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Where are we? Where are we going?

= Last week:

> What can we identify using randomization?

» Estimators were justified via unbiasedness and consistency.
» Standard errors, test, and Cls were asymptotic.

» Neyman's approach to experiments

= This week:

» Condition on the experiment at hand.
» Get correct p-values and Cls just relying on randomization.
» Fisher's approach to randomized experiments.



Effect of not having a runoff in
sub-Sarahan African

= Glynn and Ichino (2012): is not having a runoff (D; = 1)
related to harrassment of opposition parties (Y;) in sub-Sahara
African countries.

= Without runoffs (D; = 1), only need a plurality ~~ incentives
to suppress turnout through intimidation.

= With runoffs (D; = 0), largest party needs wider support ~~
courting of small parties.



Data on runoffs

No runoff? Intimidation

Unit Y(0) Y1)
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= Clear difference-in-means: 0.8
= Very small sample size ~> can we learn anything from this
data?



CA recall election

Not Listed on
First Page

Candidates in Order of Randomized Alphabet
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= Ho & Imai (2006): 2003 CA gubernatorial recall election there
were 135 candidates.

= Ballot order was randomly assigned so some people ended up
on the first page and some did not.

= Can we detect an effect of being on the first page on the vote
share for a candidate?



What is randomization inference?

= Randomization inference (RI) = using the randomization to
make inferences.

= Null hypothesis of no effect for any unit ~~ very strong.

= Allows us to make exact inferences.

> No reliance on large-sample approximations.

= Allows us to make distribution-free inferences.

> No reliance on normality, etc.

= ~> truly nonparametric



Brief review of hypothesis testing

RI focuses on hypothesis testing, so it's helpful to review.

1. Choose a null hypothesis:

> H()Zﬁl:OOI’HO:T:O.
» No average treatment effect.
» Claim we would like to reject.

2. Choose a test statistic.
> Zi = (X; = X)/(s/\n)
3. Determine the distribution of the test statistic under the null.

» Statistical thought experiment: we know the truth, what data
should we expect?

4. Calculate the probability of the test statistics under the null.
> What is this called? p-value



Sharp null hypothesis of no effect

Sharp Null Hypothesis

HO ‘T = Yl(].) - YZ(O) =0 Vi

= Motto: “No effect means no effect”

= Different than no average treatment effect, which does not
imply the sharp null.

= Take a simple example with two units:

T1:1 T2:—1

= Here, © =0 but the sharp null is violated.
= This null hypothesis formally links the observed data to all
potential outcomes.



Life under the sharp null

We can use the sharp null (Y;(1) - Y;(0) = 0) to fill in the missing
potential outcomes:

No runoff? Intimidation
Unit
Cameroon
Kenya
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Life under the sharp null

We can use the sharp null (Y;(1) - Y;(0) = 0) to fill in the missing
potential outcomes:

No runoff? Intimidation

Unit D; Y, Y/(0) Y1)
Cameroon 1 1 1 1
Kenya 1 1 1 1
Malawi 1 1 1 1
Nigeria 1 1 1 1
Tanzania 1 0 0 0
Congo 0 0 0 0
Madagascar 0 0 0 0
CAR 0 0 0 0
Ghana 0 0 0 0
Guinea-Bissau 0 0 0 0




Comparison to the average null

= Sharp null allows us to say that Y;(1) = Y;(0)
» ~~ impute all potential outcomes.
= Average null only allows us to say that E[Y;(1)] = E[Y;(0)]

» ~~ tells us nothing about the individual causal effects.

= Don't need to believe either hypothesis ~~ looking for
evidence against them!
= Stochastic version of “proof by contradiction.”



Other sharp nulls

= Sharp null of no effect is not the only sharp null of no effect.
= Sharp null in general is one of a constant additive effect:
Hy:7;=02.
> Implies that Y;(1) = Y;(0) + 0.2.
» Can still calculate all the potential outcomes!
= More generally, we could have Hy : t; = 7 for a fixed 7,
= Complications: why constant and additive?



Test statistic

Test Statistic

A test statistic is a known, scalar quantity calculated from the
treatment assignments and the observed outcomes: #(D,Y)

= Typically measures the relationship between two variables.

