Gov 2002: 3. Randomization Inference

Matthew Blackwell

September 10, 2015

Where are we? Where are we going?

Last week:

- What can we identify using randomization?
- Estimators were justified via unbiasedness and consistency.
- Standard errors, test, and CIs were asymptotic.
- Neyman's approach to experiments
- This week:
 - Condition on the experiment at hand.
 - Get correct p-values and CIs just relying on randomization.
 - Fisher's approach to randomized experiments.

Effect of not having a runoff in sub-Sarahan African

- Glynn and Ichino (2012): is not having a runoff (D_i = 1) related to harrassment of opposition parties (Y_i) in sub-Sahara African countries.
- Without runoffs (D_i = 1), only need a plurality → incentives to suppress turnout through intimidation.
- With runoffs (D_i = 0), largest party needs wider support → courting of small parties.

Data on runoffs

	No runoff?	Intimidation		
Unit	D_i	Y_i	$Y_i(0)$	$Y_{i}(1)$
Cameroon	1	1	?	1
Kenya	1	1	?	1
Malawi	1	1	?	1
Nigeria	1	1	?	1
Tanzania	1	0	?	0
Congo	0	0	0	?
Madagascar	0	0	0	?
Central African Republic	0	0	0	?
Ghana	0	0	0	?
Guinea-Bissau	0	0	0	?

- Clear difference-in-means: 0.8
- Very small sample size → can we learn anything from this data?

CA recall election

- Ho & Imai (2006): 2003 CA gubernatorial recall election there were 135 candidates.
- Ballot order was randomly assigned so some people ended up on the first page and some did not.
- Can we detect an effect of being on the first page on the vote share for a candidate?

What is randomization inference?

- Randomization inference (RI) = using the randomization to make inferences.
- Null hypothesis of no effect for any unit \rightsquigarrow very strong.
- Allows us to make exact inferences.
 - No reliance on large-sample approximations.
- Allows us to make distribution-free inferences.
 - No reliance on normality, etc.
- ~→ truly nonparametric

Brief review of hypothesis testing

RI focuses on hypothesis testing, so it's helpful to review.

1. Choose a null hypothesis:

- $H_0: \beta_1 = 0 \text{ or } H_0: \tau = 0.$
- No average treatment effect.
- Claim we would like to reject.
- 2. Choose a test statistic.

• $Z_i = (X_i - \overline{X})/(s/\sqrt{n})$

- 3. Determine the distribution of the test statistic under the null.
 - Statistical thought experiment: we know the truth, what data should we expect?
- 4. Calculate the probability of the test statistics under the null.
 - What is this called? p-value

Sharp null hypothesis of no effect

Sharp Null Hypothesis

$$H_0: \tau_i = Y_i(1) - Y_i(0) = 0 \quad \forall i$$

- Motto: "No effect means no effect"
- Different than no *average* treatment effect, which does not imply the sharp null.
- Take a simple example with two units:

$$\tau_1 = 1$$
 $\tau_2 = -1$

- Here, $\tau = 0$ but the sharp null is violated.
- This null hypothesis formally links the observed data to all potential outcomes.

Life under the sharp null

We can use the sharp null $(Y_i(1) - Y_i(0) = 0)$ to fill in the missing potential outcomes:

	No runoff?	Intimidation		
Unit	D_i	Y_i	$Y_{i}(0)$	$Y_{i}(1)$
Cameroon	1	1	?	1
Kenya	1	1	?	1
Malawi	1	1	?	1
Nigeria	1	1	?	1
Tanzania	1	0	?	0
Congo	0	0	0	?
Madagascar	0	0	0	?
CAR	0	0	0	?
Ghana	0	0	0	?
Guinea-Bissau	0	0	0	?

