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Where are we? Where are we going?

• Last week:
▶ What can we identify using randomization?
▶ Estimators were justified via unbiasedness and consistency.
▶ Standard errors, test, and CIs were asymptotic.
▶ Neyman’s approach to experiments

• This week:
▶ Condition on the experiment at hand.
▶ Get correct p-values and CIs just relying on randomization.
▶ Fisher’s approach to randomized experiments.



Effect of not having a runoff in
sub-Sarahan African

• Glynn and Ichino (2012): is not having a runoff (𝐷𝑖 = 1)
related to harrassment of opposition parties (𝑌𝑖) in sub-Sahara
African countries.

• Without runoffs (𝐷𝑖 = 1), only need a plurality ⇝ incentives
to suppress turnout through intimidation.

• With runoffs (𝐷𝑖 = 0), largest party needs wider support ⇝
courting of small parties.



Data on runoffs

No runoff? Intimidation
Unit 𝐷𝑖 𝑌𝑖 𝑌𝑖(0) 𝑌𝑖(1)

Cameroon 1 1 ? 1
Kenya 1 1 ? 1

Malawi 1 1 ? 1
Nigeria 1 1 ? 1

Tanzania 1 0 ? 0
Congo 0 0 0 ?

Madagascar 0 0 0 ?
Central African Republic 0 0 0 ?

Ghana 0 0 0 ?
Guinea-Bissau 0 0 0 ?

• Clear difference-in-means: 0.8
• Very small sample size ⇝ can we learn anything from this

data?



CA recall election

• Ho & Imai (2006): 2003 CA gubernatorial recall election there
were 135 candidates.

• Ballot order was randomly assigned so some people ended up
on the first page and some did not.

• Can we detect an effect of being on the first page on the vote
share for a candidate?



What is randomization inference?

• Randomization inference (RI) = using the randomization to
make inferences.

• Null hypothesis of no effect for any unit ⇝ very strong.
• Allows us to make exact inferences.

▶ No reliance on large-sample approximations.

• Allows us to make distribution-free inferences.
▶ No reliance on normality, etc.

• ⇝ truly nonparametric



Brief review of hypothesis testing

RI focuses on hypothesis testing, so it’s helpful to review.

1. Choose a null hypothesis:
▶ 𝐻􏷟 ∶ 𝛽􏷠 = 0 or 𝐻􏷟 ∶ 𝜏 = 0.
▶ No average treatment effect.
▶ Claim we would like to reject.

2. Choose a test statistic.
▶ 𝑍𝑖 = (𝑋𝑖 − 𝑋̅)/(𝑠/√𝑛)

3. Determine the distribution of the test statistic under the null.
▶ Statistical thought experiment: we know the truth, what data

should we expect?

4. Calculate the probability of the test statistics under the null.
▶ What is this called? p-value



Sharp null hypothesis of no effect

Sharp Null Hypothesis

𝐻􏷟 ∶ 𝜏𝑖 = 𝑌𝑖(1) − 𝑌𝑖(0) = 0 ∀𝑖

• Motto: “No effect means no effect”
• Different than no average treatment effect, which does not

imply the sharp null.
• Take a simple example with two units:

𝜏􏷠 = 1 𝜏􏷡 = −1

• Here, 𝜏 = 0 but the sharp null is violated.
• This null hypothesis formally links the observed data to all

potential outcomes.



Life under the sharp null

We can use the sharp null (𝑌𝑖(1) − 𝑌𝑖(0) = 0) to fill in the missing
potential outcomes:

No runoff? Intimidation
Unit 𝐷𝑖 𝑌𝑖 𝑌𝑖(0) 𝑌𝑖(1)

Cameroon 1 1 ? 1
Kenya 1 1 ? 1

Malawi 1 1 ? 1
Nigeria 1 1 ? 1

Tanzania 1 0 ? 0
Congo 0 0 0 ?

Madagascar 0 0 0 ?
CAR 0 0 0 ?

Ghana 0 0 0 ?
Guinea-Bissau 0 0 0 ?
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Comparison to the average null

• Sharp null allows us to say that 𝑌𝑖(1) = 𝑌𝑖(0)
▶ ⇝ impute all potential outcomes.

• Average null only allows us to say that 𝔼[𝑌𝑖(1)] = 𝔼[𝑌𝑖(0)]
▶ ⇝ tells us nothing about the individual causal effects.

• Don’t need to believe either hypothesis ⇝ looking for
evidence against them!

• Stochastic version of “proof by contradiction.”



