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Where are we (going)?

= Last time: defined potential outcomes and causal
estimands/quantities of interest.

= This time: how we identify these quantities in randomized
experiments.

= Later: what if randomization only happens conditional on
covariates?

= Or, what if we weren't able to randomize?



What is the selection problem?

= First pass at the data: prima facie or naive difference in
means:

E[Y;|D; = 1] - E[Y;ID; = 0]
=E[Y;(1)|D; = 1] — E[Y;(0)|D; = 0] (consistency)
=E[Y;(1)ID; = 1] - E[Y;(0)ID; = 1] + E[Y;(0)ID; = 1] - E[Y;(0)|D; = 0]
= E[Y;(1) - Yi(0)ID; = 1]+ E[Y;(0)ID; = 1] - E[Y;(0)ID; = 0]

ATT selection bias

= Naive = ATT + selection bias.

= Selection bias: how different the treated and control groups
are in terms of their potential outcome under control.



Selection bias = unidentified ATT

E[Y;(1) = Yi(0)ID; = 1]+ E[Y;(0)ID; = 1] - E[Y;(0)ID; = 0]

ATT selection bias

= ATT is unidentified here unless selection bias equals 0.

» Both ATT and the SB are unobserved.
» No amount of data will help us distinguish between them.

= Example: effect of negativity on vote shares.

> Naive estimate: negative candidates do worse than positive
candidates.

» Could mean that the ATT is negative OR the ATT is positive
and there is large negative selection bias.

» SB = candidates that go negative are worse than those who
stay positive, even if they ran the same campaigns.

= With an unbounded Y;, we can’t even bound the ATT
because, in principle, SB could be anywhere from —co to .



Notation

= We'll need some notation for the entire vector of treatment,
outcomes, etc:
» D= (Dl/DZr -~-/DN)
» X, ¥Y(1), and Y(0) are similarly defined for X;, Y;(1), and Y;(0).



Experiments

= An experiment is a study where assignment to treatment is
controlled by the researcher.

» p; = P[D; = 1] be the probability of treatment assignment
probability.
» p; is controlled and known by researcher in an experiment.

= A randomized experiment is an experiment with the following
properties:

1. Positivity: assignment is probabilistic: 0 < p; <1
> No deterministic assignment.
2. Unconfoundedness: P[D; = 1|Y(1), Y(0)] = P[D; = 1]

» Treatment assignment does not depend on any potential
outcomes.

» Sometimes written as D; 11 (Y(1),Y(0))



Natural experiment

= Natural experiment: experiment where treatment is
randomized, but that randomization was not under the
control of the researcher.

= Randomization has to be justified in these cases since it
wasn't directly implemented.

= Hyde paper on syllabus:

> election observers were assigned to polling stations “using a
method that approximates randomization”



Randomization

= What does randomization (positivity + unconfoundedness)
buy us?

» treatment group is a random sample from the population.
» control group is a random sample the population.

= ~» sample control mean is unbiased for population control
mean:

E[Y;|D; = 0] = E[Y;(0)ID; = 0] = E[Y;(0)] = E[Y;(0)ID; = 1]

= Not the same as the observed outcomes being independent of
treatment (Y; 1L D;)
= Randomization eliminates selection bias:

E[Y{(0)ID; = 1] - E[Y;(0)ID; = 0] = E[Y;(0)] - E[Y(0)] = 0



Identification by randomization

= Goal: show that we can identify a causal effect under a
randomization assumption.

= Use the selection bias result with the naive difference in
means:
E[Y,|D; = 1] - E[Y;|D; = 0]
=E[Y;()ID; = 1] - E[Y;(0)ID; = 1] + 0
ATT selectch; bias
=E[Y;()ID; = 1] - E[Y;(0)|D; = 1]
=E[Y;(1)] - E[Y;(0)] (unconfoundedness)

= E[Y;(1) - Y;(0)] = 7 is just the ATE.
= Thus, if we can estimate the conditional expectations,
E[Y;|D; = 1] and E[Y;|D; = 0], we can estimate the ATE.

