Gov 2002: 4. Observational Studies and Confounding

Matthew Blackwell

September 10, 2015

Where are we? Where are we going?

- Last two weeks: randomized experiments.
- From here on: observational studies.
 - What are they?
 - How do they admit the possiblity of confounding?
 - How can we adjust for confounding?

1/ Observational studies

Experiment review

- An experiment is a study where assignment to treatment is controlled by the researcher.
 - $p_i = \mathbb{P}[D_i = 1]$ be the probability of treatment assignment probability.
 - p_i is controlled and known by researcher in an experiment.
- A randomized experiment is an experiment with the following properties:
- 1. Positivity: assignment is probabilistic: $0 < p_i < 1$
 - No deterministic assignment.
- 2. Unconfoundedness: $\mathbb{P}[D_i = 1 | \mathbf{Y}(1), \mathbf{Y}(0)] = \mathbb{P}[D_i = 1]$
 - Treatment assignment does not depend on any potential outcomes.
 - Sometimes written as $D_i \perp (\mathbf{Y}(1), \mathbf{Y}(0))$

Observational studies

- Many different sets of identification assumptions that we'll cover.
- To start, focus on studies that are similar to experiments, just without a known and controlled treatment assignment.
 - No guarantee that the treatment and control groups are comparable.
- 1. Positivity: assignment is probabilistic:

 $0 < \mathbb{P}[D_i = 1 | \mathbf{X}, \mathbf{Y}(1), \mathbf{Y}(0)] < 1$

2. No unmeasured confounding:

 $\mathbb{P}[D_i = 1 | \mathbf{X}, \mathbf{Y}(1), \mathbf{Y}(0)] = \mathbb{P}[D_i = 1 | \mathbf{X}]$

- For some observed X
- Also called: unconfoundedness, ignorability, selection on observables, no omitted variables, exogenous, conditional exchangeable, etc.

Designing observational studies

- Rubin (2008) argues that we should still "design" our observational studies:
 - Pick the ideal experiment to this observational study.
 - Hide the outcome data.
 - Try to estimate the randomization procedure.
 - Analyze this as an experiment with this estimated procedure.
- Tries to minimize "snooping" by picking the best modeling strategy before seeing the outcome.

Discrete covariates

- Suppose that we knew that D_i was unconfounded within levels of a binary X_i.
- Then we could always estimate the causal effect using iterated expectations as in a stratified randomized experiment:

$$\mathbb{E}_{X}\left\{\mathbb{E}[Y_{i}|D_{i}=1,X_{i}]-\mathbb{E}[Y_{i}|D_{i}=0,X_{i}]\right\}$$

$$=\underbrace{\left(\mathbb{E}[Y_{i}|D_{i}=1,X_{i}=1]-\mathbb{E}[Y_{i}|D_{i}=0,X_{i}=1]\right)}_{\text{diff-in-means for }X_{i}=1}\underbrace{\mathbb{P}[X_{i}=1]}_{\text{share of }X_{i}=1}$$

$$+\underbrace{\left(\mathbb{E}[Y_{i}|D_{i}=1,X_{i}=0]-\mathbb{E}[Y_{i}|D_{i}=0,X_{i}=0]\right)}_{\text{diff-in-means for }X_{i}=0}\underbrace{\mathbb{P}[X_{i}=0]}_{\text{share of }X_{i}=0}$$

 Never used our knowledge of the randomization for this quantity.

Continuous covariates

- So, great, we can stratify. Why not do this all the time?
- What if X_i = income for unit i?
 - ▶ Each unit has its own value of X_i: \$54,134, \$123,043, \$23,842.
 - If $X_i = 54134$ is unique, will only observe 1 of these:

 $\mathbb{E}[Y_i|D_i = 1, X_i = 54134] - \mathbb{E}[Y_i|D_i = 0, X_i = 54134]$

- \rightsquigarrow cannot stratify to each unique value of X_i :
- Practically, this is massively important: almost always have data with unique values.

