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Where are we (going)?

• Last time: defined potential outcomes and causal
estimands/quantities of interest.

• This time: how we identify these quantities in randomized
experiments.

• Later: what if randomization only happens conditional on
covariates?

• Or, what if we weren’t able to randomize?



What is the selection problem?

• First pass at the data: prima facie or naive difference in
means:

𝐸[𝑌𝑖|𝐷𝑖 = 1] − 𝐸[𝑌𝑖|𝐷𝑖 = 0]
=𝐸[𝑌𝑖(1)|𝐷𝑖 = 1] − 𝐸[𝑌𝑖(0)|𝐷𝑖 = 0] (consistency)
=𝐸[𝑌𝑖(1)|𝐷𝑖 = 1] − 𝐸[𝑌𝑖(0)|𝐷𝑖 = 1] + 𝐸[𝑌𝑖(0)|𝐷𝑖 = 1] − 𝐸[𝑌𝑖(0)|𝐷𝑖 = 0]
=𝐸[𝑌𝑖(1) − 𝑌𝑖(0)|𝐷𝑖 = 1]􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍

ATT

+𝐸[𝑌𝑖(0)|𝐷𝑖 = 1] − 𝐸[𝑌𝑖(0)|𝐷𝑖 = 0]􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍
selection bias

• Naive = ATT + selection bias.
• Selection bias: how different the treated and control groups

are in terms of their potential outcome under control.



Selection bias = unidentified ATT

𝐸[𝑌𝑖(1) − 𝑌𝑖(0)|𝐷𝑖 = 1]􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍
ATT

+𝐸[𝑌𝑖(0)|𝐷𝑖 = 1] − 𝐸[𝑌𝑖(0)|𝐷𝑖 = 0]􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍
selection bias

• ATT is unidentified here unless selection bias equals 0.
▶ Both ATT and the SB are unobserved.
▶ No amount of data will help us distinguish between them.

• Example: effect of negativity on vote shares.
▶ Naive estimate: negative candidates do worse than positive

candidates.
▶ Could mean that the ATT is negative OR the ATT is positive

and there is large negative selection bias.
▶ SB = candidates that go negative are worse than those who

stay positive, even if they ran the same campaigns.

• With an unbounded 𝑌𝑖, we can’t even bound the ATT
because, in principle, SB could be anywhere from −∞ to ∞.



Notation

• We’ll need some notation for the entire vector of treatment,
outcomes, etc:

▶ 𝐃 = (𝐷􏷠, 𝐷􏷡, … ,𝐷𝑁 )
▶ 𝐗,𝐘(1), and 𝐘(0) are similarly defined for 𝑋𝑖, 𝑌𝑖(1), and 𝑌𝑖(0).



Experiments

• An experiment is a study where assignment to treatment is
controlled by the researcher.

▶ 𝑝𝑖 = ℙ[𝐷𝑖 = 1] be the probability of treatment assignment
probability.

▶ 𝑝𝑖 is controlled and known by researcher in an experiment.

• A randomized experiment is an experiment with the following
properties:

1. Positivity: assignment is probabilistic: 0 < 𝑝𝑖 < 1
▶ No deterministic assignment.

2. Unconfoundedness: ℙ[𝐷𝑖 = 1|𝐘(1), 𝐘(0)] = ℙ[𝐷𝑖 = 1]
▶ Treatment assignment does not depend on any potential

outcomes.
▶ Sometimes written as 𝐷𝑖 ⟂⟂ (𝐘(1), 𝐘(0))



Natural experiment

• Natural experiment: experiment where treatment is
randomized, but that randomization was not under the
control of the researcher.

• Randomization has to be justified in these cases since it
wasn’t directly implemented.

• Hyde paper on syllabus:
▶ election observers were assigned to polling stations “using a

method that approximates randomization”



Randomization

• What does randomization (positivity + unconfoundedness)
buy us?

▶ treatment group is a random sample from the population.
▶ control group is a random sample the population.