= Result: ATE is identified in a randomized experiment.



Types of randomizations/experiments

= Let N, =3, D; and N. =N - N..
= Bernoulli trials:

» flip coins for each person in the population with probability g
» P[D] = th(1 — q)Nc

>

Downside: could end up with all treated or all control

= Completely randomized experiment:

>

>

>

Randomly sample N; units from the population to be treated
Equal probability of any assignment with Zf\il D; = N;,

Each possible assignment has probability (I\I\I[,)_l

Each unit has probability p; = Ny/N of being selected into

treatment, but treatment assignment is not independent
between units.



Bernoulli assignment
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Completely randomized design

000000

= Start with N = 6 and say we want to have N, =3

= Randomly pick 3 from {1,2,3,4,5,6}: 2,4,5

= Not independent: knowing 2 is treated means 3 is less likely
to be treated.

= Fixed number of treatment spots induces dependence:
E[D; - D;] # E[D;JE[D]]

NN, -1
NN-1

]E[DZ . D]] S IP[DZ = 1] . ]P[Dl = 1|D1 = 1] =



Stratified designs

= Stratified randomized experiment:

» form | blocks, b]-, j=1,..,] based on the covariates
» completely randomized assignment within each block.
» Randomization depends on the block variable, B;

» Conditional unconfoundedness: D; 1l (Y;(1), Y;(0))|B;.

= Pair randomized experiments:

» Stratified randomized experiment where each block has 2 units.

» 1 unit in each pair receives treatment.

» Extreme version of the stratified/blocked randomized
experiment.

> Also called “matched pair" design

= Both of these seek to remove "bad randomizations” where
covariates are related to treatment assignment by chance.



Identification under stratification

= Generally, stratified designs mean that the probability of
treatment depends on a covariate, X;:

pi(x) = P[D; = 1|X; = ]

= Conditional randomization assumptions:

1. Positivity: 0 < p;(x) <1 for all i and x.
2. Unconfoundedness: P[D; = 11X, Y(1), Y(0)] = P[D; = 1|1X;]

> Also written as D; 11 (Y(1), Y(0))|X;



Stratification and the ATE

= Can we identify the ATE under these stratified designs? Yes!
E[Y,(1) - Y,(0)] = IEX{IE[Yi(l) - Yi(O)le-]} (iterated expectations)
= Ex{ELY,(DIX] - E[Y,0)1%;1}
= ]EX{IE[Yi(l)lDZ- =1,X;] - E[Y;(0)|D; = 0, X,»]} (unconfoundedness)
= ]EX{]E[Yl»lDl- =1,X;]-E[YiD; =0, Xl-]} (consistency)

= ATE is just the average of the within-strata differences in
means.

= |dentified because the last line is a function of observables.

= The averaging is over the distribution of the strata ~~ size of
the blocks.



Stratification example

= Stratified by incumbency, where X; =1 is a Democratic
incumbent and X; = 0 is a Democratic challenger.

= Then we have:
IEX{]E[Yi|Di =1,X;] - E[Y;|D; = 0, Xi]}

- (IE[Yl-lD,- =1,X;=1] - E[Y,D; = 0,X; = 11) PLX; = 1]
—_————
share of incumbents

diff-in-means for incumbents

+ (BIYID; = 1,X; = 01~ E[Y;ID; = 0,X; = 0])  P[X; = 0]

h f chall
diff-in-means for challengers SHare OF CNRUENEEIS

= We call this “averaging over X;"



Effect modification

= Averaging over X; might hide some interesting variation in the
effect size:

» Effect of negativity might varies by incumbency status?
» Effect of clientelistic messages varies by gender of recipient?
» Effect of having daughters varies by gender?

= This means the conditional ATE (CATE) is non-constant:

7(x) = E[Y(1) - Y;(0)IX; = x] # E[Y;(1) - Yi(0)IX; = x7] = 7(x")

= The difference between 7(x) and 7(x*) might be causal or not.

