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where are we? where are we going?
• We described a formal way to talk about uncertain outcomes, probability.

• We’ve talked about how to use that framework to characterize and summarize
the uncertainty in one random variable.

• This is fine if we want to talk about the mean of some variable or the variance
of some variable, but for regression we are going to want to know what the re-
lationships are between variables. To understand those relationships, we need
a few more concepts about how to deal with multiple random variables at the
same time.

• Remember that right nowwhatwe are doing is defining things about probability
distribution that we might want to learn about. In the coming weeks, we are
going to turn to estimating these features of the probability distribution.
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joint and conditional distributions
• Remember whenwe defined probability we talked a lot about joint probabilities

of events—what was the probability ofA andB occurring: P(A∩B). We also
talked about the conditional probability of A given that B occurred.

• It turns out that a very important part of statistical inference is thinking about
more than one r.v. at the same time. This will be crucial to regression when
we want to think about the how the distribution of one variable changes under
different values of another variable.

• For instance, we might want to know if changing the number of negative ads in
elections changes the distribution of turnout. In order to answer these sorts of
questions, we need to understand how to relate two r.v.s.

• Generally, the joint distribution of two (or more) variables describes the pairs
of observations (one for each covariate) that we are more or less likely to see.

• We’re going to think about two r.v.s now, X and Y , each defined on the real
line,R. This means that if we think about them together, (X,Y ) then one draw
from the distribution of this pair will be in a subset of two-dimensional space,
or R× R:

X

Y

(x, y)

• Imagine the joint distribution like this: imagine we are throwing darts onto this
two-dimensional board. The joint distribution tells us where the darts are more
likely to land and where we should see the highest density of darts.
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• You should also note that our distributions might be limited to a subset of the
real line. If you think about two Uniform variables, then they can only be be-
tween 0 and 1 in either dimension. Discrete r.v.s also are typically only defined
on the integers. The key is that with two r.v.s, there are now two dimensions to
deal with.

Discrete r.v.s

• Let X and Y both be discrete random variables. Just as before we talked about
the joint probability of two events occurring, we can also think about the joint
probability of these two variables taking certain values.

• Definition: The joint distribution of (X,Y ) can be fully described by the joint
probability mass function:

fX,Y (x, y) = P(X = x, Y = y) = P({X = x} ∩ {Y = y})

To be clear, this is the probability that X = x and that Y = y. The second
formulation ties this explicitly to the joint probability of two events.

• Given the nature of probabilities, we know a few restrictions on this function:
fX,Y (x, y) ≥ 0 and

∑
x

∑
y fX,Y (x, y) = 1. The first is saying that the joint

probabilities can’t be negative and the second is saying that something must
happen—the sum of the probabilities across all pairs of outcomes is 1.

• With discrete r.v.s this is very similar to thinking about a cross-tab, with fre-
quencies/probabilities in the cells instead of raw numbers.

Favor Gay Marriage Oppose Gay Marriage Marginal
Y = 1 Y = 0

Female X = 1 0.2997988 0.2122736 0.5120724
Male X = 0 0.2162978 0.2716298 0.4879276

Marginal 0.5160966 0.4839034 1

• One question you probably have is how we relate this joint distribution to the
distributions over a single variable, which we sometimes call the marginal dis-
tribution. It turns out there is a simple way to recover the marginal from the
joint, a process we call marginalization (we marginalize over X in this case).

• Definition: If (X,Y ) have a joint distribution with mass function fX,Y , then
the marginal mass function for Y is defined as:

fY (y) = P(Y = y) =
∑
x

P(X = x, Y = x) =
∑
x

fX,Y (x, y)
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• Why does this work? You can think of the marginal probability of a particular
value (say, supporting gay marriage) as being the union of a bunch of disjoint
sets: supporting gay marriage and having a certain gender. We know how to
deal with the probability of the union of disjoint sets! We add them together!
To get the probability that someone, man or woman, would favor gay marriage,
we simply add the probability of a woman supporting gay marriage (P(Y =
1, X = 1)) and the probability that a man supports gay marriage (P(Y =
1, X = 0)).

• A very important type of distribution is the conditional distribution, which tells
us how what the distribution of a variable is given that we know the outcome of
another variable.