• ⇝ sample control mean is unbiased for population control
mean:

𝔼[𝑌𝑖|𝐷𝑖 = 0] = 𝐸[𝑌𝑖(0)|𝐷𝑖 = 0] = 𝐸[𝑌𝑖(0)] = 𝐸[𝑌𝑖(0)|𝐷𝑖 = 1]

• Not the same as the observed outcomes being independent of
treatment (𝑌𝑖 ⟂⟂ 𝐷𝑖)

• Randomization eliminates selection bias:

𝐸[𝑌𝑖(0)|𝐷𝑖 = 1] − 𝐸[𝑌𝑖(0)|𝐷𝑖 = 0] = 𝐸[𝑌𝑖(0)] − 𝐸[𝑌𝑖(0)] = 0



Identification by randomization

• Goal: show that we can identify a causal effect under a
randomization assumption.

• Use the selection bias result with the naive difference in
means:

𝐸[𝑌𝑖|𝐷𝑖 = 1] − 𝐸[𝑌𝑖|𝐷𝑖 = 0]
=𝐸[𝑌𝑖(1)|𝐷𝑖 = 1] − 𝐸[𝑌𝑖(0)|𝐷𝑖 = 1]􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍

𝐴𝑇𝑇

+ 0⏟
selection bias

=𝐸[𝑌𝑖(1)|𝐷𝑖 = 1] − 𝐸[𝑌𝑖(0)|𝐷𝑖 = 1]
=𝐸[𝑌𝑖(1)] − 𝐸[𝑌𝑖(0)] (unconfoundedness)

• 𝐸[𝑌𝑖(1) − 𝑌𝑖(0)] = 𝜏 is just the ATE.
• Thus, if we can estimate the conditional expectations,

𝔼[𝑌𝑖|𝐷𝑖 = 1] and 𝔼[𝑌𝑖|𝐷𝑖 = 0], we can estimate the ATE.
• Result: ATE is identified in a randomized experiment.



Types of randomizations/experiments

• Let 𝑁𝑡 = ∑𝑁
𝑖=􏷠𝐷𝑖 and 𝑁𝑐 = 𝑁 − 𝑁𝑡.

• Bernoulli trials:
▶ flip coins for each person in the population with probability 𝑞
▶ ℙ[𝐃] = 𝑞𝑁𝑡 (1 − 𝑞)𝑁𝑐

▶ Downside: could end up with all treated or all control

• Completely randomized experiment:
▶ Randomly sample 𝑁𝑡 units from the population to be treated
▶ Equal probability of any assignment with ∑𝑁

𝑖=􏷠𝐷𝑖 = 𝑁𝑡

▶ Each possible assignment has probability (𝑁𝑁𝑡
)−􏷠

▶ Each unit has probability 𝑝𝑖 = 𝑁𝑡/𝑁 of being selected into
treatment, but treatment assignment is not independent
between units.



Bernoulli assignment
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Completely randomized design

1 2 3 4 5 6C T C T T C

• Start with 𝑁 = 6 and say we want to have 𝑁𝑡 = 3
• Randomly pick 3 from {1, 2, 3, 4, 5, 6}: 2, 4, 5
• Not independent: knowing 2 is treated means 3 is less likely

to be treated.
• Fixed number of treatment spots induces dependence:

𝔼[𝐷𝑖 ⋅ 𝐷𝑗] ≠ 𝔼[𝐷𝑖]𝔼[𝐷𝑗]

𝔼[𝐷𝑖 ⋅ 𝐷𝑗] = ℙ[𝐷𝑖 = 1] ⋅ ℙ[𝐷𝑖 = 1|𝐷𝑖 = 1] = 𝑁𝑡
𝑁

𝑁𝑡 − 1
𝑁 − 1



Stratified designs

• Stratified randomized experiment:
▶ form 𝐽 blocks, 𝑏𝑗, 𝑗 = 1,… , 𝐽 based on the covariates
▶ completely randomized assignment within each block.
▶ Randomization depends on the block variable, 𝐵𝑖
▶ Conditional unconfoundedness: 𝐷𝑖 ⟂⟂ (𝑌𝑖(1), 𝑌𝑖(0))|𝐵𝑖.