Going to a superpopulation

- From here on out, we'll focus less on the finite population model.
 - Harder with (functionally) continuous covariates.
- Assume that each unit *i* is drawn from an infinite superpopulation,
 - ▶ implies that (Y_i(0), Y_i(1), D_i, X_i) are a draw from their population joint distribution.
- Potential outcomes are now typical random variables.
 - $\mu_c(x) = \mathbb{E}[Y_i(0)|X_i = x]$ and $\mu_t(x) = \mathbb{E}[Y_i(1)|X_i = x]$
 - $\sigma_c^2(x) = \mathbb{V}[Y_i(0)|X_i = x]$ and $\sigma_t^2(x) = \mathbb{V}[Y_i(1)|X_i = x]$
 - $\tau = \mathbb{E}[\mu_t(x) \mu_c(x)|X_i = x]$

Assumptions in the superpopulation

- With an infinite superpopulation, worry less about conditioning on the entire sample.
 - Units are now independent due to random sampling from an infinite population.
- No unmeasured confoudning implies that:

$$\mathbb{P}(D_i = 1 | Y_i(0), Y_i(1), X_i) = \mathbb{P}(D_i = 1 | X_i)$$

• Or, written using conditional independence:

$$D_i \perp (Y_i(0), Y_i(1)) | X_i$$

Positivity can be written: 0 < P(D_i = 1|X_i = x) < 1 for all x in the support of X_i.

2/ Confounding

What is confounding?

- Confounding is the bias caused by common causes of the treatment and outcome.
 - Leads to "spurious correlation."
- In observational studies, the goal is to avoid confounding inherent in the data.
- Pervasive in the social sciences:
 - effect of income on voting (confounding: age)
 - effect of job training program on employment (confounding: motivation)
 - effect of political institutions on economic development (confounding: previous economic development)
- No unmeasured confounding assumes that we've measured all sources of confounding.

Big problem

- How can we determine if no unmeasured confounding holds if we didn't assign the treatment?
- Put differently:
 - What covariates do we need to condition on?
 - What covariates do we need to match on?
 - What covaraites do we need to include in our regressions?
- One way, from the assumption itself:
 - $\blacktriangleright \mathbb{P}[D_i = 1 | \mathbf{X}, \mathbf{Y}(1), \mathbf{Y}(0)] = \mathbb{P}[D_i = 1 | \mathbf{X}]$
 - Include covariates such that, conditional on them, the treatment assignment does not depend on the potential outcomes.
- Another way: use DAGs and look at back-door paths.

Backdoor paths and blocking paths

- Backdoor path: is a non-causal path from *D* to *Y*.
 - Would remain if we removed any arrows pointing out of D.
- Backdoor paths between D and Y → common causes of D and Y:

Here there is a backdoor path D ← X → Y, where X is a common cause for the treatment and the outcome.

Other types of confounding

$$\begin{array}{c} U \dashrightarrow X \\ \downarrow & \downarrow \\ D \dashrightarrow Y \end{array}$$

- *D* is enrolling in a job training program.
- Y is getting a job.
- U is being motivated
- X is number of job applications sent out.
- Big assumption here: no arrow from U to Y.

Other types of confounding

$$\begin{array}{ccc} U \dashrightarrow X \\ \downarrow & \downarrow \\ D \dashrightarrow Y \end{array}$$

- D is exercise.
- Y is having a disease.
- U is lifestyle.
- X is smoking
- Big assumption here: no arrow from U to Y.

What's the problem with backdoor paths?

- A path is blocked if:
 - 1. we control for or stratify a non-collider on that path OR
 - 2. we do not control for a collider.
- Unblocked backdoor paths ~→ confounding.
- In the DAG here, if we condition on X, then the backdoor path is blocked.

Not all backdoor paths

- Conditioning on the posttreatment covariates opens the non-causal path.
 - \blacktriangleright \rightsquigarrow selection bias.

M-bias

- Not all backdoor paths induce confounding.
- This backdoor path is blocked by the collider X_i that we don't control for.
- If we control for X_i → opens the path and induces confounding.
 - Sometimes called M-bias.
- Controversial because of differing views on what to control for:
 - Rubin thinks that M-bias is a "mathematical curiosity" and we should control for all pretreatment variables
 - Pearl and others think M-bias is a real threat.

