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Where are we? Where are we
going?

• We described a formal way to talk about uncertain outcomes,
probability.

• We’ve talked about how to use that framework to characterize
and summarize the uncertainty in one random variable.

• What about relationships between variables? How do we
represent these?

• Need to talk about multiple r.v.s at the same time.
• Remember! We’re learning about the features of some

underlying distribution of the data, which don’t get to observe.
In the coming weeks, we’ll talk about how to estimate these
features using data.



Why multiple random variables?
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• We already looked at the distribution of each variable
separately.

• Now, how do we talk about two variables together?
• ⇝ how do we summarize the relationship between these

variables?



1/ Distributions of
Multiple Random
Variables



Joint and Conditional Probabilities
• Joint probability of two events, 𝐴 and 𝐵: ℙ(𝐴 ∩ 𝐵)
• Conditional probability of 𝐴 given 𝐵:

ℙ(𝐴|𝐵) = ℙ(𝐴 ∩ 𝐵)
ℙ(𝐵)

• We want to merge these concepts with the concept of random
variables.

▶ How does the distribution of one variable change as we change
the value of another variable?

• Examples:
▶ Does changing the negativity of advertising change the

distribution of turnout?
▶ Does changing economic conditions change the distribution of

support for barriers to trade?
▶ Does changing electoral system change the distribution of

party ideologies?



Joint distributions

𝑋

𝑌
(𝑥, 𝑦)

• The joint distribution of two r.v.s, 𝑋 and 𝑌, describes what
pairs of observations, (𝑥, 𝑦) are more likely than others.

• According to the DGP, should random samples from this joint
distribution be:

▶ clustered in a cloud?
▶ roughly oriented along a line?
▶ some other way?



Discrete r.v.s

• 𝑋 and 𝑌 both be discrete random variables.
• What is the probability that 𝑋 = 𝑥 and 𝑌 = 𝑦 both occur?
• Definition: The can be fully described by the joint

probability mass function of (𝑋, 𝑌) is:

𝑓𝑋,𝑌(𝑥, 𝑦) = ℙ(𝑋 = 𝑥, 𝑌 = 𝑦) = ℙ({𝑋 = 𝑥} ∩ {𝑌 = 𝑦})

• Properties of a joint p.m.f.:
▶ 𝑓𝑋,𝑌 (𝑥, 𝑦) ≥ 0 (probabilities can’t be negative)
▶ ∑

𝑥
∑
𝑦 𝑓𝑋,𝑌 (𝑥, 𝑦) = 1 (something must happen)

▶ ∑
𝑥 is short-hand for “sum over all possible values of 𝑋”



Example: Gay marriage and gender
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Example: Gay marriage and gender
Favor Gay Oppose Gay
Marriage Marriage
𝑌 = 1 𝑌 = 0

Female 𝑋 = 1 0.3 0.21
Male 𝑋 = 0 0.22 0.27

• Joint p.m.f. can be summarized in a cross-tab:
▶ Each cell is the probability of that combination, 𝑓𝑋,𝑌 (𝑥, 𝑦)

• Probability that we randomly select a woman who favors gay
marriage?

𝑓𝑋,𝑌(1, 1) = ℙ(𝑋 = 1, 𝑌 = 1) = 0.3

• Probability that we randomly select a man who favors gay
marriage?

𝑓𝑋,𝑌(0, 1) = ℙ(𝑋 = 0, 𝑌 = 1) = 0.22



Marginal distributions

• Marginal distribution: the probability distribution of one of
the r.v.s.

▶ (Psst, just what we covered last week)

• Computing marginals from the joint p.m.f.:

𝑓𝑌(𝑦) = ℙ(𝑌 = 𝑦) = 
𝑥
𝑓𝑋,𝑌(𝑥, 𝑦)

• Intuition: sum over the probability that 𝑌 = 𝑦 for all possible
values of 𝑥

▶ Works because these are disjoint events that partition the
space of 𝑋

▶ Law of Total Probability in action!