Other sharp nulls

• Sharp null of no effect is not the only sharp null of no effect.
• Sharp null in general is one of a constant additive effect:
𝐻􏷟 ∶ 𝜏𝑖 = 0.2.

▶ Implies that 𝑌𝑖(1) = 𝑌𝑖(0) + 0.2.
▶ Can still calculate all the potential outcomes!

• More generally, we could have 𝐻􏷟 ∶ 𝜏𝑖 = 𝜏􏷟 for a fixed 𝜏􏷟
• Complications: why constant and additive?



Test statistic

Test Statistic
A test statistic is a known, scalar quantity calculated from the
treatment assignments and the observed outcomes: 𝑡(𝐃, 𝐘)

• Typically measures the relationship between two variables.
• Test statistics help distinguish between the sharp null and

some interesting alternative hypothesis.
• Want a test statistic with high statistical power:

▶ Has large values when the null is false
▶ These large values are unlikely when then null is true.

• These will help us perform a test of the sharp null.
• Many possible tests to choose from!



Null/randomization disitribution

• What is the distribution of the test statistic under the sharp
null?

• If there was no effect, what test statistics would we expect
over different randomizations?

• Key insight of RI: under sharp null, the treatment assignment
doesn’t matter.

▶ Explicitly assuming that if we go from 𝐃 to 􏾪𝐃, outcomes won’t
change.

▶ 𝑌𝑖(1) = 𝑌𝑖(0) = 𝑌𝑖

• Randomization distribution: set of test statistics for each
possible treatment assignment vector.



Calculate p-values

• How often would we get a test statistic this big or bigger if
the sharp null holds?

• Easy to calculate once we have the randomization distribution:
▶ Number of test statistics bigger than the observed divided by

total number of randomizations.

Pr(𝑡(𝐝, 𝐘) ≥ 𝑡(𝐃, 𝐘)|𝜏 = 0) =
∑
𝐝∈􏸵 𝕀(𝑡(𝐝, 𝐘) ≥ 𝑡(𝐃, 𝐘))

𝐾

• These are exact tests:
▶ p-values are exact, not approximations.
▶ with a rejection threshold of 𝛼, RI test will falsely reject less

than 100𝛼% of the time.



RI guide

1. Choose a sharp null hypothesis and a test statistic,
2. Calculate observed test statistic: 𝑇 = 𝑡(𝐃, 𝐘).
3. Pick different treatment vector 􏾪𝐃􏷠.
4. Calculate 𝑇̃􏷠 = 𝑡(􏾪𝐃􏷠, 𝐘).
5. Repeat steps 3 and 4 for all possible randomization to get

𝑇̃ = {𝑇̃􏷠, … , 𝑇̃𝐾 }.
6. Calculate the p-value: 𝑝 = 􏷠

𝐾
∑𝐾
𝑘=􏷠 𝕀(𝑇̃𝑘 ≥ 𝑇)



Difference in means

• Absolute difference in means estimator:

𝑇diff = 􏵵
1
𝑁𝑡

𝑁
􏾜
𝑖=􏷠
𝐷𝑖𝑌𝑖 −

1
𝑁𝑐

𝑁
􏾜
𝑖=􏷠
(1 − 𝐷𝑖)𝑌𝑖􏵵

• Larger values of 𝑇diff are evidence against the sharp null.
• Good estimator for constant, additive treatment effects and

relatively few outliers in the the potential outcomes.



Example

• Suppose we are targeting 6 people for donations to Harvard.
• As an encouragement, we send 3 of them a mailer with

inspirational stories of learning from our graduate students.
• Afterwards, we observe them giving between $0 and $5.
• Simple example to show the steps of RI in a concrete case.



Randomization distribution

Mailer Contr.
Unit 𝐷𝑖 𝑌𝑖 𝑌𝑖(0) 𝑌𝑖(1)

Donald 1 3 (3) 3
Carly 1 5 (5) 5
Ben 1 0 (0) 0
Ted 0 4 4 (4)

Marco 0 0 0 (0)
Scott 0 1 1 (1)

𝑇rank = |8/3 − 5/3| = 1



Randomization distribution

Mailer Contr.
Unit 􏾪𝐷𝑖 𝑌𝑖 𝑌𝑖(0) 𝑌𝑖(1)

Donald 1 3 (3) 3
Carly 1 5 (5) 5
Ben 0 0 (0) 0
Ted 1 4 4 (4)

Marco 1 0 0 (0)
Scott 1 1 1 (1)

