝜏?



Regression on residuals

• First estimate the residuals of regression of the treatment and
outcome on the covariates:

𝑌̃𝑖 = 𝑌𝑖 − 𝔼[𝑌𝑖|𝑋𝑖]
𝐷̃𝑖 = 𝐷𝑖 − 𝔼[𝐷𝑖|𝑋𝑖]

• Running a regression of 𝑌̃𝑖 on 𝐷̃𝑖 is equivalent to controlling
for 𝑋𝑖:

𝑌𝑖 = 𝛼 + 𝜏 ⋅ 𝐷𝑖 + 𝑋′
𝑖 𝛽 + 𝑢𝑖

𝑌̃𝑖 = 𝛼 + 𝜏 ⋅ 𝐷̃𝑖 + 𝑢̃𝑖
• Here, 𝑢̃𝑖 = 𝑢𝑖 − 𝔼[𝑢𝑖|𝑋𝑖].



What does OLS estimate?

• Using the usual OLS theory, we can show that the probability
limit of the OLS estimator of 𝜏 is:

plim 𝜏̂􏹠􏹝􏹤 =
Cov(𝐷̃𝑖, 𝑌̃𝑖)
Var(𝐷̃𝑖)

= Cov(𝐷̃𝑖, 𝛼 + 𝜏 ⋅ 𝐷̃𝑖 + 𝑢̃𝑖)
Var(𝐷̃𝑖)

= 𝜏 ⋅ Cov(𝐷̃𝑖, 𝐷̃𝑖) + Cov(𝐷̃𝑖, 𝑢̃𝑖)
Var(𝐷̃𝑖)

= 𝜏 + Cov(𝐷̃𝑖, 𝑢̃𝑖)
Var(𝐷̃𝑖)



Key OLS assumption

plim 𝜏̂􏹠􏹝􏹤 = 𝜏 + Cov(𝐷̃𝑖, 𝑢̃𝑖)
Var(𝐷̃𝑖)

• Key identification comes from: Cov(𝐷̃𝑖, 𝑢̃𝑖) = 0
▶ Conditional on 𝑋𝑖, no relationship between 𝐷𝑖 and 𝑢𝑖.

• Note: 𝑢𝑖 is a function of 𝑋𝑖 and 𝑌𝑖(𝑑).
▶ 𝑢𝑖 = 𝑌𝑖(0) − 𝛼 − 𝑋′

𝑖 𝛽 when 𝐷𝑖 = 0
▶ 𝑢𝑖 = 𝑌𝑖(1) − 𝛼 − 𝜏 − 𝑋′

𝑖 𝛽 when 𝐷𝑖 = 1
▶ ⇝ condition on 𝑋𝑖, only variation in 𝑢𝑖 comes from 𝑌𝑖(𝑑)

• No unmeasured confounding implies this assumption:

𝐷𝑖 ⟂⟂ 􏿴𝑌𝑖(1), 𝑌𝑖(0)􏿷|𝑋𝑖 ⟹ 𝐷𝑖 ⟂⟂ 𝑢𝑖|𝑋𝑖 ⟹ Cov(𝐷̃𝑖, 𝑢̃𝑖) = 0



Omitted variable bias

• What happens when this is violated? Suppose that there is
one omitted variable (residualized from 𝑋𝑖):

𝑢̃𝑖 = 𝜆𝐿̃𝑖 + 𝜔𝑖

• We’ll assume that if we could measure 𝐿𝑖, then no
unmeasured confounding would hold.

• Leads to inconsistency in the OLS estimator:

plim 𝜏̂􏹠􏹝􏹤 = 𝜏 + 𝜆Cov(𝐷̃𝑖, 𝐿̃𝑖)
Var(𝐷̃𝑖)

• Bias here is terms multiplied together:
1. coefficient on 𝐿𝑖, (𝜆)
2. the coefficient of regression of 𝐷𝑖 on 𝐿𝑖 also controlling for 𝑋𝑖



4/ Estimating causal
effects under no
unmeasured
confounders



Basic approach to estimation

• Remember the usual approach to estimating the ATE with
covariates.

• Stratification:
▶ Stratify the units by the covariates
▶ Calculate CATE within these strata

• Standardization/direct adjustment:
▶ Average the CATEs across the strata to get ATE

• How to create strata when 𝑋 has continuous components?
▶ If 𝑋 is discrete with only a few levels, can use the exact values

of 𝑋.
▶ Otherwise, we may have to subclassify/coarsen the data.



Classic example: cigars/pipes versus
cigarettes

• 𝐷𝑖 = 1 for pipe/cigar smokers, 𝐷𝑖 = 0 for cigarette smokers.
• 𝑌𝑖 = death in the first year of follow-up
• Naive positive effect: cigar/pipe smokers more likely to die.

▶ What’s the confounder here? Age!
▶ Pipe/cigar smokers much older than cigarette smokers.

• Cochran’s approach: stratify based on coarsened age:
▶ Divide age into 𝑘 strata: 𝑆𝑖 ∈ 𝑠􏷠, 𝑠􏷡, … , 𝑠𝑘
▶ 𝑠􏷠 might be 18-25, 𝑠􏷡 might be 26-35, and so on.
▶ Calculate effect within strata and aggregate.