Backdoor criterion

- Can we use a DAG to evaluate no unmeasured confounders?
- Pearl answered yes, with the backdoor criterion, which states that the effect of *D* on *Y* is identified if:
 - 1. No backdoor paths from D to Y OR
 - 2. Measured covariates are sufficient to block all backdoor paths from *D* to *Y*.
- First is really only valid for randomized experiments.
- The backdoor criterion is fairly powerful. Tells us:
 - if there confounding given this DAG,
 - if it is possible to removing the confounding, and
 - what variables to condition on to eliminate the confounding.

SWIGs

- It's a little hard to see how the backdoor criterion implies no unmeasured confounders.
 - No potential outcomes on this graph!
- Richardson and Robins: Single World Intervention Graphs
 - Split D node into natural value (D) and intervention value d.
 - Let all effects of D take their potential value under intervention Y(d).
- Now can see: are *D* and *Y*(*d*) related?
 - $D \leftarrow U \rightarrow X \rightarrow Y(d)$ implies not independent
 - Conditioning on X blocks that backdoor path $\rightsquigarrow D \perp Y(d)|X$

No unmeasured confounders is not testable

No unmeasured confounding places no restrictions on the observed data.

$$\underbrace{\left(Y_{i}(0)\middle|D_{i}=1,X_{i}\right)}_{\text{unobserved}} \stackrel{d}{=} \underbrace{\left(Y_{i}(0)\middle|D_{i}=0,X_{i}\right)}_{\text{observed}}$$

- Here, $\stackrel{d}{=}$ means equal in distribution.
- No way to directly test this assumption without the counterfactual data, which is missing by definition!
- With backdoor criterion, you must have the correct DAG.

Assessing no unmeasured confounders

Dep. var.	Intera	Interactions Presid. Rep. vote share		Placebo specifications Presidential Republican vote share 2000_1996_1996_1992_1988		
	Presid. Rep					
	(1)	(2)	(3)	(4)	(5)	
wailability of Fox News via cable in 2000	0.0109 (0.0042)***	0.0105 (0.0039)***	0.0036 (0.0016)** -0.0001	$^{-0.0024}_{(0.0031)}$	0.0026 (0.0026)	

- Can do "placebo" tests, where D_i cannot have an effect (lagged outcomes, etc)
- Della Vigna and Kaplan (2007, QJE): effect of Fox News availability on Republican vote share
 - Availability in 2000/2003 can't affect past vote shares.
- Unconfoundedness could still be violated even if you pass this test!

Alternatives to no unmeasured confounding

- Without explicit randomization, we need some way of identifying causal effects.
- No unmeasured confounders ≈ randomized experiment.
 - Indentification results very similar to experiments.
- With unmeasured confounding are we doomed? Maybe not!
- Other approaches rely on finding plausibly exogenous variation in assignment of D_i:
 - Instrumental variables (randomization + exclusion restriction)
 - Over-time variation (diff-in-diff, fixed effects)
 - Arbitrary thresholds for treatment assignment (RDD)

3/ No unmeasured confounders and OLS

Justifying regression

- We know how randomized experiments imply that differences-in-means identify the ATE.
- In the next few weeks, we'll work through how no unmeasured confounding justifies a number of estimation strategies.
- Today, it's useful to walk through what no unmeasured confounding can buy us in a familiar setting: OLS.
 - We'll cover regression more formally later.

Constant effects set up

Assume a constant effects setup:

$$Y_i(0) = \alpha + X'_i\beta + u_i$$

$$Y_i(1) = \alpha + \tau + X'_i\beta + u_i$$

- Constant effects because $Y_i(1) Y_i(0) = \tau$ for all units.
- Use consistency to get the usual regression formula:

$$Y_{i} = Y_{i}(1)D_{i} + Y_{i}(0)(1 - D_{i})$$

= $Y_{i}(0) + (Y_{i}(1) - Y_{i}(0)) \cdot D_{i}$
= $\alpha + \tau \cdot D_{i} + X_{i}'\beta + u_{i}$

 Does no unmeasured confounding help us identify the causal parameter τ?