Example: marginals for gay
marriage

Favor Gay Oppose Gay
Marriage Marriage Marginal
𝑌 = 1 𝑌 = 0

Female 𝑋 = 1 0.3 0.21 0.3 + 0.210.51
Male 𝑋 = 0 0.22 0.27 0.22 + 0.270.49

Marginal 0.3 + 0.220.52 0.21 + 0.270.48

• What’s the 𝑓𝑌(1) = ℙ(𝑌 = 1)?
▶ Probability that a man favors gay marriage plus the probability

that a woman favors gay marriage.
𝑓𝑌 (1) = 𝑓𝑋,𝑌 (1, 1) + 𝑓𝑋,𝑌 (0, 1) = 0.3 + 0.22 = 0.52

▶ Disjoint sets ⇝ add their probabilities!
• Works for all marginal distributions!



Conditional distributions

• Conditional distribution: distribution of 𝑌 if we know 𝑋 = 𝑥.
• Definition: The conditional probability mass function or

conditional p.m.f. of 𝑌 conditional of 𝑋 is

𝑓𝑌|𝑋 (𝑦|𝑥) =
ℙ({𝑋 = 𝑥} ∩ {𝑌 = 𝑦})

ℙ(𝑋 = 𝑥) =
𝑓𝑋,𝑌(𝑥, 𝑦)
𝑓𝑋 (𝑥)

• Intuitive definition:

𝑓𝑌|𝑋 (𝑦|𝑥) =
Probability that 𝑋 = 𝑥 and 𝑌 = 𝑦

Probability that 𝑋 = 𝑥



Example: conditionals for gay
marriage
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Example: conditionals for gay
marriage

Favor Gay Oppose Gay
Marriage Marriage Marginal
𝑌 = 1 𝑌 = 0

Female 𝑋 = 1 0.3 0.21 0.51
Male 𝑋 = 0 0.22 0.27 0.49

Marginal 0.52 0.48

• Probability of favoring gay marriage conditional on being a
man?

𝑓𝑌|𝑋 (𝑦 = 1|𝑥 = 0) =
ℙ({𝑋 = 0} ∩ {𝑌 = 1})

ℙ(𝑋 = 0) = 0.22
0.22 + 0.27 = 0.44



Example: conditionals for gay
marriage

Favor Gay Oppose Gay
Marriage Marriage Marginal
𝑌 = 1 𝑌 = 0

Female 𝑋 = 1 0.3 0.21 0.51
Male 𝑋 = 0 0.22 0.27 0.49

Marginal 0.52 0.48

• Probability of favoring gay marriage conditional on being a
woman?

𝑓𝑌|𝑋 (𝑦 = 1|𝑥 = 1) =
ℙ({𝑋 = 1} ∩ {𝑌 = 1})

ℙ(𝑋 = 1) = 0.3
0.3 + 0.21 = 0.59



Continuous r.v.s

𝑋

𝑌
𝐴

• Now, let’s think about the case where 𝑋 and 𝑌 are
continuous.

• ℙ(𝑋 = 𝑥, 𝑌 = 𝑦) = 0 for similar reasons as with single r.v.s.
• We will focus on getting the probability of being in some

subset of the 2-dimensional plane.



Continuous joint p.d.f.

• Definition: For two continuous r.v.s 𝑋 and 𝑌, the joint
probability density function (or joint p.d.f.) 𝑓𝑋,𝑌(𝑥, 𝑦) is a
function such that:

1. 𝑓𝑋,𝑌 (𝑥, 𝑦) ≥ 0 for all values of (𝑥, 𝑦), (non-negative)
2. ∫∞

−∞
∫∞
−∞
𝑓𝑋,𝑌 (𝑥, 𝑦)𝑑𝑥𝑑𝑦 = 1, (probability of anything is 1)

3. for any subset 𝐴 of the 𝑥𝑦-plane,

ℙ((𝑋, 𝑌) ∈ 𝐴) = 
𝐴
𝑓𝑋,𝑌 (𝑥, 𝑦)𝑑𝑥𝑑𝑦

• ℙ((𝑋, 𝑌) ∈ 𝐴) = volume or density under the curve



Joint densities are 3D
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• X and Y axes are on the “floor,” height is the value of
𝑓𝑋,𝑌(𝑥, 𝑦).

