Gov 2002: 2. Randomized Experiments

Matthew Blackwell

September 10, 2015

Where are we (going)?

- Last time: defined potential outcomes and causal estimands/quantities of interest.
- This time: how we identify these quantities in randomized experiments.
- Later: what if randomization only happens conditional on covariates?
- Or, what if we weren't able to randomize?

What is the selection problem?

First pass at the data: prima facie or naive difference in means:

$$\begin{split} & E[Y_i|D_i = 1] - E[Y_i|D_i = 0] \\ = & E[Y_i(1)|D_i = 1] - E[Y_i(0)|D_i = 0] \qquad \text{(consistency)} \\ = & E[Y_i(1)|D_i = 1] - E[Y_i(0)|D_i = 1] + E[Y_i(0)|D_i = 1] - E[Y_i(0)|D_i = 0] \\ = & \underbrace{E[Y_i(1) - Y_i(0)|D_i = 1]}_{\text{ATT}} + \underbrace{E[Y_i(0)|D_i = 1] - E[Y_i(0)|D_i = 0]}_{\text{selection bias}} \end{split}$$

- Naive = ATT + selection bias.
- Selection bias: how different the treated and control groups are in terms of their potential outcome under control.

Selection bias = unidentified ATT

$$\underbrace{E[Y_i(1) - Y_i(0)|D_i = 1]}_{\text{ATT}} + \underbrace{E[Y_i(0)|D_i = 1] - E[Y_i(0)|D_i = 0]}_{\text{selection bias}}$$

- ATT is unidentified here unless selection bias equals 0.
 - Both ATT and the SB are unobserved.
 - No amount of data will help us distinguish between them.
- Example: effect of negativity on vote shares.
 - Naive estimate: negative candidates do worse than positive candidates.
 - Could mean that the ATT is negative OR the ATT is positive and there is large negative selection bias.
 - ► SB = candidates that go negative are worse than those who stay positive, even if they ran the same campaigns.
- With an unbounded Y_i, we can't even bound the ATT because, in principle, SB could be anywhere from −∞ to ∞.

Notation

- We'll need some notation for the entire vector of treatment, outcomes, etc:
 - $\blacktriangleright \mathbf{D} = (D_1, D_2, \dots, D_N)$
 - **X**, **Y**(1), and **Y**(0) are similarly defined for X_i , $Y_i(1)$, and $Y_i(0)$.

Experiments

- An experiment is a study where assignment to treatment is controlled by the researcher.
 - $p_i = \mathbb{P}[D_i = 1]$ be the probability of treatment assignment probability.
 - p_i is controlled and known by researcher in an experiment.
- A randomized experiment is an experiment with the following properties:
- 1. Positivity: assignment is probabilistic: $0 < p_i < 1$
 - No deterministic assignment.
- 2. Unconfoundedness: $\mathbb{P}[D_i = 1 | \mathbf{Y}(1), \mathbf{Y}(0)] = \mathbb{P}[D_i = 1]$
 - Treatment assignment does not depend on any potential outcomes.
 - Sometimes written as $D_i \perp (\mathbf{Y}(1), \mathbf{Y}(0))$

Natural experiment

- Natural experiment: experiment where treatment is randomized, but that randomization was not under the control of the researcher.
- Randomization has to be justified in these cases since it wasn't directly implemented.
- Hyde paper on syllabus:
 - election observers were assigned to polling stations "using a method that approximates randomization"

Randomization

- What does randomization (positivity + unconfoundedness) buy us?
 - treatment group is a random sample from the population.
 - control group is a random sample the population.
- → sample control mean is unbiased for population control mean:

 $\mathbb{E}[Y_i|D_i = 0] = E[Y_i(0)|D_i = 0] = E[Y_i(0)] = E[Y_i(0)|D_i = 1]$

- Not the same as the observed outcomes being independent of treatment (Y_i ⊥⊥ D_i)
- Randomization eliminates selection bias:

 $E[Y_i(0)|D_i = 1] - E[Y_i(0)|D_i = 0] = E[Y_i(0)] - E[Y_i(0)] = 0$

Identification by randomization

- Goal: show that we can identify a causal effect under a randomization assumption.
- Use the selection bias result with the naive difference in means:

$$E[Y_i|D_i = 1] - E[Y_i|D_i = 0]$$

=
$$E[Y_i(1)|D_i = 1] - E[Y_i(0)|D_i = 1] + \underbrace{0}_{\text{selection bias}}$$

=
$$E[Y_i(1)|D_i = 1] - E[Y_i(0)|D_i = 1]$$

=
$$E[Y_i(1)] - E[Y_i(0)] \quad (\text{unconfoundedness})$$

• $E[Y_i(1) - Y_i(0)] = \tau$ is just the ATE.