• Pair randomized experiments:
▶ Stratified randomized experiment where each block has 2 units.
▶ 1 unit in each pair receives treatment.
▶ Extreme version of the stratified/blocked randomized

experiment.
▶ Also called “matched pair” design

• Both of these seek to remove ”bad randomizations” where
covariates are related to treatment assignment by chance.



Identification under stratification

• Generally, stratified designs mean that the probability of
treatment depends on a covariate, 𝑋𝑖:

𝑝𝑖(𝑥) = ℙ[𝐷𝑖 = 1|𝑋𝑖 = 𝑥]

• Conditional randomization assumptions:
1. Positivity: 0 < 𝑝𝑖(𝑥) < 1 for all 𝑖 and 𝑥.
2. Unconfoundedness: ℙ[𝐷𝑖 = 1|𝐗, 𝐘(1), 𝐘(0)] = ℙ[𝐷𝑖 = 1|𝑋𝑖]

▶ Also written as 𝐷𝑖 ⟂⟂ (𝐘(􏷠), 𝐘(􏷟))|𝑋𝑖



Stratification and the ATE

• Can we identify the ATE under these stratified designs? Yes!

𝔼[𝑌𝑖(1) − 𝑌𝑖(0)] = 𝔼𝑋􏿻𝔼[𝑌𝑖(1) − 𝑌𝑖(0)|𝑋𝑖]􏿾 (iterated expectations)

= 𝔼𝑋􏿻𝔼[𝑌𝑖(1)|𝑋𝑖] − 𝔼[𝑌𝑖(0)|𝑋𝑖]􏿾

= 𝔼𝑋􏿻𝔼[𝑌𝑖(1)|𝐷𝑖 = 1,𝑋𝑖] − 𝔼[𝑌𝑖(0)|𝐷𝑖 = 0,𝑋𝑖]􏿾 (unconfoundedness)

= 𝔼𝑋􏿻𝔼[𝑌𝑖|𝐷𝑖 = 1,𝑋𝑖] − 𝔼[𝑌𝑖|𝐷𝑖 = 0,𝑋𝑖]􏿾 (consistency)

• ATE is just the average of the within-strata differences in
means.

• Identified because the last line is a function of observables.
• The averaging is over the distribution of the strata ⇝ size of

the blocks.



Stratification example

• Stratified by incumbency, where 𝑋𝑖 = 1 is a Democratic
incumbent and 𝑋𝑖 = 0 is a Democratic challenger.

• Then we have:

𝔼𝑋􏿻𝔼[𝑌𝑖|𝐷𝑖 = 1,𝑋𝑖] − 𝔼[𝑌𝑖|𝐷𝑖 = 0,𝑋𝑖]􏿾

= 􏿵𝔼[𝑌𝑖|𝐷𝑖 = 1,𝑋𝑖 = 1] − 𝔼[𝑌𝑖|𝐷𝑖 = 0,𝑋𝑖 = 1]􏿸
􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍

diff-in-means for incumbents

ℙ[𝑋𝑖 = 1]􏿋􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏿍
share of incumbents

+ 􏿵𝔼[𝑌𝑖|𝐷𝑖 = 1,𝑋𝑖 = 0] − 𝔼[𝑌𝑖|𝐷𝑖 = 0,𝑋𝑖 = 0]􏿸
􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍

diff-in-means for challengers

ℙ[𝑋𝑖 = 0]􏿋􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏿍
share of challengers

• We call this “averaging over 𝑋𝑖”



Effect modification

• Averaging over 𝑋𝑖 might hide some interesting variation in the
effect size:

▶ Effect of negativity might varies by incumbency status?
▶ Effect of clientelistic messages varies by gender of recipient?
▶ Effect of having daughters varies by gender?