• Remember 𝑓𝑋,𝑌(𝑥, 𝑦) ≠ ℙ(𝑋 = 𝑥, 𝑌 = 𝑦).



Probability = volume
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• Probability = volume above a specific region.



Continuous marginal distributions

• We can recover the marginal PDF of one of the variables by
integrating over the distribution of the other variable:

𝑓𝑌(𝑦) = 
∞

−∞
𝑓𝑋,𝑌(𝑥, 𝑦)𝑑𝑥



Visualizing continuous marginals
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• To get the marginal of 𝑋, crush all of the mass of the p.d.f.
𝑓𝑋,𝑌(𝑥, 𝑦) across all the values of 𝑦.

• Think of the integral like a snow plow in the winter, piling up
all of the density into one sliver.



Continuous conditional
distributions

• Definition: the conditional pdf of a continuous random
variable is

𝑓𝑌|𝑋 (𝑦|𝑥) =
𝑓𝑋,𝑌(𝑥, 𝑦)
𝑓𝑋(𝑥)

assuming that 𝑓𝑋 (𝑥) > 0. Then, we have the following:

ℙ(𝑎 < 𝑌 < 𝑏|𝑋 = 𝑥) = 
𝑏

𝑎
𝑓𝑌|𝑋 (𝑦|𝑥)𝑑𝑦.



Conditional distributions as slices
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2/ Properties of
Joint Distributions



Properties of joint distributions

• Single r.v.s had a center and a spread.
• With 2 r.v.s, we can additionally measure how strong the

dependence is between the variables.
• These will be the crucial building blocks for assessing

relationships between variables in real data.



Expectations over multiple r.v.s

• For multiple r.v.s, we have to take expectations over the joint
distribution.

• With discrete 𝑋 and 𝑌:

𝔼[𝑔(𝑋, 𝑌)] = 
𝑥

𝑦
𝑔(𝑥, 𝑦) 𝑓𝑋,𝑌(𝑥, 𝑦)

• Example: suppose we wanted to known the expectation of
𝑋𝑌:

𝔼[𝑋𝑌] = 
𝑥

𝑦
𝑥𝑦 𝑓𝑋,𝑌(𝑥, 𝑦)



Joint expectation example

Favor Gay Oppose Gay
Marriage Marriage Marginal
𝑌 = 1 𝑌 = 0

Female 𝑋 = 1 0.3 0.21 0.51
Male 𝑋 = 0 0.22 0.27 0.49

Marginal 0.52 0.48

• What’s the expectation 𝔼[𝑋𝑌]?

𝔼[𝑋𝑌] =
𝑥

𝑦
𝑥𝑦 𝑓𝑋,𝑌(𝑥, 𝑦)

=1 ⋅ 1 ⋅ 𝑓𝑋,𝑌(1, 1) + 1 ⋅ 0 ⋅ 𝑓𝑋,𝑌(1, 0)
+ 0 ⋅ 1 ⋅ 𝑓𝑋,𝑌(0, 1) + 0 ⋅ 0 ⋅ 𝑓𝑋,𝑌(0, 0)

=1 ⋅ 1 ⋅ 𝑓𝑋,𝑌(1, 1) = 0.3



Independence

• Definition: two r.v.s 𝑌 and 𝑋 are independent (which we
write 𝑋 ⟂⟂ 𝑌) if for all sets 𝐴 and 𝐵:

ℙ(𝑋 ∈ 𝐴,𝑌 ∈ 𝐵) = ℙ(𝑋 ∈ 𝐴)ℙ(𝑌 ∈ 𝐵).

• Knowing the value of 𝑋 gives us no information about the
value of 𝑌.

• If 𝑋 and 𝑌 are independent, then:
▶ 𝑓𝑋,𝑌 (𝑥, 𝑦) = 𝑓𝑋 (𝑥)𝑓𝑌 (𝑦) (joint is the product of marginals)
▶ 𝑓𝑌|𝑋 (𝑦|𝑥) = 𝑓𝑌 (𝑦) (conditional is the marginal)
▶ ℎ(𝑋) ⟂⟂ 𝑔(𝑌) for any functions ℎ() and 𝑔() (functions of

independent r.v.s are independent)



Key properties of independent r.v.s

• Theorem If 𝑋 and 𝑌 are independent r.v.s, then

𝔼[𝑋𝑌] = 𝔼[𝑋]𝔼[𝑌].