• Definition: The conditional probability mass function or conditional pmf of
Y conditional of X is

fY |X(y|x) = P({X = x} ∩ {Y = y})
P(X = x)

=
fX,Y (x, y)

fX(x)

• For instance, what’s the probability of supporting gay marriage conditional on
being a man?

fY |X(y = 1|x = 0) =
P({X = 0} ∩ {Y = 1})

P(X = 0)
=

0.2162978

0.2162978 + 0.2716298
= 0.443299

• We might ask how that differs from the probability of supporting gay marriage
conditional on being a woman P(Y = 1|X = 1). First, why isn’t this just going
to be 1− P(Y = 1|X = 0)? Here’s how we do it:

fY |X(y = 1|x = 1) =
P({X = 1} ∩ {Y = 1})

P(X = 1)
=

0.2997988

0.2997988 + 0.2122736
= 0.5854617

Continuous r.v.s

• Now, let’s think about the case where X and Y are continuous.
• Definition: For two continuous r.v.s X and Y , the joint probability density
function (or joint PDF) fX,Y (x, y) is a function such that:

1. fX,Y (x, y) ≥ 0 for all values of (x, y),
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2.
∫∞
−∞

∫∞
−∞ fX,Y (x, y)dxdy = 1,

3. for any real numbers, a, b, c, d,

P(a < X < b, c < Y < d) =

∫ d

c

∫ b

a
fX,Y (x, y)dxdy

• We can recover the marginal PDF of one of the variables by integrating over the
distribution of the other variable:

fY (y) =

∫ ∞

−∞
fX,Y (x, y)dx

• Definition: the conditional pdf of a continuous random variable is

fY |X(y|x) =
fX,Y (x, y)

fX(x)

assuming that fX(x) > 0. Then, we have the following:

P(a < Y < b|X = x) =

∫ b

a
fY |X(y|x)dy.

conditional expectation
• When we were looking at univariate/marginal distribution, we wanted sum-

marize those distributions with a couple of numbers—the mean and variance.
Because we are going to be using the conditional distributions a lot in this class,
we’ll want to do the same for those distribution. This leads us to think about
the conditional expectation or conditional mean.

• The conditional expectation is just the mean of some variable given that we
know the value of another variable. It might be the mean number of coups
given a particular type of political institution or it might be the conditional ex-
pectation of ideology given a particular income level. The basic idea behind
regression is that we want to understand how these change as change the value
of the conditioning variable. Are richer people more conservative than poorer
people, on average?

• Definition: The conditional expectation of Y conditional on X = x is:

E[Y |X = x] =


∑
y

y fY |X(y|x) discrete Y∫ ∞

−∞
y fY |X(y|x)dy continuous Y
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• How does this work intuitively? Basically all we are doing here is using the
definitions of expectation, plugging in the conditional distribution of Y given
X in place of the marginal distribution of Y . Everything else is the same.

• Let’s use the gay marriage example from earlier. What’s the conditional expec-
tation of support for gay marriage Y given someone is a manX = 1? Well, let’s
just plug things into the formula:

E[Y |X = 1] = 0× f(y = 0|x = 0) + 1× f(y = 1|x = 0) = 0.443299

• Notice here that the conditional expectation of the binary variable Y is the con-
ditional probability of Y = 1 given a value ofX . Thus, the intuitive connection
between the mean and the proportion in binary variables continues to be true
in the case of conditional expectations.

• For a particular value of X , say x, we can calculate the conditional expectation
for that value. But we can also think aboutE[Y |X] as we allowX to take on dif-
ferent values. If we define µ(X) = E[Y |X], then obviously µ(X) is a random
variable because X is also a random variable.

• Why is this a random variable? Let’s say that X is a binary r.v. Then, before we
observe X , the conditional expectation is a random variable with two possible
values:

E[Y |X] =

{
E[Y |X = 0] with prob. P(X = 0)

E[Y |X = 1] with prob. P(X = 1)

• Because it’s a r.v., the conditional expectation has a mean, E[E[Y |X]]. This is
the average of the conditional means. It also has a variance, V[E[Y |X]], which
how much the conditional expectation varies between different values of X . If
E[Y |X = 1] and E[Y |X = 0] are very different, then V[E[Y |X]] will be high.

• As before we wanted some way to relate conditional distributions to marginal
distribution, wewant to do the samewith conditional expectation and themarginal
mean. The law of iterated expectations does just that. Intuitively, it says that the
average of the conditional expectations is just the overall (marginal) expecta-
tion on Y .