• This means the conditional ATE (CATE) is non-constant:

𝜏(𝑥) ≡ 𝐸[𝑌𝑖(1) − 𝑌𝑖(0)|𝑋𝑖 = 𝑥] ≠ 𝐸[𝑌𝑖(1) − 𝑌𝑖(0)|𝑋𝑖 = 𝑥∗] ≡ 𝜏(𝑥∗)

• The difference between 𝜏(𝑥) and 𝜏(𝑥∗) might be causal or not.
• Under randomization or stratified randomization, CATE is

identified from within-strata difference-in-means (see last
slide):

𝜏(𝑥) = 𝔼[𝑌𝑖|𝐷𝑖 = 1,𝑋𝑖 = 𝑥] − 𝔼[𝑌𝑖|𝐷𝑖 = 0,𝑋𝑖 = 𝑥]



Estimation and Inference

• Up until now, we’ve talked about identification.
• Now that we know that the ATE is identified, how will we

estimate it?
• Remember: identification first, then estimation.



Samples versus Populations

• Remember the differences between the population, 𝑈, of size
𝑁, with the PATE:

𝑃𝐴𝑇𝐸 = 𝜏 = 𝐸[𝑌𝑖(1) − 𝑌𝑖(0)]

• And the sample, 𝑆, from the population of size 𝑛 with the
SATE:

𝑆𝐴𝑇𝐸 = 𝜏𝑆 =
1
𝑛
􏾜
𝑖∈𝑆

[𝑌𝑖(1) − 𝑌𝑖(0)]

• Today, we will focus on the Neyman approach to estimation
and inference:

▶ derive estimators for these quantites and,
▶ derive the properties of these estimators under repeated

sampling.

• Next week, we’ll discuss an alternative approach proposed by
Fisher.



Finite sample results

• Finite sample results take the observed sample as the target of
interest.

• Let 𝑛𝑡 be the number of treated units in the sample.
• Once we assign some groups to treatment and some to

control we do not actually observe 𝑌𝑖(1) and 𝑌𝑖(0) and so we
cannot actually observe SATE. We can, however, estimate it:

𝜏̂𝑆 =
1
𝑛𝑡

𝑛
􏾜
𝑖=􏷠

𝐷𝑖𝑌𝑖
􏿋􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏿍

mean among treated

− 1
𝑛𝑐

𝑛
􏾜
𝑖=􏷠

(1 − 𝐷𝑖)𝑌𝑖
􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍
mean among control

• Conditional on the sample, the only variation in 𝜏̂𝑆 is from the
treatment assignment.

• Unconditionally, there are two sources of variation: the
treatment assignment and the sampling procedure.



Repeated samples/randomizations

randomization 1 C T C T T C 𝜏̂􏷠𝑆

randomization 2 T T C C T C 𝜏̂􏷡𝑆

randomization 3 C T T C C T 𝜏̂􏷢𝑆

randomization 4 T C C T C T 𝜏̂􏷣𝑆
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

randomization
distribution

• Randomization distribution is a special version of the sampling
distribution of this estimator.



Finite-sample properties

• What are the properties of 𝜏̂𝑆 in repeated
samples/randomizations? What does the distribution look
like?

• Unbiasedness: is the mean of the randomization distribution
equal to the true SATE?

• Sampling variance: what is the variance of the randomization
distribution?

• Knowing these will allow to construct confidence intervals,
conduct tests, etc.



Unbiasedness
• In a completely randomized experiment, 𝜏̂𝑆 is unbiased for 𝜏𝑆
• Let 𝐎 = {𝐘(1), 𝐘(0)} be the the potential outcomes.