• Proof for discrete 𝑋 and 𝑌:

𝔼[𝑋𝑌] = 
𝑥

𝑦
𝑥𝑦 𝑓𝑋,𝑌(𝑥, 𝑦)

= 
𝑥

𝑦
𝑥𝑦 𝑓𝑋 (𝑥)𝑓𝑌(𝑦)

=
⎛
⎜⎜⎜⎜⎝
𝑥
𝑥 𝑓𝑋(𝑥)

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝𝑦

𝑦 𝑓𝑌(𝑦)

⎞
⎟⎟⎟⎟⎟⎠

= 𝔼[𝑋]𝔼[𝑌]



Why independence?

• Independence signals the absence of a relationship between
two variables.

• Later on, we’ll have to make assumptions that two variables
are independent.

• Example:
▶ 𝑋 = 1 for getting a get-out-the-vote mailer, 𝑋 = 0 no mailer
▶ 𝑌 = 1 if the person voted, 𝑌 = 0 if they abstained
▶ If 𝑋 is not independent of background covariates, then we

might find a spurious relationship between 𝑋 and 𝑌.



Conditional Independence

• Definition: Two r.v.s 𝑋 and 𝑌 are conditionally
independent given 𝑍 (written 𝑋 ⟂⟂ 𝑌|𝑍) if

𝑓𝑋,𝑌|𝑍(𝑥, 𝑦|𝑧) = 𝑓𝑋|𝑍(𝑥|𝑧)𝑓𝑌|𝑍(𝑦|𝑧).

• 𝑋 and 𝑌 are independent within levels of 𝑍.
• Example:

▶ 𝑋 = swimming accidents, 𝑌 = number of ice cream cones sold.
▶ In general, dependent.
▶ Conditional on 𝑍 = temperature, independent.



Covariance

• If two variables are not independent, how do we measure the
strength of their dependence?

▶ Covariance
▶ Correlation

• Covariance: how do two r.v.s vary together?
▶ How often do high values of 𝑋 occur with high values of 𝑌?



Defining covariance

• Definition: The covariance between two r.v.s, 𝑋 and 𝑌 is
defined as:

Cov[𝑋, 𝑌] = 𝔼(𝑋 − 𝔼[𝑋])(𝑌 − 𝔼[𝑌])

• We can show that Cov[𝑋, 𝑌] = 𝔼[𝑋𝑌] − 𝔼[𝑋]𝔼[𝑌].



Covariance intuition
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Covariance intuition
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• Large values of 𝑋 tend to occur with large values of 𝑌:
▶ (𝑋 − 𝔼[𝑋])(𝑌 − 𝔼[𝑌]) = (pos. num.)(pos. num) = +

• Small values of 𝑋 tend to occur with small values of 𝑌:
▶ (𝑋 − 𝔼[𝑋])(𝑌 − 𝔼[𝑌]) = (neg. num.)(neg. num) = +

• If these dominate ⇝ positive covariance.



Covariance intuition
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• Large values of 𝑋 tend to occur with small values of 𝑌:
▶ (𝑋 − 𝔼[𝑋])(𝑌 − 𝔼[𝑌]) = (pos. num.)(neg. num) = −

• Small values of 𝑋 tend to occur with large values of 𝑌:
▶ (𝑋 − 𝔼[𝑋])(𝑌 − 𝔼[𝑌]) = (neg. num.)(pos. num) = −

• If these dominate ⇝ negative covariance.



Independence implies zero
covariance

• What should Cov[𝑋, 𝑌] be when 𝑋⟂⟂𝑌? Zero!
• Why?

Cov[𝑋, 𝑌] = 𝔼[𝑋𝑌] − 𝔼[𝑋]𝔼[𝑌]
= 𝔼[𝑋]𝔼[𝑌] − 𝔼[𝑋]𝔼[𝑌] = 0

• Restated: independent r.v.s have 0 covariance.