• Key assumption: no unmeasured confounders using stratified
version of age.

𝐷𝑖 ⟂⟂ 􏿴𝑌𝑖(0), 𝑌𝑖(1)􏿷|𝑆𝑖



Stratification on the propensity score

• What about when 𝑋 has has many dimensions?
• Curse of dimensionality: there will be very few, if any, units in

a given stratum of 𝑋𝑖.
• Stratify on a low-dimensional summary, the propensity score:

𝑒(𝑥) = ℙ[𝐷𝑖 = 1|𝑋𝑖 = 𝑥]

▶ PS = unit’s probability of being treated, conditional on 𝑋𝑖

• For a particular unit, this is 𝑒(𝑋𝑖) = ℙ[𝐷𝑖 = 1|𝑋𝑖]
• Rosenbaum and Rubin (1983) showed that:

𝐷𝑖 ⟂⟂ 􏿴𝑌𝑖(0), 𝑌𝑖(1)􏿷 | 𝑋𝑖 ⟹ 𝐷𝑖 ⟂⟂ 􏿴𝑌𝑖(0), 𝑌𝑖(1)􏿷 | 𝑒(𝑋𝑖)

▶ ⇝ stratifying on 𝑒𝑖 is the same as stratifying on the full 𝑋𝑖.



Propensity score as balancing score

• The propensity score is actually a balancing score, which
means that

𝐷𝑖 ⟂⟂ 𝑋𝑖 | 𝑒(𝑋𝑖)

• Conditional on the propensity score, treatment is independent
of the covariates.

▶ Treatment status is said to be balanced
▶ 𝑓(𝑋𝑖|𝐷𝑖 = 1, 𝑒(𝑋𝑖)) = 𝑓(𝑋𝑖|𝐷𝑖 = 0, 𝑒(𝑋𝑖))

• Of course, we have to know the true PS to have all these
results work!



Estimating the propensity score

• Of course, in observational studies, we don’t know the
propensity score.

• We would run a parametric model with parameters 𝛾 to
estimate the propensity scores:

1. Estimate 𝛾̂
2. Create 𝑒̂𝑖 = Pr[𝐷𝑖 = 1|𝑋𝑖; 𝛾̂]

• For instance, in R, we could easily calculate the propensity
scores using the glm function:

pscores <- glm(treat ~ var1 + var2 + var3, data = mydata,

family = binomial())$fitted.values



Propensity score specifics

• What variables do we include in the propensity score model?
▶ Any set of variables that blocks all the backdoor paths from 𝐷𝑖

to 𝑌𝑖.

• Check balance within strata of 𝑒̂𝑖. Covariates should be
balanced:

𝑓(𝑋𝑖|𝐷𝑖 = 1, 𝑒̂𝑖) = 𝑓(𝑋𝑖|𝐷𝑖 = 0, 𝑒̂𝑖)

• Can also use automated/nonparametric tools for estimating 𝑒̂𝑖.
▶ Covariate Balancing Propensity Scores (Imai and Ratkovic)



Stratifying by the propensity score

• How will we use the propensity score?
▶ Matching (next week), Weighting (two weeks), Regression

(three weeks)
• Today: coarsening the propensity score and stratifying
• Choose boundary points: 0 = 𝑏􏷟 < 𝑏􏷠 < … < 𝑏𝐾−􏷠 < 𝑏𝐾 = 1.
• Create block indicators:

𝐵𝑖(𝑘) =

⎧⎪⎪⎨
⎪⎪⎩
1 if 𝑏𝑘−􏷠 < 𝑒̂(𝑋𝑖) < 𝑏𝑘,
0 otherwise

• Calculate within-strata effect estimates:

𝜏𝑘 = 𝔼[𝑌𝑖|𝐷𝑖 = 1, 𝐵𝑖(𝑘) = 1] − 𝔼[𝑌𝑖|𝐷𝑖 = 0, 𝐵𝑖(𝑘) = 1]



Standardization/direct adjustment

• We calculated the CATEs for each strata of the PS, 𝜏𝑘.
• We can use law of iterated expectations to back out the ATE.
• Take the average of the CATEs over the distribution of 𝑋:

𝜏 =
𝐾
􏾜
𝑘=􏷠

𝜏𝑘ℙ[𝐵𝑖(𝑘) = 1]

• Note that ℙ[𝐵𝑖(𝑘) = 1] is just the proportion of units in block 𝑘:

ℙ[𝐵𝑖(𝑘) = 1] =
∑𝑁

𝑖=􏷠 𝐵𝑖(𝑘)
𝑁



5/ Wrapping Up



Summary

• Defined observational studies
• Defined confounding and assessed when no unmeasured

confounding holds
• Saw how no unmeasured confounding helps with OLS
• Saw how to estimate causal effects under no unmeasured

confounding using the propensity score.



Next few weeks

• Learn how to estimate causal effects under no unmeasured
confounders via:

▶ Matching
▶ Weighting
▶ Regression

• Then we move onto situations where no unmeasured
confounders is violated.
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