Life under the sharp null

We can use the sharp null $(Y_i(1) - Y_i(0) = 0)$ to fill in the missing potential outcomes:

	No runoff?	Intimidation		
Unit	D_i	Y_i	$Y_{i}(0)$	$Y_{i}(1)$
Cameroon	1	1	1	1
Kenya	1	1	1	1
Malawi	1	1	1	1
Nigeria	1	1	1	1
Tanzania	1	0	0	0
Congo	0	0	0	0
Madagascar	0	0	0	0
CAR	0	0	0	0
Ghana	0	0	0	0
Guinea-Bissau	0	0	0	0

Comparison to the average null

- Sharp null allows us to say that $Y_i(1) = Y_i(0)$
 - $\blacktriangleright ~ \rightsquigarrow$ impute all potential outcomes.
- Average null only allows us to say that $\mathbb{E}[Y_i(1)] = \mathbb{E}[Y_i(0)]$
 - \blacktriangleright \rightsquigarrow tells us nothing about the individual causal effects.
- Don't need to believe either hypothesis → looking for evidence against them!
- Stochastic version of "proof by contradiction."

Other sharp nulls

- Sharp null of no effect is not the only sharp null of no effect.
- Sharp null in general is one of a constant additive effect: H_0 : $\tau_i = 0.2$.
 - Implies that $Y_i(1) = Y_i(0) + 0.2$.
 - Can still calculate all the potential outcomes!
- More generally, we could have $H_0: \tau_i = \tau_0$ for a fixed τ_0
- Complications: why constant and additive?

Test statistic

Test Statistic

A test statistic is a known, scalar quantity calculated from the treatment assignments and the observed outcomes: $t(\mathbf{D}, \mathbf{Y})$

- Typically measures the relationship between two variables.
- Test statistics help distinguish between the sharp null and some interesting alternative hypothesis.
- Want a test statistic with high statistical power:
 - Has large values when the null is false
 - These large values are unlikely when then null is true.
- These will help us perform a test of the sharp null.
- Many possible tests to choose from!

Null/randomization disitribution

- What is the distribution of the test statistic under the sharp null?
- If there was no effect, what test statistics would we expect over different randomizations?
- Key insight of RI: under sharp null, the treatment assignment doesn't matter.
 - \blacktriangleright Explicitly assuming that if we go from D to $\widetilde{D},$ outcomes won't change.
 - $Y_i(1) = Y_i(0) = Y_i$
- Randomization distribution: set of test statistics for each possible treatment assignment vector.

Calculate p-values

- How often would we get a test statistic this big or bigger if the sharp null holds?
- Easy to calculate once we have the randomization distribution:
 - Number of test statistics bigger than the observed divided by total number of randomizations.

$$\Pr(t(\mathbf{d}, \mathbf{Y}) \ge t(\mathbf{D}, \mathbf{Y}) | \tau = 0) = \frac{\sum_{\mathbf{d} \in \Omega} \mathbb{I}(t(\mathbf{d}, \mathbf{Y}) \ge t(\mathbf{D}, \mathbf{Y}))}{K}$$

- These are exact tests:
 - p-values are exact, not approximations.
 - with a rejection threshold of α , RI test will falsely reject less than $100\alpha\%$ of the time.

RI guide

- 1. Choose a sharp null hypothesis and a test statistic,
- 2. Calculate observed test statistic: $T = t(\mathbf{D}, \mathbf{Y})$.
- 3. Pick different treatment vector $\widetilde{\mathbf{D}}_1$.
- 4. Calculate $\tilde{T}_1 = t(\tilde{D}_1, Y)$.
- 5. Repeat steps 3 and 4 for all possible randomization to get $\tilde{T} = {\tilde{T}_1, ..., \tilde{T}_K}.$
- 6. Calculate the p-value: $p = \frac{1}{K} \sum_{k=1}^{K} \mathbb{I}(\tilde{T}_k \ge T)$

Difference in means

Absolute difference in means estimator:

$$T_{\text{diff}} = \left| \frac{1}{N_t} \sum_{i=1}^N D_i Y_i - \frac{1}{N_c} \sum_{i=1}^N (1 - D_i) Y_i \right|$$

- Larger values of T_{diff} are evidence against the sharp null.
- Good estimator for constant, additive treatment effects and relatively few outliers in the the potential outcomes.

Example

- Suppose we are targeting 6 people for donations to Harvard.
- As an encouragement, we send 3 of them a mailer with inspirational stories of learning from our graduate students.
- Afterwards, we observe them giving between \$0 and \$5.
- Simple example to show the steps of RI in a concrete case.