𝑇̃diff = |12/3 − 1/3| = 3.67

𝑇̃diff = |8/3 − 5/3| = 1

𝑇̃diff = |9/3 − 4/3| = 1.67



Randomization distribution
𝐷􏷠 𝐷􏷡 𝐷􏷢 𝐷􏷣 𝐷􏷤 𝐷􏷥 |Diff in means|
1 1 1 0 0 0 1.00
1 1 0 1 0 0 3.67
1 1 0 0 1 0 1.00
1 1 0 0 0 1 1.67
1 0 1 1 0 0 0.33
1 0 1 0 1 0 2.33
1 0 1 0 0 1 1.67
1 0 0 1 1 0 0.33
1 0 0 1 0 1 1.00
1 0 0 0 1 1 1.67
0 1 1 1 0 0 1.67
0 1 1 0 1 0 1.00
0 1 1 0 0 1 0.33
0 1 0 1 1 0 1.67
0 1 0 1 0 1 2.33
0 1 0 0 1 1 0.33
0 0 1 1 1 0 1.67
0 0 1 1 0 1 1.00
0 0 1 0 1 1 3.67
0 0 0 1 1 1 3.67



In R

library(ri)

y <- c(3, 5, 0, 4, 0, 1)

D <- c(1, 1, 1, 0, 0, 0)

T_stat <- abs(mean(y[D == 1]) - mean(y[D == 0]))

Dbold <- genperms(D)

Dbold[, 1:6]

## [,1] [,2] [,3] [,4] [,5] [,6]

## 1 1 1 1 1 1 1

## 2 1 1 1 1 0 0

## 3 1 0 0 0 1 1

## 4 0 1 0 0 1 0

## 5 0 0 1 0 0 1

## 6 0 0 0 1 0 0



Calculate means

rdist <- rep(NA, times = ncol(Dbold))

for (i in 1:ncol(Dbold)) {

D_tilde <- Dbold[, i]

rdist[i] <- abs(mean(y[D_tilde == 1]) - mean(y[D_tilde ==

0]))

}

rdist

## [1] 1.0000000 3.6666667 1.0000000 1.6666667

## [5] 0.3333333 2.3333333 1.6666667 0.3333333

## [9] 1.0000000 1.6666667 1.6666667 1.0000000

## [13] 0.3333333 1.6666667 2.3333333 0.3333333

## [17] 1.6666667 1.0000000 3.6666667 1.0000000



P-value

Histogram of rdist
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# p-value

mean(rdist >= T_stat)

## [1] 0.8



CA recall election

• Order of the candidates on the ballots was randomized in the
following way:

1. Choose a random ordering of all 26 letters from the set of 26!
possible orderings.
R W Q O J M V A H B S G Z X N T C I E K U P D Y F L

2. In the 1st assembly district, order candidates on the ballot
from this order.

3. In the next district, rotate ordering by 1 letter and order names
by this.
W Q O J M V A H B S G Z X N T C I E K U P D Y F L R

4. Continue rotating for each district.



CA recall election with RI

1. Pick another possible letter ordering.
2. Assign 1st page/not first page based on this new ordering as

was done in the election.
3. Calculate diff-in-means for this new treatment.
4. Lather, rinse, repeat.



Other test statistics

• The difference in means is great for when effects are:
▶ constant and additive
▶ few outliers in the data

• Outliers ⇝ more variation in the randomization distribution
• What about alternative test statistics?



Transformations

• What if there was a constant multiplicative effect:
𝑌𝑖(1)/𝑌𝑖(0) = 𝐶?

• Difference in means will have low power to detect this
alternative hypothesis.

• ⇝ transform the observed outcome using the natural
logarithm:

𝑇log = 􏵵
1
𝑁𝑡

𝑁
􏾜
𝑖=􏷠
𝐷𝑖 log(𝑌𝑖) −

1
𝑁𝑐

𝑁
􏾜
𝑖=􏷠
(1 − 𝐷𝑖) log(𝑌𝑖)􏵵

• Useful for skewed distributions of outcomes.



Difference in median/quantiles

• To further protect against outliers can use the differences in
quantiles as a test statistics.

• Let use 𝑌𝑡 = 𝑌𝑖; 𝑖 ∶ 𝐷𝑖 = 1 and 𝑌𝑐 = 𝑌𝑖; 𝑖 ∶ 𝐷𝑖 = 0.
• Differences in medians:

𝑇med = |med(𝑌𝑡) −med(𝑌𝑐)|

• Remember that the median is the 0.5 quantile.
• We could estimate the difference in quantiles at any point in

the distribution: (the 0.25 quantile or the 0.75 quantile).