𝔼[𝜏̂𝑆|𝑆,𝐎] = 1
𝑛𝑡

𝑛
􏾜
𝑖=􏷠

𝔼[𝐷𝑖𝑌𝑖|𝑆,𝐎] − 1
𝑛𝑐

𝑛
􏾜
𝑖=􏷠

𝔼[(1 − 𝐷𝑖)𝑌𝑖|𝑆,𝐎]

= 1
𝑛

𝑛
􏾜
𝑖=􏷠

􏿵 𝑛
𝑛𝑡

⋅ 𝔼[𝐷𝑖𝑌𝑖|𝑆,𝐎] − 𝑛
𝑛𝑐

⋅ 𝔼[(1 − 𝐷𝑖)𝑌𝑖|𝑆,𝐎]􏿸

= 1
𝑛

𝑛
􏾜
𝑖=􏷠

􏿵 𝑛
𝑛𝑡

⋅ 𝔼[𝐷𝑖𝑌𝑖(1)|𝑆,𝐎] − 𝑛
𝑛𝑐

⋅ 𝔼[(1 − 𝐷𝑖)𝑌𝑖(0)|𝑆,𝐎]􏿸

= 1
𝑛

𝑛
􏾜
𝑖=􏷠

􏿵 𝑛
𝑛𝑡

⋅ 𝔼[𝐷𝑖|𝑆,𝐎] ⋅ 𝑌𝑖(1) −
𝑛
𝑛𝑐

⋅ 𝔼[(1 − 𝐷𝑖)|𝑆,𝐎] ⋅ 𝑌𝑖(0)􏿸

= 1
𝑛

𝑛
􏾜
𝑖=􏷠

􏿵 𝑛
𝑛𝑡

⋅ 𝑛𝑡𝑛 ⋅ 𝑌𝑖(1) −
𝑛
𝑛𝑐

⋅ 𝑛𝑐𝑛 ⋅ 𝑌𝑖(0)􏿸

= 1
𝑛
􏾜
𝑖∈𝑆

𝑌𝑖(1) − 𝑌𝑖(0) = 𝜏𝑆



Finite-sample sampling variance

• It turns out that the sampling variance of the difference in
means estimator is:

𝕍(𝜏̂𝑆|𝑆) =
𝑆􏷡𝑐
𝑛𝑐

+ 𝑆􏷡𝑡
𝑛𝑡

−
𝑆􏷡𝜏𝑖
𝑛 ,

• 𝑆􏷡𝑐 and 𝑆􏷡𝑡 are the in-sample variances of 𝑌𝑖(0) and 𝑌𝑖(1),
respectively.

𝑆􏷡𝑐 =
1

𝑛 − 1

𝑛
􏾜
𝑖=􏷠

(𝑌𝑖(0) − 𝑌̅(0))􏷡 𝑆􏷡𝑡 =
1

𝑛 − 1

𝑛
􏾜
𝑖=􏷠

(𝑌𝑖(1) − 𝑌̅(1))􏷡

• Here, 𝑌̅(𝑑) = (1/𝑛)∑𝑛
𝑖=􏷠 𝑌𝑖(0).

• Last term is the in-sample variation of the individual
treatment effects:

𝑆􏷡𝜏𝑖 =
1

𝑛 − 1
􏾜
𝑖=􏷠

􏿴𝑌𝑖(1) − 𝑌𝑖(0) − 𝜏𝑆􏿷
􏷡



Finite-sample sampling variance

𝕍(𝜏̂𝑆|𝑆) =
𝑆􏷡𝑐
𝑛𝑐

+ 𝑆􏷡𝑡
𝑛𝑡

−
𝑆􏷡𝜏𝑖
𝑛 ,

• If the treatment effects are constant across units, then 𝑆􏷡𝜏𝑖 = 0.
• ⇝ in-sample variance is largest when treatment effects are

constant.
• Intuition looking at two-unit samples:

𝑖 = 1 𝑖 = 2 Avg.
𝑌𝑖(0) 10 -10 0
𝑌𝑖(1) 10 -10 0
𝜏𝑖 0 0 0

𝑖 = 1 𝑖 = 2 Avg.
𝑌𝑖(0) -10 10 0
𝑌𝑖(1) 10 -10 0
𝜏𝑖 20 -20 0

• Both have 𝜏 = 0, first has constant effects.
• In first setup, 𝜏̂𝑆 = 20 or 𝜏̂𝑆 = −20 depending on the

randomization.
• In second setup, 𝜏̂𝑆 = 0 in either randomization.