= Under randomization or stratified randomization, CATE is
identified from within-strata difference-in-means (see last
slide):

7(x) = E[Y;|D; = 1, X; = x] - E[Y}ID; = 0, X; = x]



Estimation and Inference

= Up until now, we've talked about identification.

= Now that we know that the ATE is identified, how will we
estimate it?

= Remember: identification first, then estimation.



Samples versus Populations

= Remember the differences between the population, U, of size
N, with the PATE:

PATE =1 = E[Yl(l) - Y,(O)]

= And the sample, S, from the population of size n with the
SATE: .
SATE = 15 = - M LYi(1) - Yi(0)]
ieS
= Today, we will focus on the Neyman approach to estimation
and inference:

» derive estimators for these quantites and,

» derive the properties of these estimators under repeated
sampling.

= Next week, we'll discuss an alternative approach proposed by
Fisher.



Finite sample results

= Finite sample results take the observed sample as the target of
interest.

= Let n; be the number of treated units in the sample.
= Once we assign some groups to treatment and some to

control we do not actually observe Y;(1) and Y;(0) and so we
cannot actually observe SATE. We can, however, estimate it:

1L 1 &
’fs = — E DiYi 1/1_ Z 1 - Di)Yi
i =il

mean among treated mean among control

= Conditional on the sample, the only variation in %5 is from the
treatment assignment.

= Unconditionally, there are two sources of variation: the
treatment assignment and the sampling procedure.



Repeated samples/randomizations

randomization 1 @ a @ e e @——»@
randomization 2 a ° @ @ e @——»@
randomization 3 @ ° e @ @ e--»@
randomization 4 6 @ @ e @ e-»@

randomization
distribution

= Randomization distribution is a special version of the sampling
distribution of this estimator.



Finite-sample properties

= What are the properties of 75 in repeated
samples/randomizations? What does the distribution look
like?

= Unbiasedness: is the mean of the randomization distribution
equal to the true SATE?

= Sampling variance: what is the variance of the randomization
distribution?

= Knowing these will allow to construct confidence intervals,
conduct tests, etc.



Unbiasedness

= In a completely randomized experiment, %5 is unbiased for g
= Let O ={Y(1),Y(0)} be the the potential outcomes.

E[%4]S, O] =

—E]EDYlS 01——2115[(1 D;,)Y|S, 0]

Czl

(% -EDyis,01- - E(1 - D)viis, 0))

ny ne

E[D;¥(DIS, O] - - - EI(L - D)Y;(0)l5, 0}
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Zn: (ﬁ “E[D/IS, 0] - Y;(1) - - - E[(1 - DS, O] Yi(O))
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Finite-sample sampling variance

= |t turns out that the sampling variance of the difference in

means estimator is:
2 g2 s
V(tslS) = =+ = - —,
ne ny n

= S2 and S? are the in-sample variances of Y;(0) and Y;(1),
respectively.

S?

1 < . 1 < .
— DO -Y0)?  §F=-— V(1) - Y(1)
i=1 i=1

= Here, Y(d) = (1/n) 27:1 Y;(0).
= Last term is the in-sample variation of the individual
treatment effects:

1
§% = 1 (Y1) - Y4(0) - Ts)z
i=1



Finite-sample sampling variance

2 g2 s2
V(tsls) = £+ == = —1,
c t

= If the treatment effects are constant across units, then S2 = 0.

= ~~ in-sample variance is largest when treatment effects are
constant.

= Intuition looking at two-unit samples:

|i=1 i=2 Avg |i=1 i=2 Avg
Y;0)| 10 -10 0 Y0 | -10 10 0
Y,1)| 10 -10 0 Y1) | 10 -10 0
v | 0 0 0 | 20 20 0

= Both have 7 =0, first has constant effects.

= |n first setup, 75 =20 or g = —20 depending on the
randomization.

= In second setup, 5 =0 in either randomization.



Estimating the sampling variance

We can use sample variances within levels of D; to estimate S?
and S%:

2 _

& = -Y,)? o=

lDO 1D1

Here, Y, = (1/n) ¥_,(1 - D;)Y; and Y; = (1/n;) X_, D;Y;.
But what about 527

L S () - YO )
i ——

2 _
s2 =

What to do?