Rank statistics

• Rank statistics transform outcomes to ranks and then analyze
those.

• Useful for situations
▶ with continuous outcomes,
▶ small datasets, and/or
▶ many outliers

• Basic idea:
▶ rank the outcomes (higher values of 𝑌𝑖 are assigned higher

ranks)
▶ compare the average rank of the treated and control groups



Rank statistics formally

• Calculate ranks of the outcomes:

𝑅̃𝑖 = 𝑅̃𝑖(𝑌􏷠, … , 𝑌𝑁 ) =
𝑁
􏾜
𝑗=􏷠
𝕀(𝑌𝑗 ≤ 𝑌𝑖)

• Normalize the ranks to have mean 0:

𝑅̃𝑖 = 𝑅̃𝑖(𝑌􏷠, … , 𝑌𝑁 ) =
𝑁
􏾜
𝑗=􏷠
𝕀(𝑌𝑗 ≤ 𝑌𝑖) −

𝑁 + 1
2

• Calculate the absolute difference in average ranks:

𝑇rank = |𝑅̅𝑡 − 𝑅̅𝑐| = 􏵶
∑
𝑖∶𝐷𝑖=􏷠

𝑅𝑖
𝑁𝑡

−
∑
𝑖∶𝐷𝑖=􏷟

𝑅𝑖
𝑁𝑐

􏵶

• Minor adjustment for ties.



Randomization distribution

Mailer Contr.
Unit 𝐷𝑖 𝑌𝑖 𝑌𝑖(0) 𝑌𝑖(1) Rank 𝑅𝑖

Donald 1 3 (3) 3 4 0.5
Carly 1 5 (5) 5 6 2.5
Ben 1 0 (0) 0 1.5 -2
Ted 0 4 4 (4) 5 1.5

Marco 0 0 0 (0) 1.5 -2
Scott 0 1 1 (1) 3 -0.5

𝑇rank = |1/3 − −1/3| = 0.67



Effects on outcome distributions

• Focused so far on “average” differences between groups.
• What about differences in the distribution of outcomes? ⇝

Kolmogorov-Smirnov test
• Define the empirical cumulative distribution function:

􏾦𝐹𝑐(𝑦) =
1
𝑁𝑐

􏾜
𝑖∶𝐷𝑖=􏷟

𝟙(𝑌𝑖 ≤ 𝑦) 􏾦𝐹𝑡(𝑦) =
1
𝑁𝑡

􏾜
𝑖∶𝐷𝑖=􏷠

𝟙(𝑌𝑖 ≤ 𝑦)

• Proportion of observed ouctomes below a chosen value for
treated and control separately.

• If two distributions are the same, then 􏾦𝐹𝑐(𝑦) = 􏾦𝐹𝑡(𝑦)



Kolmogorov-Smirnov statistic

• eCDFs are functions, but we need a scalar test statistic.
• Use the maximum discrepancy between the two eCDFs:

𝑇KS = max|􏾦𝐹𝑡(𝑌𝑖) − 􏾦𝐹𝑐(𝑌𝑖)|

• Summary of how different the two distributions are.
• Useful in many contexts!
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Two-sided or one-sided?

• So far, we have defined all test statistics as absolute values.
• ⇝ testing against a two-sided alternative hypothesis:

𝐻􏷟 ∶ 𝜏𝑖 = 0 ∀𝑖 𝐻􏷠 ∶ 𝜏𝑖 ≠ 0 for some 𝑖

• What about a one-sided alternative?

𝐻􏷟 ∶ 𝜏𝑖 = 0 ∀𝑖 𝐻􏷠 ∶ 𝜏𝑖 > 0 for some 𝑖

• For these, use a test statistic that is bigger under the
alternative:

𝑇 ∗diff = 𝑌̅𝑡 − 𝑌̅𝑐



Computation

Computing the exact randomization distribution not always
feasible:

• 𝑁 = 6 and 𝑁𝑡 = 3⇝ 20 assignment vectors.
• 𝑁 = 10 and 𝑁𝑡 = 5⇝ 252 vectors.
• 𝑁 = 100 and 𝑁𝑡 = 50⇝ 1.0089134 × 10􏷡􏷨 vectors.
• Workaround: simulation!

▶ take 𝐾 samples from the treatment assignment space.
▶ calculate the randomization distribution in the 𝐾 samples.
▶ tests no longer exact, but bias is under youCIDontrol!