- Thus, if we can estimate the conditional expectations,

 \[\mathbb{E}[Y_i|D_i = 1]\] and \[\mathbb{E}[Y_i|D_i = 0]\], we can estimate the ATE.
- Result: ATE is identified in a randomized experiment.

Types of randomizations/experiments

• Let
$$N_t = \sum_{i=1}^N D_i$$
 and $N_c = N - N_t$.

- Bernoulli trials:
 - flip coins for each person in the population with probability q

•
$$\mathbb{P}[\mathbf{D}] = q^{N_t} (1-q)^{N_c}$$

- Downside: could end up with all treated or all control
- Completely randomized experiment:
 - Randomly sample N_t units from the population to be treated
 - Equal probability of any assignment with $\sum_{i=1}^{N} D_i = N_t$
 - Each possible assignment has probability $\binom{N}{M}^{-1}$
 - Each unit has probability $p_i = N_t/N$ of being selected into treatment, but treatment assignment is not independent between units.

Bernoulli assignment

Completely randomized design

- Start with N = 6 and say we want to have $N_t = 3$
- Randomly pick 3 from {1, 2, 3, 4, 5, 6}: 2, 4, 5
- Not independent: knowing 2 is treated means 3 is less likely to be treated.
- Fixed number of treatment spots induces dependence:

 \[\mathbb{E}[D_i \cdot D_j] \neq \mathbb{E}[D_i]\]
 \[\mathbb{E}[D_i]\]

$$\mathbb{E}[D_i \cdot D_j] = \mathbb{P}[D_i = 1] \cdot \mathbb{P}[D_i = 1|D_i = 1] = \frac{N_t}{N} \frac{N_t - 1}{N - 1}$$

Stratified designs

- Stratified randomized experiment:
 - ▶ form J blocks, b_j , j = 1, ..., J based on the covariates
 - completely randomized assignment within each block.
 - ▶ Randomization depends on the block variable, *B_i*
 - Conditional unconfoundedness: $D_i \perp (Y_i(1), Y_i(0))|B_i$.
- Pair randomized experiments:
 - Stratified randomized experiment where each block has 2 units.
 - ▶ 1 unit in each pair receives treatment.
 - Extreme version of the stratified/blocked randomized experiment.
 - Also called "matched pair" design
- Both of these seek to remove "bad randomizations" where covariates are related to treatment assignment by chance.

Identification under stratification

 Generally, stratified designs mean that the probability of treatment depends on a covariate, X_i:

 $p_i(x) = \mathbb{P}[D_i = 1 | X_i = x]$

- Conditional randomization assumptions:
 - 1. Positivity: $0 < p_i(x) < 1$ for all *i* and *x*.
 - 2. Unconfoundedness: $\mathbb{P}[D_i = 1 | \mathbf{X}, \mathbf{Y}(1), \mathbf{Y}(0)] = \mathbb{P}[D_i = 1 | X_i]$
 - Also written as $D_i \perp (\mathbf{Y}(1), \mathbf{Y}(0))|X_i$

Stratification and the ATE

Can we identify the ATE under these stratified designs? Yes!

$$\mathbb{E}[Y_i(1) - Y_i(0)] = \mathbb{E}_X \left\{ \mathbb{E}[Y_i(1) - Y_i(0)|X_i] \right\}$$
(iterated expectations)
$$= \mathbb{E}_X \left\{ \mathbb{E}[Y_i(1)|X_i] - \mathbb{E}[Y_i(0)|X_i] \right\}$$
$$= \mathbb{E}_X \left\{ \mathbb{E}[Y_i(1)|D_i = 1, X_i] - \mathbb{E}[Y_i(0)|D_i = 0, X_i] \right\}$$
(unconfoundedness)
$$= \mathbb{E}_X \left\{ \mathbb{E}[Y_i|D_i = 1, X_i] - \mathbb{E}[Y_i|D_i = 0, X_i] \right\}$$
(consistency)

- ATE is just the average of the within-strata differences in means.
- Identified because the last line is a function of observables.
- The averaging is over the distribution of the strata → size of the blocks.