	Mailer	Contr.		
Unit	D_i	Y_i	$Y_{i}(0)$	$Y_i(1)$
Donald	1	3	(3)	3
Carly	1	5	(5)	5
Ben	1	0	(0)	0
Ted	0	4	4	(4)
Marco	0	0	0	(0)
Scott	0	1	1	(1)

$$T_{\mathsf{rank}} = |8/3 - 5/3| = 1$$

	Mailer	Contr.		
Unit	\widetilde{D}_i	Y_i	$Y_i(0)$	$Y_i(1)$
Donald	1	3	(3)	3
Carly	1	5	(5)	5
Ben	0	0	(0)	0
Ted	1	4	4	(4)
Marco	1	0	0	(0)
Scott	1	1	1	(1)

 $\tilde{T}_{diff} = |12/3 - 1/3| = 3.67$

 $\tilde{T}_{diff} = |8/3 - 5/3| = 1$

 $\tilde{T}_{diff} = |9/3 - 4/3| = 1.67$

D_1	D_2	D_3	D_4	D_5	D_6	Diff in means
1	1	1	0	0	0	1.00
1	1	0	1	0	0	3.67
1	1	0	0	1	0	1.00
1	1	0	0	0	1	1.67
1	0	1	1	0	0	0.33
1	0	1	0	1	0	2.33
1	0	1	0	0	1	1.67
1	0	0	1	1	0	0.33
1	0	0	1	0	1	1.00
1	0	0	0	1	1	1.67
0	1	1	1	0	0	1.67
0	1	1	0	1	0	1.00
0	1	1	0	0	1	0.33
0	1	0	1	1	0	1.67
0	1	0	1	0	1	2.33
0	1	0	0	1	1	0.33
0	0	1	1	1	0	1 (🗆

In R

```
library(ri)
y <- c(3, 5, 0, 4, 0, 1)
D <- c(1, 1, 1, 0, 0, 0)
T_stat <- abs(mean(y[D == 1]) - mean(y[D == 0]))
Dbold <- genperms(D)
Dbold[, 1:6]</pre>
```

##		[,1]	[,2]	[,3]	[,4]	[,5]	[,6]
##	1	1	1	1	1	1	1
##	2	1	1	1	1	0	0
##	3	1	0	0	0	1	1
##	4	0	1	0	0	1	0
##	5	0	0	1	0	0	1
##	6	0	0	0	1	0	0

Calculate means

##	[1]	1.0000000	3.6666667	1.0000000	1.6666667
##	[5]	0.3333333	2.3333333	1.6666667	0.3333333
##	[9]	1.0000000	1.6666667	1.6666667	1.0000000
##	[13]	0.3333333	1.6666667	2.3333333	0.3333333
##	[17]	1.6666667	1.0000000	3.6666667	1.0000000

P-value

Histogram of rdist

[1] 0.8

CA recall election

- Order of the candidates on the ballots was randomized in the following way:
 - 1. Choose a random ordering of all 26 letters from the set of 26! possible orderings.

R W Q O J M V A H B S G Z X N T C I E K U P D Y F L

- 2. In the 1st assembly district, order candidates on the ballot from this order.
- 3. In the next district, rotate ordering by 1 letter and order names by this.

W Q O J M V A H B S G Z X N T C I E K U P D Y F L R

4. Continue rotating for each district.

CA recall election with RI

- 1. Pick another possible letter ordering.
- 2. Assign 1st page/not first page based on this new ordering as was done in the election.
- 3. Calculate diff-in-means for this new treatment.
- 4. Lather, rinse, repeat.

Other test statistics

- The difference in means is great for when effects are:
 - constant and additive
 - few outliers in the data
- Outliers \rightsquigarrow more variation in the randomization distribution
- What about alternative test statistics?

Transformations

- What if there was a constant multiplicative effect: $Y_i(1)/Y_i(0) = C$?
- Difference in means will have low power to detect this alternative hypothesis.
- → transform the observed outcome using the natural logarithm:

$$T_{\log} = \left| \frac{1}{N_t} \sum_{i=1}^N D_i \log(Y_i) - \frac{1}{N_c} \sum_{i=1}^N (1 - D_i) \log(Y_i) \right|$$

• Useful for skewed distributions of outcomes.