Regression on residuals

• First estimate the residuals of regression of the treatment and outcome on the covariates:

$$\tilde{Y}_i = Y_i - \mathbb{E}[Y_i | X_i]$$
$$\tilde{D}_i = D_i - \mathbb{E}[D_i | X_i]$$

 Running a regression of *Y*_i on *D*_i is equivalent to controlling for *X_i*:

$$\begin{split} Y_i &= \alpha + \tau \cdot D_i + X'_i \beta + u_i \\ \tilde{Y}_i &= \alpha + \tau \cdot \tilde{D}_i + \tilde{u}_i \end{split}$$

• Here, $\tilde{u}_i = u_i - \mathbb{E}[u_i|X_i]$.

What does OLS estimate?

 Using the usual OLS theory, we can show that the probability limit of the OLS estimator of τ is:

$$plim \ \hat{\tau}_{OLS} = \frac{Cov(\tilde{D}_i, \tilde{Y}_i)}{Var(\tilde{D}_i)}$$
$$= \frac{Cov(\tilde{D}_i, \alpha + \tau \cdot \tilde{D}_i + \tilde{u}_i)}{Var(\tilde{D}_i)}$$
$$= \frac{\tau \cdot Cov(\tilde{D}_i, \tilde{D}_i) + Cov(\tilde{D}_i, \tilde{u}_i)}{Var(\tilde{D}_i)}$$
$$= \tau + \frac{Cov(\tilde{D}_i, \tilde{u}_i)}{Var(\tilde{D}_i)}$$

Key OLS assumption

plim
$$\hat{\tau}_{OLS} = \tau + \frac{\text{Cov}(\tilde{D}_i, \tilde{u}_i)}{\text{Var}(\tilde{D}_i)}$$

- Key identification comes from: $Cov(\tilde{D}_i, \tilde{u}_i) = 0$
 - Conditional on X_i , no relationship between D_i and u_i .
- Note: u_i is a function of X_i and $Y_i(d)$.

•
$$u_i = Y_i(0) - \alpha - X'_i\beta$$
 when $D_i = 0$

•
$$u_i = Y_i(1) - \alpha - \tau - X'_i\beta$$
 when $D_i = 1$

- \rightsquigarrow condition on X_i , only variation in u_i comes from $Y_i(d)$
- No unmeasured confounding implies this assumption:

$$D_i \coprod (Y_i(1), Y_i(0)) | X_i \implies D_i \coprod u_i | X_i \implies \operatorname{Cov}(\tilde{D}_i, \tilde{u}_i) = 0$$

Omitted variable bias

 What happens when this is violated? Suppose that there is one omitted variable (residualized from X_i):

$$\tilde{u}_i = \lambda \tilde{L}_i + \omega_i$$

- We'll assume that if we could measure *L_i*, then no unmeasured confounding would hold.
- Leads to inconsistency in the OLS estimator:

plim
$$\hat{\tau}_{OLS} = \tau + \lambda \frac{\text{Cov}(\tilde{D}_i, \tilde{L}_i)}{\text{Var}(\tilde{D}_i)}$$

- Bias here is terms multiplied together:
 - 1. coefficient on L_i , (λ)
 - 2. the coefficient of regression of D_i on L_i also controlling for X_i

4/ Estimating causal effects under no unmeasured confounders

Basic approach to estimation

- Remember the usual approach to estimating the ATE with covariates.
- Stratification:
 - Stratify the units by the covariates
 - Calculate CATE within these strata
- Standardization/direct adjustment:
 - Average the CATEs across the strata to get ATE
- How to create strata when X has continuous components?
 - ► If X is discrete with only a few levels, can use the exact values of X.
 - Otherwise, we may have to subclassify/coarsen the data.

Classic example: cigars/pipes versus cigarettes

- $D_i = 1$ for pipe/cigar smokers, $D_i = 0$ for cigarette smokers.
- Y_i = death in the first year of follow-up
- Naive positive effect: cigar/pipe smokers more likely to die.
 - What's the confounder here? Age!
 - Pipe/cigar smokers much older than cigarette smokers.
- Cochran's approach: stratify based on coarsened age:
 - ▶ Divide age into k strata: $S_i \in s_1, s_2, ..., s_k$
 - s_1 might be 18-25, s_2 might be 26-35, and so on.
 - Calculate effect within strata and aggregate.
- Key assumption: no unmeasured confounders using stratified version of age.