Zero covariance doesn’t imply
independence

• Does Cov[𝑋, 𝑌] = 0 imply that 𝑋⟂⟂𝑌? No!
• Counterexample: 𝑋 ∈ {−1, 0, 1} with equal probability and
𝑌 = 𝑋 (see notes).

• Covariance is a measure of linear dependence, so it can miss
non-linear dependence.



Properties of variances and
covariances

• Properties of covariances:

1. Cov[𝑎𝑋 + 𝑏, 𝑐𝑌 + 𝑑] = 𝑎𝑐Cov[𝑋, 𝑌].
2. Cov[𝑋, 𝑋] = 𝕍[𝑋]

• Properties of variances that we can state now that we know
covariance:

1. 𝕍[𝑎𝑋 + 𝑏𝑌 + 𝑐] = 𝑎𝕍[𝑋] + 𝑏𝕍[𝑌] + 2𝑎𝑏Cov[𝑋, 𝑌]
2. If 𝑋 and 𝑌 independent, 𝕍[𝑋 + 𝑌] = 𝕍[𝑋] + 𝕍[𝑌].



Example: intercoder reliability

• Suppose we have two RAs coding documents as positive to
negative on a 100-point scale.

• 𝑋 is the score for coder 1, 𝑋 for coder 2.
• Both coders are equally precise: 𝕍[𝑋] = 𝕍[𝑋] = 4.
• Usual strategy: take the average coding of the two: (𝑋+𝑋)


• Question: when will we get the best (lowest variance)

measures of negativity?
▶ When coders are independent so that Cov[𝑋, 𝑋] = 0?
▶ When coders tend to agree so that Cov[𝑋, 𝑋] = 1?
▶ When coders tend to disagree so that Cov[𝑋, 𝑋] = −1?



Independent coders

• What is the variance of the average coding if the codings are
independent?

𝕍
(𝑋 + 𝑋)

2  =
1
4𝕍[𝑋] +

1
4𝕍[𝑋]

= 1
4 ⋅ 4 +

1
4 ⋅ 4

= 1 + 1
= 2



Agreeing coders

• What if they tend to agree so that Cov(𝑋, 𝑋) = 1.

𝕍
(𝑋 + 𝑋)

2  =
1
4𝕍[𝑋] +

1
4𝕍[𝑋] + 2

1
2
1
2Cov[𝑋, 𝑋]

= 1
4 ⋅ 4 +

1
4 ⋅ 4 +

1
2 ⋅ 1

= 1 + 1 + 12
= 2.5



Disagreeing coders

• What if they tend to disagree so that Cov(𝑋, 𝑋) = −1.

𝕍
(𝑋 + 𝑋)

2  =
1
4𝕍[𝑋] +

1
4𝕍[𝑋] + 2

1
2
1
2Cov[𝑋, 𝑋]

= 1
4 ⋅ 4 +

1
4 ⋅ 4 +

1
2 ⋅ −1

= 1 + 1 − 12
= 1.5



Correlation
• Covariance is not scale-free: Cov[2𝑋, 𝑌] = 2Cov[𝑋, 𝑌]

▶ ⇝ hard to compare covriances across different r.v.s
▶ Is a relationship stronger? Or just do to rescaling?

• Correlation is a scale-free measure of linear dependence.
• Definition: The correlation between two r.v.s 𝑋 and 𝑌 is

defined as:

𝜌 = 𝜌(𝑋, 𝑌) = Cov[𝑋, 𝑌]
√𝕍[𝑋]𝕍[𝑌]

= Cov[𝑋, 𝑌]
𝜎𝑋𝜎𝑌

• Basic idea: covariance dividing out the scales of the respective
variables.

• Correlation properties:
▶ −1 ≤ 𝜌 ≤ 1
▶ if |𝜌(𝑋, 𝑌)| = 1, then 𝑋 and 𝑌 are perfectly correlated with a

deterministic linear relationship: 𝑌 = 𝑎 + 𝑏𝑋.