= Test statistics help distinguish between the sharp null and
some interesting alternative hypothesis.

= Want a test statistic with high statistical power:

» Has large values when the null is false
» These large values are unlikely when then null is true.

= These will help us perform a test of the sharp null.
= Many possible tests to choose from!



Null/randomization disitribution

= What is the distribution of the test statistic under the sharp
null?

= |f there was no effect, what test statistics would we expect
over different randomizations?

= Key insight of RI: under sharp null, the treatment assignment
doesn't matter.

» Explicitly assuming that if we go from D to D, outcomes won't
change.

» Y1) =Yi(0)=Y;

= Randomization distribution: set of test statistics for each
possible treatment assignment vector.



Calculate p-values

= How often would we get a test statistic this big or bigger if
the sharp null holds?
= Easy to calculate once we have the randomization distribution:

» Number of test statistics bigger than the observed divided by
total number of randomizations.

Y0 IH(d,Y) > H(D,Y))
K

Pr(t(d,Y) > H(D, Y)|z = 0) =

= These are exact tests:

» p-values are exact, not approximations.
» with a rejection threshold of «, RI test will falsely reject less
than 100a% of the time.



Rl guide

Choose a sharp null hypothesis and a test statistic,
Calculate observed test statistic: T = t(D,Y).

Pick different treatment vector Dj.

Calculate Ty = Dy, Y).

Repeat steps 3 and 4 for all possible randomization to get
T =Ty, .., Te).

6. Calculate the p-value: p = %Zszl (T, > T)

@i o= o I =



Difference in means

= Absolute difference in means estimator:

OAEED)
Taer = |— Y DY - — (1 -D))Y;
i Nt o ] Nc & 1)L

= Larger values of Ty are evidence against the sharp null.

= Good estimator for constant, additive treatment effects and
relatively few outliers in the the potential outcomes.



Example

= Suppose we are targeting 6 people for donations to Harvard.

= As an encouragement, we send 3 of them a mailer with
inspirational stories of learning from our graduate students.

= Afterwards, we observe them giving between $0 and $5.

= Simple example to show the steps of Rl in a concrete case.



Randomization distribution

Mailer  Contr.
Unit | D; Y, | Y0 YD)
Donald 1 3 (3) 3
Carly 1 5 (5) 5
Ben 1 0 (0) 0
Ted | 0 4 4 (4)
Marco 0 0 0 (0)
Scott 0 1 1 (1)

Trank = 18/3 -5/3[ =1



Randomization distribution

Mailer  Contr.
Unit | D Y; | Yi0) Y1)
Donald 1 3 (3) 3
Carly 1 5 (5) 5
Ben 0 0 (0) 0
Ted | 1 4 4 (4)
Marco 1 0 0 (0)
Scott 1 1 1 (1)

Tiee = 12/3 - 1/3| = 3.67
Taite = 18/3-5/3| = 1

Taifr = 19/3 — 4/3| = 1.67



Randomization distribution

D, D, Dy D, Ds Dg | |Diff in means|
1 1 1 0 0 O 1.00
1 1 0 1 0 O 3.67
1 1 0 0 1 o0 1.00
1 1 0 0 0 1 1.67
1 0 1 1 0 O 0.33
1 0 1 0 1 o0 2.33
1 0 1 0 0 1 1.67
1 0 0 1 1 0 0.33
1 0 0 1 0 1 1.00
1 0 0 0 1 1 1.67
0o 1 1 1 0 0 1.67
0 1 1 0 1 0 1.00
0o 1 1 0 0 1 0.33
0 1 0 1 1 0 1.67
0o 1 0 1 0 1 2.33
0o 1 0 0 1 1 0.33




InR

library(ri)
y <_ C(3) 57 GY 4! @, 1)
D<-cCl, 1, 1, 0, 0, 0)

T_stat <- abs(mean(y[D == 1]) - mean(y[D == 01))
Dbold <- genperms(D)
Dbold[, 1:6]