• Theorem (The Law of Iterated Expectations): If the expectation exist,

E[Y ] = E [E[Y |X]] =


∑
x

E[Y |X = x]fX(x) discrete X∫ ∞

−∞
E[Y |X = x]fX(x)dx continuous X
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• Let’s go to the gay marriage example. We already calculated the conditional
means, E[Y |X = 1] = 0.5854617 and E[Y |X = 0] = 0.443299. From
the above table, we also know the marginal distribution of gender (0.4879276
female with X = 1 and 0.5120724 male with X = 0). Thus, we can plug these
in:

E[Y ] = E[Y |X = 0]fX(0) + E[Y |X = 1]fX(1)

= 0.443299× 0.5120724 + 0.5854617× 0.4879276

= 0.5126641

• Basically, here we are taking the conditional expectation for each outcome ofX
and weighting them by the probability that this outcome occurs.

• Properties of conditional expectation:

1. E[c(X)|X] = c(X) for any function c(X). (Basically, any function of X is
a constant with regard to the conditional expectation. If we know X , then we
also know X2, for instance.)

2. If E[Y 2] < ∞ and E[g(X)2] < ∞ for some function g, then

E[(Y − E[Y |X])2|X], ≤ E[(Y − g(X))2|X]

E[(Y − E[Y |X])2] ≤ E[(Y − g(X))2].

• The second property is quite important. It says that the conditional expectation
is the function of X that minimized the squared prediction error for Y across
any possible function of X .

Conditional Variance

• In addition to the conditional expectation, we’ll also want to know the condi-
tional variance. Remember, the conditional distribution of Y given X is basi-
cally like any other probability distribution, so we are going to want to summa-
rize the center and spread.

• Definition: The conditional variance of Y given X = x is defined as:

V[Y |X = x] =


∑
y

(y − E[Y |X = x])2 fY |X(y|x) discrete Y∫ ∞

−∞
(y − E[Y |X = x])2 fY |X(y|x)dy continuous Y
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• Again, V[Y |X] is a random variable and a function of X , just like E[Y |X].
With a binary X :

V[Y |X] =

{
V[Y |X = 0] with prob. P(X = 0)

V[Y |X = 1] with prob. P(X = 1)

• We can also relate the marginal variance to the conditional variance and the
conditional expectation.

• Theorem (Law of Total Variance/EVE’s law):

V[Y ] = E[V[Y |X]] + V[E[Y |X]]

• The total variance can be decomposed into the average of the within group vari-
ance (E[V[Y |X]]) andhowmuch the average varies between groups (V[E[Y |X]]).

independence, normal sums, covariance, and correlation
Independence

• Definition: two r.v.s Y and X are independent (which we write X⊥⊥Y ) if for
all sets A and B:

P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B).

• Basically, two r.v.s are independent if the probabilities of various events for the
two r.v.s are independent. Here’s the intuition behind independence: if I tell you
the value of one of the variables, it gives you no information about the value of
the other variable.

• From this general definition of independence, we can derive the follow property
for independent r.v.s (discrete or continuous):

fX,Y (x, y) = fX(x)fY (y),

where fX(x) and fY (y) are the marginal p.m.f.s or p.d.f.s for X and Y .

• Theorem If X and Y are independent r.v.s, then

E[XY ] = E[X]E[Y ].
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• Proof for discrete X and Y :

E[XY ] =
∑
x

∑
y

xy fX,Y (x, y)

=
∑
x

∑
y

xy fX(x)fY (y)

=

(∑
x

x fX(x)

)(∑
y

y fY (y)

)
= E[X]E[Y ]

• Theorem If X and Y are independent r.v.s, then

E[Y |X] = E[Y ].

• This second theoremencodes the basic intuition about independent r.v.s: know-
ing aboutX gives us no information about the mean of Y , if they are indepen-
dent.

• Independence of r.v.s is massively important to statistics and regression. If we
want to know if there is a causal effect of a treatment (X) on an outcome, we
need to worry if the treatment is independent of any background character-
istics that might cause a spurious relationship. It turns out that randomizing a
treatment will make it independent of any of these backgrounds characteristics.

Conditional Independence

• Definition: Two r.v.sX and Y are conditionally independent givenZ (written
X⊥⊥Y |Z) if

fX,Y |Z(x, y|z) = fX|Z(x|z)fY |Z(y|z).

• Implication:
E[Y |X = x, Z = z] = E[Y |Z = z].

• Basically, sometimes variables might only be independent conditional on some
other variable. For instance, ifX is the number of swimming-related accidents
and Y is the number of ice cream cones sold, then these might only be inde-
pendent conditional on the temperature on a given day Z .
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Covariance

• When we have a joint distribution, we often want to measure the strength of
the relationship between the variables. That is, how dependent are they on one
another? There are two measures of dependence that we will commonly use,
covariance and correlation.

• The covariance between two r.v.s is exactly what it sounds like: it’s a measure of
how they covary. Do high values of one variable tend to occur with high values
of the other? Or do low values of one tend to go with high values of the other?