Stratification example

- Stratified by incumbency, where X_i = 1 is a Democratic incumbent and X_i = 0 is a Democratic challenger.
- Then we have:

$$\mathbb{E}_{X} \left\{ \mathbb{E}[Y_{i}|D_{i} = 1, X_{i}] - \mathbb{E}[Y_{i}|D_{i} = 0, X_{i}] \right\}$$

$$= \underbrace{\left(\mathbb{E}[Y_{i}|D_{i} = 1, X_{i} = 1] - \mathbb{E}[Y_{i}|D_{i} = 0, X_{i} = 1]\right)}_{\text{diff-in-means for incumbents}} \underbrace{\mathbb{P}[X_{i} = 1]}_{\text{share of incumbents}}$$

$$+ \underbrace{\left(\mathbb{E}[Y_{i}|D_{i} = 1, X_{i} = 0] - \mathbb{E}[Y_{i}|D_{i} = 0, X_{i} = 0]\right)}_{\text{diff-in-means for challengers}} \underbrace{\mathbb{P}[X_{i} = 0]}_{\text{share of challengers}}$$

We call this "averaging over X_i"

Effect modification

- Averaging over X_i might hide some interesting variation in the effect size:
 - Effect of negativity might varies by incumbency status?
 - Effect of clientelistic messages varies by gender of recipient?
 - Effect of having daughters varies by gender?
- This means the conditional ATE (CATE) is non-constant:

 $\tau(x) \equiv E[Y_i(1) - Y_i(0)|X_i = x] \neq E[Y_i(1) - Y_i(0)|X_i = x^*] \equiv \tau(x^*)$

- The difference between $\tau(x)$ and $\tau(x^*)$ might be causal or not.
- Under randomization or stratified randomization, CATE is identified from within-strata difference-in-means (see last slide):

$$\tau(x) = \mathbb{E}[Y_i|D_i = 1, X_i = x] - \mathbb{E}[Y_i|D_i = 0, X_i = x]$$

Estimation and Inference

- Up until now, we've talked about identification.
- Now that we know that the ATE is identified, how will we estimate it?
- Remember: identification first, then estimation.

Samples versus Populations

• Remember the differences between the population, *U*, of size *N*, with the PATE:

$$PATE = \tau = E[Y_i(1) - Y_i(0)]$$

• And the sample, *S*, from the population of size *n* with the SATE:

$$SATE = \tau_S = \frac{1}{n} \sum_{i \in S} [Y_i(1) - Y_i(0)]$$

- Today, we will focus on the Neyman approach to estimation and inference:
 - derive estimators for these quantites and,
 - derive the properties of these estimators under repeated sampling.
- Next week, we'll discuss an alternative approach proposed by Fisher.

Finite sample results

- Finite sample results take the observed sample as the target of interest.
- Let n_t be the number of treated units in the sample.
- Once we assign some groups to treatment and some to control we do not actually observe Y_i(1) and Y_i(0) and so we cannot actually observe SATE. We can, however, estimate it:

$$\hat{\tau}_{S} = \underbrace{\frac{1}{n_{t}}\sum_{i=1}^{n}D_{i}Y_{i}}_{\text{mean among treated}} - \underbrace{\frac{1}{n_{c}}\sum_{i=1}^{n}(1-D_{i})Y_{i}}_{\text{mean among control}}$$

- Conditional on the sample, the only variation in
 *î*_S is from the treatment assignment.
- Unconditionally, there are two sources of variation: the treatment assignment and the sampling procedure.

Repeated samples/randomizations

 Randomization distribution is a special version of the sampling distribution of this estimator.

Finite-sample properties

- What are the properties of
 *î*_S in repeated samples/randomizations? What does the distribution look like?
- Unbiasedness: is the mean of the randomization distribution equal to the true SATE?
- Sampling variance: what is the variance of the randomization distribution?
- Knowing these will allow to construct confidence intervals, conduct tests, etc.