# [,11 [,21 [,31[,4]1 [,5] [,6]

## 1 1 1 1 1 1 1
## 2 1 1 1 1 0 0
## 3 1 0 0 0 1 1
#it 4 0 1 Q Q 1 0
## 5 0 0 1 0 0 1
## 6 0 0 0 1 0 0



Calculate means

rdist <- rep(NA, times = ncol(Dbold))
for (i in 1:ncol(Dbold)) {
D_tilde <- Dbold[, il

rdist[i] <- abs(mean(y[D_tilde ==
01))

## [1] 1.0000000 3.6666667 1.0000000
## [5] ©.3333333 2.3333333 1.6666667
## [9] 1.0000000 1.6666667 1.6666667
## [13] ©.3333333 1.6666667 2.3333333
## [17] 1.6666667 1.0000000 3.6666667

11) - mean(y[D_tilde

1.6666667
0.3333333
1.0000000
0.3333333
1.0000000




P-value

Histogram of rdist

Frequency
3
|

# p-value

mean(rdist >= T_stat)

## [1] 0.8



CA recall election

= Order of the candidates on the ballots was randomized in the
following way:

1. Choose a random ordering of all 26 letters from the set of 26!
possible orderings.

RWQOJMVAHBSGZXNTCIEKUPDYFL

2. In the 1st assembly district, order candidates on the ballot
from this order.

3. In the next district, rotate ordering by 1 letter and order names
by this.

WQOJMVAHBSGZXNTCIEKUPDYFLR

4. Continue rotating for each district.



CA recall election with RI

1. Pick another possible letter ordering.

2. Assign 1st page/not first page based on this new ordering as
was done in the election.

3. Calculate diff-in-means for this new treatment.

4. Lather, rinse, repeat.



Other test statistics

= The difference in means is great for when effects are:

» constant and additive
» few outliers in the data

= Qutliers ~~ more variation in the randomization distribution
= What about alternative test statistics?



Transformations

= What if there was a constant multiplicative effect:
Yi(1)/Yi(0) = C?

= Difference in means will have low power to detect this
alternative hypothesis.

= ~~ transform the observed outcome using the natural
logarithm:

1 L 1
T|Og =] Z\_[t Zl Di log(Yl) - ﬁ 2(1 - DZ) log(Yl)

¢ i=1

= Useful for skewed distributions of outcomes.



Difference in median/quantiles

= To further protect against outliers can use the differences in
quantiles as a test statistics.

= Let use Yt:Yi;iIDizl and YC:Yi)iIDi:O.

= Differences in medians:
Tmed = |med(Yt) - med(Yc)l

= Remember that the median is the 0.5 quantile.

= We could estimate the difference in quantiles at any point in
the distribution: (the 0.25 quantile or the 0.75 quantile).



Rank statistics

= Rank statistics transform outcomes to ranks and then analyze
those.
= Useful for situations
» with continuous outcomes,

» small datasets, and/or
> many outliers

= Basic idea:

» rank the outcomes (higher values of Y; are assigned higher
ranks)
» compare the average rank of the treated and control groups



Rank statistics formally

Calculate ranks of the outcomes:

N
Ri=R(Y, .., Yn) = R IY; < Y)
j=1

= Normalize the ranks to have mean 0:

N+1

N
Ri=Ri(Yy,..,Yn) = JJIY; < Y)) -
j=1

Calculate the absolute difference in average ranks:

T IR, - R,| Zi:D,»=l R; EiiDi:O £
k = - = -
ran t c Nt Nc

= Minor adjustment for ties.



Randomization distribution

Mailer Contr.
Unit Di Yi Y; (O) Yl(l) Rank Ri
Donald 1 3 (3) 3 4 0.5
Carly 1 5 (5) 5 6 2.5
Ben 1 0 (0) 0 1.5 -2
Ted | 0 4 4 4| 5 15
Marco 0 0 0 (0) 15 -2
Scott 0 1 1 (1) 3 -05
Toank = 11/3 = =1/3| = 0.67



Effects on outcome distributions

= Focused so far on “average” differences between groups.

= What about differences in the distribution of outcomes? ~~
Kolmogorov-Smirnov test

= Define the empirical cumulative distribution function:

_ 1 _ 1
F) =5 2 1<y  Ry)=g X LYi<y
¢ i:D;=0 t D=1

= Proportion of observed ouctomes below a chosen value for
treated and control separately.