Conservative variance estimation

2 g2 s2
V(tsls) = £+ == = —1,
c t

= We will estimate this quantity with the so-called Neyman (or
robust) estimator:

2 2
—~ S St
V=-=<+4,

ne ny

= Notice that V is biased for V, but that bias is always positive.
= Construct Cls and conduct hypothesis tests as usual.
= Leads to conservative inferences:

» Standard errors, V7 will be at least as big as they should be.

» Confidence intervals using V7 will be at least wide as they
should be.

> Type | error rates will still be correct, power will be lower.

» Both will be exactly right if treatment effects are constant.



Population estimands

= Now imagine we want to estimate the PATE, 7.
= Implied DGP: simple random sample (SRS) from the
population, then randomized experiment within sample.

» ~- the sample mean is unbiased for the population mean,
Eslts] =7

» Eg[-] is the expectation over repeated samples from the
population.

= How does our difference-in-means estimator do?

Eslts]=  ElEltslS]] =  Esltl =<
—————

_N__/ .
iterated expectations SATE unbiasedness

= 75 unbiased for the PATE!



Population sampling variance

= What about the sampling variance of ©5 when estimating the

PATE?
= |t turns out that the sampling variance of the estimator is
simply:
2 2
0: o
V(tg) = = + —,
(ts) N. N,

= Here, 02 and 0? are the population-level variances of Y;(1) and
Y;(0).

= The third term drops out ~> higher variance for PATE than
SATE.



Estimating pop. sampling variance

0.2 (72
\V4 =<4+
(fs) = N, ' N,

= Notice that the Neyman estimator V is now unbiased for

V(ts): .
= £ &

V=242t

n,

= Two interpretations of V:

1. Unbiased estimator for sampling variance of the traditional
estimator of the PATE

2. Conservative estimator for the sampling variance of the
traditional estimator of the SATE



Analyzing experiments with regression?

= Can we just use regression to estimate the ATE in this case?
> Im(y ~ d)?

= Call the coefficient on D; the regression estimator: 7.
= We can justify this using the consistency relationship:

Y; = D;Yi(1) + (1 - D;)Y;(0)
= D;Y;(1) + (1 - Dy)Y;(0) + E[Y;(0)] - E[Y;(0)]
+ D;E[Y;(1) - Y;(0)] — DiE[Y;(1) - Y;(0)]
= E[Y;(0)] + D;E[Y;(1) - Y;(0)] +

=a+D;t+

= See that @ = E[Y;(0)] and remember that 7 = E[Y;(1) — Y;(0)].
And also the residual here is the deviation for the control
group plus the treatment effect hetergeneity.



Independent errors

&; = (Yi(1)=Y;(0)-E[Y;(1)-Y;(0)])+D;-((Y;(1) - Yi(0)) - E[Y;(1) - Y;(0)])

Let's check to see if the errors here are independent of the
treatment, which would imply that a regression estimator 7,5
would be unbiased for 7:

[E[¢;|D; = 0] = E[Y;(0) - E[Y;(0)]ID; = 0]
= E[Y;(0)ID; = 0] - E[Y;(0)] = 0

= and for D; = 1:
Ele|D; = 1] = E[Y;(1) - E[Y;(0)] + E[Y;(1) - Y;(0O)ID; = 1]
= E[Y;()ID; = 1] - E[Y;(1)] =0
= Thus, just using the randomization assumption, we have

justified the use of regression.
= No functional form assumptions at all, only consistency.



Including covariates

= Completely randomized design ~~ no need to control for
covariates.
= Adding covariates won't matter for unbiasedness/consistency.

» (Not true for stratified designs!)
= Still consistent even if functional form for X; is misspecified.

= Effects of conditioning on covariates: reduce uncertainty in
effect estimates



Next week

= More experiments, this time under Fisherian inference.
= Randomization inference: even fewer assumptions.

= Back to the lady tasting tea!

= Then: regression, matching, etc!