Estimating the sampling variance

• We can use sample variances within levels of 𝐷𝑖 to estimate 𝑆􏷡𝑐
and 𝑆􏷡𝑡 :

𝑠􏷡𝑐 =
1

𝑛𝑐 − 1
􏾜

𝑖∶𝐷𝑖=􏷟
(𝑌𝑖(0) − 𝑌̅𝑐)􏷡 𝑠􏷡𝑡 =

1
𝑛𝑡 − 1

􏾜
𝑖∶𝐷𝑖=􏷠

(𝑌𝑖 − 𝑌̅𝑡)􏷡

• Here, 𝑌̅𝑐 = (1/𝑛𝑐)∑𝑛
𝑖=􏷠(1 − 𝐷𝑖)𝑌𝑖 and 𝑌̅𝑡 = (1/𝑛𝑡)∑𝑛

𝑖=􏷠𝐷𝑖𝑌𝑖.
• But what about 𝑆􏷡𝜏𝑖?

𝑆􏷡𝜏𝑖 =
1

𝑛 − 1
􏾜
𝑖=􏷠

􏿴 𝑌𝑖(1) − 𝑌𝑖(0)􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏿍
???

−𝜏𝑆􏿷
􏷡

• What to do?



Conservative variance estimation

𝕍(𝜏̂𝑆|𝑆) =
𝑆􏷡𝑐
𝑛𝑐

+ 𝑆􏷡𝑡
𝑛𝑡

−
𝑆􏷡𝜏𝑖
𝑛 ,

• We will estimate this quantity with the so-called Neyman (or
robust) estimator:

􏾧𝕍 = 𝑠􏷡𝑐
𝑛𝑐

+ 𝑠􏷡𝑡
𝑛𝑡
,

• Notice that 􏾧𝕍 is biased for 𝕍, but that bias is always positive.
• Construct CIs and conduct hypothesis tests as usual.
• Leads to conservative inferences:

▶ Standard errors, √𝕍̂ will be at least as big as they should be.
▶ Confidence intervals using √𝕍̂ will be at least wide as they

should be.
▶ Type I error rates will still be correct, power will be lower.
▶ Both will be exactly right if treatment effects are constant.



Population estimands

• Now imagine we want to estimate the PATE, 𝜏.
• Implied DGP: simple random sample (SRS) from the

population, then randomized experiment within sample.
▶ ⇝ the sample mean is unbiased for the population mean,
𝐸𝑆[𝜏𝑆] = 𝜏

▶ 𝐸𝑆[⋅] is the expectation over repeated samples from the
population.

• How does our difference-in-means estimator do?

𝔼𝑆[𝜏̂𝑆] = 𝔼𝑆􏿺𝐸[𝜏̂𝑆|𝑆]􏿽􏿋􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏿍
iterated expectations

= 𝔼𝑆[𝜏𝑆]􏿋􏻰􏻰􏿌􏻰􏻰􏿍
SATE unbiasedness

= 𝜏

• 𝜏̂𝑆 unbiased for the PATE!



Population sampling variance

• What about the sampling variance of 𝜏̂𝑆 when estimating the
PATE?

• It turns out that the sampling variance of the estimator is
simply:

𝕍(𝜏̂𝑆) =
𝜎􏷡𝑐
𝑁𝑐

+ 𝜎􏷡𝑡
𝑁𝑡

,

• Here, 𝜎􏷡𝑐 and 𝜎􏷡𝑡 are the population-level variances of 𝑌𝑖(1) and
𝑌𝑖(0).

• The third term drops out ⇝ higher variance for PATE than
SATE.