• Note that covariance measure linear dependence between two r.v.s. It may not
pick up non-linear dependencies between variables.

• Definition: The covariance between two r.v.s, X and Y is defined as:

Cov[X,Y ] = E
[
(X − E[X])(Y − E[Y ])

]
• What is the basic intuition here? Basically, if we X is above its mean when Y

is also above its mean and vice versa, then the covariance will be positive. This
is because (X − E[X]) and (Y − E[Y ]) will either both be positive or both be
negative and, thus, their product will be positive.

• When high values of X tend to occur with low values of Y , then when X is
above its mean (X−E[X]) > 0, then Y will be below its mean (Y −E[Y ]) < 0
and thus the products will be negative. This will lead to negative covariance.

• We can show that Cov[X,Y ] = E[XY ]− E[X]E[Y ].

• What should Cov[X,Y ] be when X⊥⊥Y ? Zero! Why?

Cov[X,Y ] = E[XY ]− E[X]E[Y ]

= E[X]E[Y ]− E[X]E[Y ] = 0

• Thus, independence of two r.v.s implies that there is no covariance between
them. This makes sense—if there was covariance then we could use one to pre-
dict the other and that would violate the intuition behind independence.

• Does Cov[X,Y ] = 0 imply that X⊥⊥Y ? No!

• Let’s say that we haveX ∈ {−1, 0, 1} with equal probability and Y = X2. Are
X and Y independent? No,

P[Y = 1|X = 1] = 1 ̸= 2

3
= P[Y = 1]



11

• But notice that Cov[X,Y ] = 0:

Cov[X,Y ] = E[XX2]− E[X]E[X2] = E[X3]− 0 · E[X2] = E[X] = 0.

• Why can we have zero covariance, but no independence in this example? Be-
cause this is an example of non-linear dependence, which covariance doesn’t
capture. But it is still dependence.

• Properties of covariances:

1. Cov[aX + b, cY + d] = acCov[X,Y ].

2. Cov[X,X] = V[X]

• Properties of variances that we can state now that we know covariance:

1. V[aX + bY + c] = a2V[X] + b2V[Y ] + 2abCov[X,Y ]
2. If X and Y independent, V[X + Y ] = V[X] + V[Y ].

Correlation

• Notice that while it is easy to interpret the sign of the covariance, themagnitude
will depend on the scales of X and Y . So it is hard to compare covariances
across different sets of r.v.s. A bigger covariance just might be an indication of
a different scale, not any “stronger” relationship.

• Correlation is a scale-free measure of linear dependence, so that it is the same
regardless of how we might rescale a variable.

• Definition: The correlation between two r.v.s X and Y is defined as:

ρ = ρ(X,Y ) =
Cov[X,Y ]√
V[X]V[Y ]

=
Cov[X,Y ]

σXσY

• Basically what we are doing here is taking the covariance and dividing out the
scales of the respective variables.

• The correlation is always between -1 and 1. We call those variables that have
correlation of 1 or -1 as perfectly correlated, since this implies a perfect, deter-
ministic linear relationship: Y = a+ bX .
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Sums of Normal distributions

• First off, let’s remember what the Normal distribution is. A variable that has
a Normal distribution with mean µ and variance σ2, which we write X ∼
N(µ, σ2), has the following pdf:

f(x) =
1

σ
√
2π

exp
{
− 1

2σ2
(x− µ)2

}
• The mean and the variance completely describe a Normal distribution so that

if we know those two quantities, then we can answer lots of questions about the
distribution.

• Last time we talked about the standard Normal distribution which has mean
0 and variance 1. It turns out that we can related any Normal to a standard
Normal by subtracting its mean and dividing by the standard deviation. Thus,
if we have X ∼ N(µ, σ2), then we also know that Z = (X − µ)/σ has a
standard Normal distribution, Z ∼ N(0, 1).

• There is another fact about Normals that we can exploit: recentering and rescal-
ing the variable perserves theNormal distribution. Suppose thatX ∼ N(µ, σ2),
then:

1. Y = aX + b has a Normal distribution with Y ∼ N(µ+ b, a2σ2).

• Now that we know these things, we can also talk about the distribution of sums
of independentNormal r.v.s. Suppose thatX ∼ N(µx, σ

2
x) andY ∼ N(µy, σ

2
y)

and they are independent, then the sum of the two r.v.s is also normal.

(X + Y ) ∼ N(µx + µy, σ
2
x + σ2

y)

• You can prove all of these facts using the above properties of means and vari-
ances.
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