Unbiasedness

- In a completely randomized experiment, $\hat{\tau}_S$ is unbiased for τ_S
- Let O = {Y(1), Y(0)} be the potential outcomes.

$$E[\hat{\tau}_{S}|S, \mathbf{O}] = \frac{1}{n_{t}} \sum_{i=1}^{n} \mathbb{E}[D_{i}Y_{i}|S, \mathbf{O}] - \frac{1}{n_{c}} \sum_{i=1}^{n} \mathbb{E}[(1 - D_{i})Y_{i}|S, \mathbf{O}]$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left(\frac{n}{n_{t}} \cdot \mathbb{E}[D_{i}Y_{i}|S, \mathbf{O}] - \frac{n}{n_{c}} \cdot \mathbb{E}[(1 - D_{i})Y_{i}|S, \mathbf{O}]\right)$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left(\frac{n}{n_{t}} \cdot \mathbb{E}[D_{i}Y_{i}(1)|S, \mathbf{O}] - \frac{n}{n_{c}} \cdot \mathbb{E}[(1 - D_{i})Y_{i}(0)|S, \mathbf{O}]\right)$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left(\frac{n}{n_{t}} \cdot \mathbb{E}[D_{i}|S, \mathbf{O}] \cdot Y_{i}(1) - \frac{n}{n_{c}} \cdot \mathbb{E}[(1 - D_{i})|S, \mathbf{O}] \cdot Y_{i}(0)\right)$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left(\frac{n}{n_{t}} \cdot \frac{n_{t}}{n} \cdot Y_{i}(1) - \frac{n}{n_{c}} \cdot \frac{n_{c}}{n} \cdot Y_{i}(0)\right)$$

$$= \frac{1}{n} \sum_{i\in S} Y_{i}(1) - Y_{i}(0) = \tau_{S}$$

Finite-sample sampling variance

 It turns out that the sampling variance of the difference in means estimator is:

$$\mathbb{V}(\hat{\tau}_{S}|S) = \frac{S_{c}^{2}}{n_{c}} + \frac{S_{t}^{2}}{n_{t}} - \frac{S_{\tau_{i}}^{2}}{n},$$

S²_c and S²_t are the in-sample variances of Y_i(0) and Y_i(1), respectively.

$$S_c^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i(0) - \bar{Y}(0))^2 \qquad S_t^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i(1) - \bar{Y}(1))^2$$

• Here, $\bar{Y}(d) = (1/n) \sum_{i=1}^{n} Y_i(0)$.

 Last term is the in-sample variation of the individual treatment effects:

$$S_{\tau_i}^2 = \frac{1}{n-1} \sum_{i=1}^{n-1} \left(Y_i(1) - Y_i(0) - \tau_S \right)^2$$

Finite-sample sampling variance

$$\mathbb{V}(\hat{\tau}_{S}|S) = \frac{S_{c}^{2}}{n_{c}} + \frac{S_{t}^{2}}{n_{t}} - \frac{S_{\tau_{i}}^{2}}{n},$$

- If the treatment effects are constant across units, then $S_{\tau_i}^2 = 0$.
- \rightsquigarrow in-sample variance is largest when treatment effects are constant.
- Intuition looking at two-unit samples:

	<i>i</i> = 1	<i>i</i> = 2	Avg.		<i>i</i> = 1	<i>i</i> = 2	Avg.
$Y_{i}(0)$	10	-10	0	$Y_{i}(0)$	-10	10	0
$Y_{i}(1)$	10	-10	0	$Y_{i}(1)$	10	-10	0
$ au_i$	0	0	0	$ au_i$	20	-20	0

- Both have $\tau = 0$, first has constant effects.
- In first setup, $\hat{\tau}_S = 20$ or $\hat{\tau}_S = -20$ depending on the randomization.
- In second setup, $\hat{\tau}_S = 0$ in either randomization.

Estimating the sampling variance

 We can use sample variances within levels of D_i to estimate S²_c and S²_t:

$$s_c^2 = \frac{1}{n_c - 1} \sum_{i:D_i = 0} (Y_i(0) - \bar{Y}_c)^2 \qquad s_t^2 = \frac{1}{n_t - 1} \sum_{i:D_i = 1} (Y_i - \bar{Y}_t)^2$$

- Here, $\overline{Y}_c = (1/n_c) \sum_{i=1}^n (1 D_i) Y_i$ and $\overline{Y}_t = (1/n_t) \sum_{i=1}^n D_i Y_i$.
- But what about S²_{\u03c0}?

$$S_{\tau_i}^2 = \frac{1}{n-1} \sum_{i=1}^{n-1} \left(\underbrace{Y_i(1) - Y_i(0)}_{???} - \tau_S \right)^2$$

What to do?