3/ Conditional
Expectation



Why conditional expectations?

• With univariate distributions, we summarized them with the
expectation and the variance.

• Conditional distributions are also univariate distribution and
so we can summarize them with its mean and variance.



Conditional expectations are
important

-4 -2 0 2 4

y
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• Gives us insight into a key question:
▶ How does the mean of 𝑌 change as we change 𝑋?

• Examples:
▶ Expected number of coups across different types of political

institution.
▶ Expectated ideology for at different income levels.



Defining condition expectations

• Definition: The conditional expectation of 𝑌 conditional
on 𝑋 = 𝑥 is:

𝔼[𝑌|𝑋 = 𝑥] =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩


𝑦
𝑦 𝑓𝑌|𝑋 (𝑦|𝑥) discrete 𝑌


∞

−∞
𝑦 𝑓𝑌|𝑋(𝑦|𝑥)𝑑𝑦 continuous 𝑌

• Intuition: exactly the same definition of the expected value
with 𝑓𝑌|𝑋 (𝑦|𝑥) in place of 𝑓𝑌(𝑦)

• The expected value of the (univariate) conditional distribution.



Calculating conditional
expectations

Favor Gay Oppose Gay
Marriage Marriage Marginal
𝑌 = 1 𝑌 = 0

Female 𝑋 = 1 0.3 0.21 0.51
Male 𝑋 = 0 0.22 0.27 0.49

Marginal 0.52 0.48

• What’s the conditional expectation of support for gay
marriage 𝑌 given someone is a man 𝑋 = 0?

𝔼[𝑌|𝑋 = 0] = 
𝑦
𝑦 𝑓𝑌|𝑋 (𝑦|𝑥 = 0)

= 0 × 𝑓(𝑦 = 0|𝑥 = 0) + 1 × 𝑓(𝑦 = 1|𝑥 = 0)

= 1 × 0.22
0.22 + 0.27

= 0.44



Conditional expectations are
random variables

• For a particular 𝑥, we can calculate 𝔼[𝑌|𝑋 = 𝑥].
• But 𝑋 takes on many possible values with uncertainty
⇝ 𝔼[𝑌|𝑋] takes on many possible values with uncertainty.

• ⇝ Conditional expectations are random variables!
• Binary 𝑋:

𝔼[𝑌|𝑋] =
⎧⎪⎨
⎪⎩
𝔼[𝑌|𝑋 = 0] with prob. ℙ(𝑋 = 0)
𝔼[𝑌|𝑋 = 1] with prob. ℙ(𝑋 = 1)

• Has an expectation, 𝔼𝔼[𝑌|𝑋], and a variance, 𝕍𝔼[𝑌|𝑋].



Law of iterated expectations

• Average/mean of the conditional expectations: 𝔼𝔼[𝑌|𝑋].
▶ Can we connect this to the marginal (overall) expectation?

• Theorem (The Law of Iterated Expectations): If the
expectation exist and for discrete 𝑋,

𝔼[𝑌] = 𝔼 [𝔼[𝑌|𝑋]] = 
𝑥
𝔼[𝑌|𝑋 = 𝑥]𝑓𝑋(𝑥)



Example: law of iterated
expectations

Favor Gay Oppose Gay
Marriage Marriage Marginal
𝑌 = 1 𝑌 = 0

Female 𝑋 = 1 0.3 0.21 0.51
Male 𝑋 = 0 0.22 0.27 0.49

Marginal 0.52 0.48 1

• 𝔼[𝑌|𝑋 = 1] = 0.59 and 𝔼[𝑌|𝑋 = 0] = 0.44.
• 𝑓𝑋 (1) = 0.51 (females) and 𝑓𝑋 (0) = 0.49 (males).
• Plug into the iterated expectations:

𝔼[𝔼[𝑌|𝑋]] = 𝔼[𝑌|𝑋 = 0]𝑓𝑋 (0) + 𝔼[𝑌|𝑋 = 1]𝑓𝑋(1)
= 0.44 × 0.49 + 0.59 × 0.51
= 0.52 = 𝔼[𝑌]



Properties of conditional
expectations

1. 𝔼[𝑐(𝑋)|𝑋] = 𝑐(𝑋) for any function 𝑐(𝑋).
▶ Example: 𝔼[𝑋|𝑋] = 𝑋 (If we know 𝑋, then we also know
𝑋)

2. If 𝑋 and 𝑌 are independent r.v.s, then

𝔼[𝑌|𝑋 = 𝑥] = 𝔼[𝑌].