Estimating pop. sampling variance

𝕍(𝜏̂𝑆) =
𝜎􏷡𝑐
𝑁𝑐

+ 𝜎􏷡𝑡
𝑁𝑡

,

• Notice that the Neyman estimator 􏾧𝕍 is now unbiased for
𝕍(𝜏̂𝑆):

􏾧𝕍 = 𝑠􏷡𝑐
𝑛𝑐

+ 𝑠􏷡𝑡
𝑛𝑡

• Two interpretations of 􏾧𝕍:
1. Unbiased estimator for sampling variance of the traditional

estimator of the PATE
2. Conservative estimator for the sampling variance of the

traditional estimator of the SATE



Analyzing experiments with regression?

• Can we just use regression to estimate the ATE in this case?
▶ lm(y ~ d)?

• Call the coefficient on 𝐷𝑖 the regression estimator: 𝜏̂ols.
• We can justify this using the consistency relationship:

𝑌𝑖 = 𝐷𝑖𝑌𝑖(1) + (1 − 𝐷𝑖)𝑌𝑖(0)
= 𝐷𝑖𝑌𝑖(1) + (1 − 𝐷𝑖)𝑌𝑖(0) + 𝔼[𝑌𝑖(0)] − 𝔼[𝑌𝑖(0)]
+ 𝐷𝑖𝔼[𝑌𝑖(1) − 𝑌𝑖(0)] − 𝐷𝑖𝔼[𝑌𝑖(1) − 𝑌𝑖(0)]
= 𝔼[𝑌𝑖(0)] + 𝐷𝑖𝔼[𝑌𝑖(1) − 𝑌𝑖(0)] + (𝑌𝑖(0) − 𝔼[𝑌𝑖(0)])
+ 𝐷𝑖 ⋅ ((𝑌𝑖(1) − 𝑌𝑖(0)) − 𝔼[𝑌𝑖(1) − 𝑌𝑖(0)])
= 𝛼 + 𝐷𝑖𝜏 + 𝜖𝑖

• See that 𝛼 = 𝐸[𝑌𝑖(0)] and remember that 𝜏 = 𝔼[𝑌𝑖(1) − 𝑌𝑖(0)].
And also the residual here is the deviation for the control
group plus the treatment effect hetergeneity.



Independent errors

𝜀𝑖 = (𝑌𝑖(1)−𝑌𝑖(0))−𝔼[𝑌𝑖(1)−𝑌𝑖(0)])+𝐷𝑖 ⋅((𝑌𝑖(1)−𝑌𝑖(0))−𝔼[𝑌𝑖(1)−𝑌𝑖(0)])

• Let’s check to see if the errors here are independent of the
treatment, which would imply that a regression estimator 𝜏̂ols
would be unbiased for 𝜏:

𝔼[𝜖𝑖|𝐷𝑖 = 0] = 𝔼[𝑌𝑖(0) − 𝔼[𝑌𝑖(0)]|𝐷𝑖 = 0]
= 𝔼[𝑌𝑖(0)|𝐷𝑖 = 0] − 𝔼[𝑌𝑖(0)] = 0

• and for 𝐷𝑖 = 1:
𝔼[𝜖𝑖|𝐷𝑖 = 1] = 𝔼[𝑌𝑖(1) − 𝔼[𝑌𝑖(0)] + 𝔼[𝑌𝑖(1) − 𝑌𝑖(0)]|𝐷𝑖 = 1]

= 𝔼[𝑌𝑖(1)|𝐷𝑖 = 1] − 𝔼[𝑌𝑖(1)] = 0

• Thus, just using the randomization assumption, we have
justified the use of regression.

• No functional form assumptions at all, only consistency.



Including covariates

• Completely randomized design ⇝ no need to control for
covariates.

• Adding covariates won’t matter for unbiasedness/consistency.
▶ (Not true for stratified designs!)

• Still consistent even if functional form for 𝑋𝑖 is misspecified.
• Effects of conditioning on covariates: reduce uncertainty in

effect estimates



Next week

• More experiments, this time under Fisherian inference.
• Randomization inference: even fewer assumptions.
• Back to the lady tasting tea!
• Then: regression, matching, etc!