 $D_i \perp (Y_i(0), Y_i(1)) | S_i$

Stratification on the propensity score

- What about when X has has many dimensions?
- Curse of dimensionality: there will be very few, if any, units in a given stratum of X_i.
- Stratify on a low-dimensional summary, the propensity score:

$$e(x) = \mathbb{P}[D_i = 1 | X_i = x]$$

- PS = unit's probability of being treated, conditional on X_i
- For a particular unit, this is $e(X_i) = \mathbb{P}[D_i = 1|X_i]$
- Rosenbaum and Rubin (1983) showed that:

$$D_i \coprod (Y_i(0), Y_i(1)) \mid X_i \implies D_i \coprod (Y_i(0), Y_i(1)) \mid e(X_i)$$

• \rightsquigarrow stratifying on e_i is the same as stratifying on the full X_i .

Propensity score as balancing score

 The propensity score is actually a balancing score, which means that

 $D_i \perp X_i \mid e(X_i)$

- Conditional on the propensity score, treatment is independent of the covariates.
 - Treatment status is said to be balanced
 - $f(X_i|D_i = 1, e(X_i)) = f(X_i|D_i = 0, e(X_i))$
- Of course, we have to know the true PS to have all these results work!

Estimating the propensity score

- Of course, in observational studies, we don't know the propensity score.
- We would run a parametric model with parameters γ to estimate the propensity scores:
- 1. Estimate $\hat{\gamma}$
- 2. Create $\hat{e}_i = \Pr[D_i = 1 | X_i; \hat{\gamma}]$
- For instance, in R, we could easily calculate the propensity scores using the glm function:

pscores <- glm(treat ~ var1 + var2 + var3, data = mydata, family = binomial())\$fitted.values

Propensity score specifics

- What variables do we include in the propensity score model?
 - Any set of variables that blocks all the backdoor paths from D_i to Y_i.
- Check balance within strata of *ê_i*. Covariates should be balanced:

$$f(X_i|D_i = 1, \hat{e}_i) = f(X_i|D_i = 0, \hat{e}_i)$$

- Can also use automated/nonparametric tools for estimating ê_i.
 - Covariate Balancing Propensity Scores (Imai and Ratkovic)

Stratifying by the propensity score

- How will we use the propensity score?
 - Matching (next week), Weighting (two weeks), Regression (three weeks)
- Today: coarsening the propensity score and stratifying
- Choose boundary points: $0 = b_0 < b_1 < ... < b_{K-1} < b_K = 1$.
- Create block indicators:

$$B_i(k) = \begin{cases} 1 & \text{if } b_{k-1} < \hat{e}(X_i) < b_k, \\ 0 & \text{otherwise} \end{cases}$$

Calculate within-strata effect estimates:

$$\tau_k = \mathbb{E}[Y_i | D_i = 1, B_i(k) = 1] - \mathbb{E}[Y_i | D_i = 0, B_i(k) = 1]$$

Standardization/direct adjustment

- We calculated the CATEs for each strata of the PS, τ_k .
- We can use law of iterated expectations to back out the ATE.
- Take the average of the CATEs over the distribution of X:

$$\tau = \sum_{k=1}^{K} \tau_k \mathbb{P}[B_i(k) = 1]$$

• Note that $\mathbb{P}[B_i(k) = 1]$ is just the proportion of units in block k:

$$\mathbb{P}[B_i(k) = 1] = \frac{\sum_{i=1}^N B_i(k)}{N}$$

5/ Wrapping Up

Summary

- Defined observational studies
- Defined confounding and assessed when no unmeasured confounding holds
- Saw how no unmeasured confounding helps with OLS
- Saw how to estimate causal effects under no unmeasured confounding using the propensity score.

Next few weeks

- Learn how to estimate causal effects under no unmeasured confounders via:
 - Matching
 - Weighting
 - Regression
- Then we move onto situations where no unmeasured confounders is violated.