3. If 𝑋 ⟂⟂ 𝑌|𝑍, then

𝔼[𝑌|𝑋 = 𝑥, 𝑍 = 𝑧] = 𝔼[𝑌|𝑍 = 𝑧].



Conditional Variance

• Conditional variance describes the spread of the conditional
distribution around the conditional expectation.

• Definition: The conditional variance of a discrete 𝑌 given
𝑋 = 𝑥 is defined as:

𝕍[𝑌|𝑋 = 𝑥] = 
𝑦
(𝑦 − 𝔼[𝑌|𝑋 = 𝑥]) 𝑓𝑌|𝑋 (𝑦|𝑥)

• Remember the formula for variance:
𝕍[𝑌] = ∑𝑦(𝑦 − 𝔼[𝑌])

𝑓𝑌(𝑦)
• Same idea, replacing marginals with conditionals.



Conditional variance is a random
variable

• Again, 𝕍[𝑌|𝑋] is a random variable and a function of 𝑋, just
like 𝔼[𝑌|𝑋]. With a binary 𝑋:

𝕍[𝑌|𝑋] =
⎧⎪⎨
⎪⎩
𝕍[𝑌|𝑋 = 0] with prob. ℙ(𝑋 = 0)
𝕍[𝑌|𝑋 = 1] with prob. ℙ(𝑋 = 1)



Law of total variance

• We can also relate the marginal variance to the conditional
variance and the conditional expectation.

• Theorem (Law of Total Variance/EVE’s law):

𝕍[𝑌] = 𝔼[𝕍[𝑌|𝑋]] + 𝕍[𝔼[𝑌|𝑋]]

• The total variance can be decomposed into:
1. the average of the within group variance (𝔼[𝕍[𝑌|𝑋]]) and
2. how much the average varies between groups (𝕍[𝔼[𝑌|𝑋]]).



4/ Sums and
Means of Random
Variables



Sums and means are random
variables

• If 𝑋 and 𝑋 are r.v.s, then 𝑋 + 𝑋 is a r.v.
▶ Has a mean 𝔼[𝑋 + 𝑋] and a variance 𝕍[𝑋 + 𝑋]

• The sample mean is a function of sums and so it is a r.v. too:

�̅� = 𝑋 + 𝑋
2



Distribution of sums/means

𝑋 𝑋 𝑋 + 𝑋 �̅�

draw 1 80 83 163 81.5

draw 2 42 47 89 44.5

draw 3 49 45 94 47

draw 4 37 2 39 19.5

⋮ ⋮ ⋮ ⋮ ⋮
distribution
of the sum

distribution
of the mean



Independent and identical r.v.s

• We often will work with independent and identically
distributed r.v.s, 𝑋, … , 𝑋𝑛

▶ Random sample of 𝑛 respondents on a survey question.
▶ Written “i.i.d.”

• Independent: 𝑋𝑖 ⟂⟂ 𝑋𝑗 for all 𝑖 ≠ 𝑗
• Identically distributed: 𝑓𝑋𝑖(𝑥) is the same for all 𝑖

▶ 𝔼[𝑋𝑖] = 𝜇 for all 𝑖
▶ 𝕍[𝑋𝑖] = 𝜎 for all 𝑖



Note on calculating expectations

• A lot of what we have seen so far has been calculating 𝔼[𝑋𝑖]
or 𝔼[𝑌|𝑋 = 𝑥] by plugging into the definition:

𝔼[𝑋𝑖] = 
𝑥
𝑥 𝑓𝑋𝑖(𝑥)

• Moving forward, we will often do the following:
▶ Represent the mean of a particular variable in terms of a

parameter: 𝔼[𝑋𝑖] = 𝜇
▶ Calculate the mean of a function of variables in terms of that

parameter.