(increase 𝐾)



Confidence intervals via test inversion

• CIs usually justified using Normal distributions and
approximations.

• Can calculate CIs here using the duality of tests and Cis:
▶ A 100(1 − 𝛼)% confidence interval is equivalent to the set of

null hypotheses that would not be rejected at the 𝛼
significance level.

• 95% CI: find all values 𝜏􏷟 such that 𝐻􏷟 ∶ 𝜏 = 𝜏􏷟 is not rejected
at the 0.05 level.

▶ Choose grid across space of 𝜏: −0.9, −0.8, −0.7, … , 0.7, 0.8, 0.9.
▶ For each value, use RI to test sharp null of 𝐻􏷟 ∶ 𝜏𝑖 = 𝜏𝑚 at 0.05

level.
▶ Collect all values that you cannot reject as the 95% CI.



Testing non-zero sharp nulls

• Suppose that we had: 𝐻􏷟 ∶ 𝜏𝑖 = 𝑌𝑖(1) − 𝑌𝑖(0) = 1
Mailer Contr. Adjusted

Unit 𝐷𝑖 𝑌𝑖 𝑌𝑖(0) 𝑌𝑖(1) 𝑌𝑖 − 𝐷𝑖𝜏􏷟
Donald 1 3 (2)? 3 2

Carly 1 5 (4)? 5 4
Ben 1 0 (-1)? 0 -1
Ted 0 4 4 (5)? 4

Marco 0 0 0 (1)? 0
Scott 0 1 1 (2)? 1

• Assignments will now affect 𝑌𝑖.
• Solution: use adjusted outcomes, 𝑌∗𝑖 = 𝑌𝑖 − 𝐷𝑖𝜏􏷟.
• Now, just test sharp null of no effect for 𝑌∗𝑖 .

▶ 𝑌∗𝑖 (1) = 𝑌𝑖(1) − 1 × 1 = 𝑌𝑖(0)
▶ 𝑌∗𝑖 (0) = 𝑌𝑖(0) − 0 × 1 = 𝑌𝑖(0)
▶ 𝜏∗𝑖 = 𝑌∗𝑖 (1) − 𝑌∗𝑖 (0) = 0



Notes on RI CIs

• CIs are correct, but might have overcoverage.
• With RI, p-values are discrete and depend on 𝑁 and 𝑁𝑡.

▶ With 𝑁 and 𝑁𝑡, the lowest p-value is 1/20.
▶ Next lowest p-value is 2/20 = 0.10.

• If the p-value of 0.05 falls “between” two of these discrete
points, a 95% CI will cover the true value more than 95% of
the time.



Point estimates

• Is it possible to get point estimates?
• Not really the point of RI, but still possible:

1. Create a grid of possible sharp null hypotheses.
2. Calculate p-values for each sharp null.
3. Pick the value that is “least surprising” under the null.

• Usually this means selecting the value with the highest
p-value.



Including covariate information

• Let 𝑋𝑖 be a pretreatment measure of the outcome.
• One way is to use this is as a gain score: 𝑌′𝑖 (𝑑) = 𝑌𝑖(𝑑) − 𝑋𝑖.
• Causal effects are the same: 𝑌′𝑖 (1) − 𝑌′𝑖 (0) = 𝑌𝑖(1) − 𝑌𝑖(0).
• But the test statistic is different:

𝑇gain = |(𝑌̅𝑡 − 𝑌̅𝑐) − (𝑋̅𝑡 − 𝑋̅𝑐)|

• If 𝑋𝑖 is strongly predictive of 𝑌𝑖(0), then this could have higher
power:

▶ 𝑇gain will have lower variance under the null.
▶ ⇝ easier to detect smaller effects.



Using regression in RI

• We can extend this to use covariates in more complicated
ways.

• For instance, we can use an OLS regression:

􏿴𝛽̂􏷟, 𝛽̂𝐷, 𝛽̂𝑋􏿷 = argmin
𝛽􏷩,𝛽𝐷,𝛽𝑋

𝑁
􏾜
𝑖=􏷠
􏿴𝑌𝑖 − 𝛽􏷟 − 𝛽𝐷 ⋅ 𝐷𝑖 − 𝛽𝑋 ⋅ 𝑋𝑖􏿷

􏷡
.

• Then, our test statistic could be 𝑇ols = 𝛽̂𝐷.
• RI is justified even if the model is wrong!

▶ OLS is just another way to generate a test statistic.
▶ If the model is “right” (read: predictive of 𝑌𝑖(0)), then 𝑇ols will

have higher power.