= |f two distributions are the same, then lA-"C(y) = I?t(y)



Kolmogorov-Smirnov statistic

eCDFs are functions, but we need a scalar test statistic.

= Use the maximum discrepancy between the two eCDFs:
Tks = max|F,(Y;) = Fo(Y)|

= Summary of how different the two distributions are.

= Useful in many contexts!
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Two-sided or one-sided?

So far, we have defined all test statistics as absolute values.
= ~> testing against a two-sided alternative hypothesis:

Hy:7;=0Vi Hj : 7; # 0 for some i

What about a one-sided alternative?

Hy:7;=0Vi H; : t; > 0for some i

= For these, use a test statistic that is bigger under the

alternative:
Tggg=Ye = Yc



Computation

Computing the exact randomization distribution not always
feasible:

= N =6 and N, = 3 ~» 20 assignment vectors.

= N =10 and N; =5 ~» 252 vectors.

= N =100 and N; = 50 ~~ 1.0089134 x 10® vectors.
= Workaround: simulation!

» take K samples from the treatment assignment space.

> calculate the randomization distribution in the K samples.

» tests no longer exact, but bias is under youClDontrol!
(increase K)



Confidence intervals via test inversion

= Cls usually justified using Normal distributions and
approximations.
= Can calculate Cls here using the duality of tests and Cis:
» A 100(1 — @)% confidence interval is equivalent to the set of

null hypotheses that would not be rejected at the a
significance level.

= 95% Cl: find all values 7 such that Hy : 7 = 7, is not rejected
at the 0.05 level.

» Choose grid across space of 7: -0.9,-0.8,-0.7, ...,0.7,0.8,0.9.

» For each value, use RI to test sharp null of Hy : 7; = 7, at 0.05
level.

» Collect all values that you cannot reject as the 95% ClI.



Testing non-zero sharp nulls

= Suppose that we had: Hy:7; = Y;(1) - Y;(0) =1

Mailer  Contr. Adjusted

Unit Dz' Yz' YZ(O) YI(]-) Yz' - DiTO
Donald 1 3 (2)? 3 2
Carly 1 5 (4)? 5 4
Ben 1 0 (-1)? 0 -1
Ted 0 4 4 (5)? 4
Marco 0 0 0 (1)7 0
Scott 0 1 1 (2)? 1

= Assignments will now affect Y;.
= Solution: use adjusted outcomes, Y; =Y; — D;1q.
= Now, just test sharp null of no effect for Y.

» Y1) =Y;(1)-1x1=Y;0)

> Y7(0) = Y;(0) -0 x 1 = Y;(0)

» 7= Y1)~ Y;(0)=0



Notes on RI Cls

= Cls are correct, but might have overcoverage.
= With RI, p-values are discrete and depend on N and N;.

> With N and N, the lowest p-value is 1/20.
» Next lowest p-value is 2/20 = 0.10.

= |f the p-value of 0.05 falls “between” two of these discrete
points, a 95% Cl will cover the true value more than 95% of
the time.



Point estimates

= |s it possible to get point estimates?
= Not really the point of RI, but still possible:
1. Create a grid of possible sharp null hypotheses.

2. Calculate p-values for each sharp null.
3. Pick the value that is “least surprising” under the null.

= Usually this means selecting the value with the highest
p-value.



Including covariate information

= Let X; be a pretreatment measure of the outcome.

= One way is to use this is as a gain score: Y/(d) = Y;(d) - X.
= Causal effects are the same: Y (1) - Y/ (0) = Yi(1) - Yi(0).

= But the test statistic is different:

Tgain = |(Yt - Yc) - (Xt - Xc)|

= |f X; is strongly predictive of Y;(0), then this could have higher
power:

> Tgain Will have lower variance under the null.
» ~~ easier to detect smaller effects.



Using regression in RI

= We can extend this to use covariates in more complicated
ways.
= For instance, we can use an OLS regression:

N
(o, Bp, Bx) = argmin ¥, (Y; = o — Bp - Di — Px - Xi)z-
BoBpBx i=1

= Then, our test statistic could be Tys = fip.
= Rl is justified even if the model is wrong!

» OLS is just another way to generate a test statistic.

> If the model is “right” (read: predictive of Y;(0)), then Ty will
have higher power.