• The expected values will come from known properties of
particular families of distributions.



Coders

• Going back to the idea of having coders.
• Imagine that 𝑋, … , 𝑋𝑛 are 𝑛 i.i.d. negativity scores from

different coders.
• The true level of negativity is 𝜇 and each coder:

▶ Get the right level of negativity on average: 𝔼[𝑋𝑖] = 𝜇
▶ Has some spread around the right answer: 𝕍[𝑋𝑖] = 𝜎

• We might want to know if:
1. Does using the sample mean of these coders also give us the

right answer on average?
2. Does using the sample mean reduce the noise of the coders?



Sample sums/mean of i.i.d. r.v.s

• What is the expectation of the sample mean of the i.i.d. r.v.s?

𝔼[�̅�𝑛] = 𝔼

⎡
⎢⎢⎢⎢⎢⎣
1
𝑛

𝑛

𝑖=
𝑋𝑖

⎤
⎥⎥⎥⎥⎥⎦

= 1
𝑛

𝑛

𝑖=
𝔼[𝑋𝑖]

= 1
𝑛𝑛𝜇

= 𝜇
• The expectation of the sample mean is just the mean of each

observation.
• Sample mean ⇝ right answer on average.



Variance of the sample mean

• What about the variance of the sample mean of i.i.d. r.v.s?

𝕍[�̅�𝑛] = 𝕍

⎡
⎢⎢⎢⎢⎢⎣
1
𝑛

𝑛

𝑖=
𝑋𝑖

⎤
⎥⎥⎥⎥⎥⎦

= 1
𝑛

𝑛

𝑖=
𝕍[𝑋𝑖]

= 1
 𝑛𝜎



= 𝜎
𝑛

• Variance of the sample mean is the variance of each
observation divided by the number of observations.

• More coders ⇝ lower variance.



Law of Large Numbers

• Theorem (Weak Law of Large Numbers) Let 𝑋, … , 𝑋𝑛 be a
an i.i.d. draws from a distribution with mean 𝐸[𝑋𝑖] = 𝜇.
Then, as 𝑛 gets large, the distribution of �̅�𝑛 will collapse to a
spike on 𝜇.

• Technically, �̅�𝑛 converges in probability to 𝜇, which means for
all (small) values 𝜀 > 0:

lim
𝑛→∞

ℙ(|�̅�𝑛 − 𝜇| > 𝜀) = 0

• Intuition: The probability of �̅�𝑛 being “far away” from 𝜇 goes
to 0 as 𝑛 gets big.



LLN by simulation in R

nsims <- 10000
holder <- matrix(NA, nrow = nsims, ncol = 6)
bad.holder <- matrix(NA, nrow = nsims, ncol = 6)
for (i in 1:nsims) {

s5 <- rexp(n = 5, rate = 0.5)
s15 <- rexp(n = 15, rate = 0.5)
s30 <- rexp(n = 30, rate = 0.5)
s100 <- rexp(n = 100, rate = 0.5)
s1000 <- rexp(n = 1000, rate = 0.5)
s10000 <- rexp(n = 10000, rate = 0.5)

holder[i, 1] <- mean(s5)
holder[i, 2] <- mean(s15)
holder[i, 3] <- mean(s30)
holder[i, 4] <- mean(s100)
holder[i, 5] <- mean(s1000)
holder[i, 6] <- mean(s10000)

}



LLN in action

0 1 2 3 4

0

1

2

3

4

5

6
D

en
si

ty

n = 15

• Distribution of �̅�



LLN in action
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LLN in action
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LLN in action

0 1 2 3 4

0

1

2

3

4

5

6
D

en
si

ty

n = 1000

• Distribution of �̅�



5/ Wrap-up



Review

• Multiple r.v.s require joint p.m.f.s and joint p.d.f.s
• Multiple r.v.s can have distributions that exhibit dependence

as measured by covariance and correlation.
• The conditional expectation of one variable on the other is an

important quantity that we’ll see over and over again.
• The sample mean of a series of random variables is also a

random variable and has a distribution.
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