Difference in median/quantiles

- To further protect against outliers can use the differences in quantiles as a test statistics.
- Let use $Y_t = Y_i$; $i : D_i = 1$ and $Y_c = Y_i$; $i : D_i = 0$.
- Differences in medians:

$$T_{\mathsf{med}} = |\mathsf{med}(Y_t) - \mathsf{med}(Y_c)|$$

- Remember that the median is the 0.5 quantile.
- We could estimate the difference in quantiles at any point in the distribution: (the 0.25 quantile or the 0.75 quantile).

Rank statistics

- Rank statistics transform outcomes to ranks and then analyze those.
- Useful for situations
 - with continuous outcomes,
 - small datasets, and/or
 - many outliers
- Basic idea:
 - ▶ rank the outcomes (higher values of Y_i are assigned higher ranks)
 - compare the average rank of the treated and control groups

Rank statistics formally

Calculate ranks of the outcomes:

$$\tilde{R}_i = \tilde{R}_i(Y_1, \dots, Y_N) = \sum_{j=1}^N \mathbb{I}(Y_j \leq Y_i)$$

• Normalize the ranks to have mean 0:

$$\tilde{R}_i = \tilde{R}_i(Y_1, \dots, Y_N) = \sum_{j=1}^N \mathbb{I}(Y_j \le Y_i) - \frac{N+1}{2}$$

Calculate the absolute difference in average ranks:

$$T_{\mathsf{rank}} = |\bar{R}_t - \bar{R}_c| = \left| \frac{\sum_{i:D_i=1} R_i}{N_t} - \frac{\sum_{i:D_i=0} R_i}{N_c} \right|$$

Minor adjustment for ties.

	Mailer	Contr.				
Unit	D_i	Y_i	$Y_{i}(0)$	$Y_i(1)$	Rank	R_i
Donald	1	3	(3)	3	4	0.5
Carly	1	5	(5)	5	6	2.5
Ben	1	0	(0)	0	1.5	-2
Ted	0	4	4	(4)	5	1.5
Marco	0	0	0	(0)	1.5	-2
Scott	0	1	1	(1)	3	-0.5

$$T_{\mathsf{rank}} = |1/3 - -1/3| = 0.67$$

Effects on outcome distributions

- Focused so far on "average" differences between groups.
- What about differences in the distribution of outcomes? → Kolmogorov-Smirnov test
- Define the empirical cumulative distribution function:

$$\widehat{F}_c(y) = \frac{1}{N_c} \sum_{i:D_i=0} \mathbb{1}(Y_i \le y) \qquad \widehat{F}_t(y) = \frac{1}{N_t} \sum_{i:D_i=1} \mathbb{1}(Y_i \le y)$$

- Proportion of observed ouctomes below a chosen value for treated and control separately.
- If two distributions are the same, then $\hat{F}_c(y) = \hat{F}_t(y)$

Kolmogorov-Smirnov statistic

- eCDFs are functions, but we need a scalar test statistic.
- Use the maximum discrepancy between the two eCDFs:

$$T_{\mathsf{KS}} = \max |\widehat{F}_t(Y_i) - \widehat{F}_c(Y_i)|$$

- Summary of how different the two distributions are.
- Useful in many contexts!

KS statistic

у

KS statistic

у

Two-sided or one-sided?

- So far, we have defined all test statistics as absolute values.
- ~> testing against a two-sided alternative hypothesis:

 $H_0: \tau_i = 0 \ \forall i$ $H_1: \tau_i \neq 0 \ \text{for some } i$

What about a one-sided alternative?

$$H_0: \tau_i = 0 \ \forall i$$
 $H_1: \tau_i > 0 \ \text{for some } i$

• For these, use a test statistic that is bigger under the alternative:

$$T_{\mathsf{diff}}^* = \bar{Y}_t - \bar{Y}_c$$

Computation

Computing the exact randomization distribution not always feasible:

- N = 6 and $N_t = 3 \rightsquigarrow 20$ assignment vectors.
- N = 10 and $N_t = 5 \rightsquigarrow 252$ vectors.
- N = 100 and $N_t = 50 \rightsquigarrow 1.0089134 \times 10^{29}$ vectors.
- Workaround: simulation!
 - ▶ take *K* samples from the treatment assignment space.
 - calculate the randomization distribution in the *K* samples.
 - tests no longer exact, but bias is under youCIDontrol! (increase K)

Confidence intervals via test inversion

- Cls usually justified using Normal distributions and approximations.
- Can calculate CIs here using the duality of tests and Cis:
 - A 100(1 − α)% confidence interval is equivalent to the set of null hypotheses that would not be rejected at the α significance level.
- 95% CI: find all values τ_0 such that H_0 : $\tau = \tau_0$ is not rejected at the 0.05 level.
 - Choose grid across space of τ: −0.9, −0.8, −0.7, ..., 0.7, 0.8, 0.9.
 - For each value, use RI to test sharp null of H_0 : $\tau_i = \tau_m$ at 0.05 level.
 - Collect all values that you cannot reject as the 95% CI.

Testing non-zero sharp nulls

• Suppose that we had: $H_0: \tau_i = Y_i(1) - Y_i(0) = 1$

	Mailer	Contr.			Adjusted
Unit	D_i	Y_i	$Y_{i}(0)$	$Y_i(1)$	$Y_i - D_i \tau_0$
Donald	1	3	(2)?	3	2
Carly	1	5	(4)?	5	4
Ben	1	0	(-1)?	0	-1
Ted	0	4	4	(5)?	4
Marco	0	0	0	(1)?	0
Scott	0	1	1	(2)?	1

- Assignments will now affect Y_i.
- Solution: use adjusted outcomes, $Y_i^* = Y_i D_i \tau_0$.
- Now, just test sharp null of no effect for Y^{*}_i.

•
$$Y_i^*(1) = Y_i(1) - 1 \times 1 = Y_i(0)$$

•
$$Y_i^*(0) = Y_i(0) - 0 \times 1 = Y_i(0)$$

•
$$\tau_i^* = Y_i^*(1) - Y_i^*(0) = 0$$

Notes on RI CIs

- Cls are correct, but might have overcoverage.
- With RI, p-values are discrete and depend on N and N_t .
 - With N and N_t , the lowest p-value is 1/20.
 - Next lowest p-value is 2/20 = 0.10.
- If the p-value of 0.05 falls "between" two of these discrete points, a 95% CI will cover the true value more than 95% of the time.

Point estimates

- Is it possible to get point estimates?
- Not really the point of RI, but still possible:
 - 1. Create a grid of possible sharp null hypotheses.
 - 2. Calculate p-values for each sharp null.
 - 3. Pick the value that is "least surprising" under the null.
- Usually this means selecting the value with the highest p-value.

Including covariate information

- Let *X_i* be a pretreatment measure of the outcome.
- One way is to use this is as a gain score: Y'_i(d) = Y_i(d) X_i.
- Causal effects are the same: $Y'_i(1) Y'_i(0) = Y_i(1) Y_i(0)$.
- But the test statistic is different:

$$T_{\text{gain}} = \left| (\bar{Y}_t - \bar{Y}_c) - (\bar{X}_t - \bar{X}_c) \right|$$

- If X_i is strongly predictive of Y_i(0), then this could have higher power:
 - ► T_{gain} will have lower variance under the null.
 - ▶ ~→ easier to detect smaller effects.

Using regression in RI

- We can extend this to use covariates in more complicated ways.
- For instance, we can use an OLS regression:

$$\left(\hat{\beta}_{0},\hat{\beta}_{D},\hat{\beta}_{X}\right) = \underset{\beta_{0},\beta_{D},\beta_{X}}{\arg\min} \sum_{i=1}^{N} \left(Y_{i} - \beta_{0} - \beta_{D} \cdot D_{i} - \beta_{X} \cdot X_{i}\right)^{2}.$$

- Then, our test statistic could be $T_{ols} = \hat{\beta}_D$.
- RI is justified even if the model is wrong!
 - OLS is just another way to generate a test statistic.
 - If the model is "right" (read: predictive of Y_i(0)), then T_{ols} will have higher power.