Conservative variance estimation

$$\mathbb{V}(\hat{\tau}_{S}|S) = \frac{S_{c}^{2}}{n_{c}} + \frac{S_{t}^{2}}{n_{t}} - \frac{S_{\tau_{i}}^{2}}{n},$$

 We will estimate this quantity with the so-called Neyman (or robust) estimator:

$$\widehat{\mathbb{W}} = \frac{s_c^2}{n_c} + \frac{s_t^2}{n_t},$$

- Notice that $\widehat{\mathbb{V}}$ is biased for \mathbb{V} , but that bias is always positive.
- Construct CIs and conduct hypothesis tests as usual.
- Leads to conservative inferences:
 - Standard errors, $\sqrt{\hat{\mathbb{V}}}$ will be at least as big as they should be.
 - \blacktriangleright Confidence intervals using $\sqrt{\hat{\mathbb{V}}}$ will be at least wide as they should be.
 - Type I error rates will still be correct, power will be lower.
 - Both will be exactly right if treatment effects are constant.

Population estimands

- Now imagine we want to estimate the PATE, τ .
- Implied DGP: simple random sample (SRS) from the population, then randomized experiment within sample.
 - $\blacktriangleright \; \rightsquigarrow \;$ the sample mean is unbiased for the population mean, $E_S[\tau_S] = \tau$
 - ► E_S[·] is the expectation over repeated samples from the population.
- How does our difference-in-means estimator do?

$$\mathbb{E}_{S}[\hat{\tau}_{S}] = \underbrace{\mathbb{E}_{S}\{E[\hat{\tau}_{S}|S]\}}_{\text{iterated expectations}} = \underbrace{\mathbb{E}_{S}[\tau_{S}]}_{\text{SATE unbiasedness}} = \tau$$

• $\hat{\tau}_S$ unbiased for the PATE!

Population sampling variance

- What about the sampling variance of $\hat{\tau}_S$ when estimating the PATE?
- It turns out that the sampling variance of the estimator is simply:

$$\mathbb{V}(\hat{\tau}_S) = \frac{\sigma_c^2}{N_c} + \frac{\sigma_t^2}{N_t},$$

- Here, σ_c^2 and σ_i^2 are the population-level variances of $Y_i(1)$ and $Y_i(0)$.
- The third term drops out → higher variance for PATE than SATE.

Estimating pop. sampling variance

$$\mathbb{W}(\hat{\tau}_S) = \frac{\sigma_c^2}{N_c} + \frac{\sigma_t^2}{N_t},$$

• Notice that the Neyman estimator $\widehat{\mathbb{V}}$ is now unbiased for $\mathbb{V}(\widehat{\tau}_S)$:

$$\widehat{\mathbb{V}} = \frac{s_c^2}{n_c} + \frac{s_t^2}{n_t}$$

- Two interpretations of $\widehat{\mathbb{V}}$:
 - 1. Unbiased estimator for sampling variance of the traditional estimator of the PATE
 - 2. Conservative estimator for the sampling variance of the traditional estimator of the SATE

Analyzing experiments with regression?

- Can we just use regression to estimate the ATE in this case?
 - ► lm(y ~ d)?
- Call the coefficient on D_i the regression estimator: $\hat{\tau}_{ols}$.
- We can justify this using the consistency relationship:

$$\begin{split} Y_i &= D_i Y_i(1) + (1 - D_i) Y_i(0) \\ &= D_i Y_i(1) + (1 - D_i) Y_i(0) + \mathbb{E}[Y_i(0)] - \mathbb{E}[Y_i(0)] \\ &+ D_i \mathbb{E}[Y_i(1) - Y_i(0)] - D_i \mathbb{E}[Y_i(1) - Y_i(0)] \\ &= \mathbb{E}[Y_i(0)] + D_i \mathbb{E}[Y_i(1) - Y_i(0)] + (Y_i(0) - \mathbb{E}[Y_i(0)]) \\ &+ D_i \cdot ((Y_i(1) - Y_i(0)) - \mathbb{E}[Y_i(1) - Y_i(0)]) \\ &= \alpha + D_i \tau + \epsilon_i \end{split}$$

 See that α = E[Y_i(0)] and remember that τ = E[Y_i(1) - Y_i(0)]. And also the residual here is the deviation for the control group plus the treatment effect hetergeneity.

Independent errors

 $\varepsilon_i = (Y_i(1) - Y_i(0)) - \mathbb{E}[Y_i(1) - Y_i(0)]) + D_i \cdot ((Y_i(1) - Y_i(0)) - \mathbb{E}[Y_i(1) - Y_i(0)])$

 Let's check to see if the errors here are independent of the treatment, which would imply that a regression estimator τ̂_{ols} would be unbiased for τ:

$$\mathbb{E}[\epsilon_i | D_i = 0] = \mathbb{E}[Y_i(0) - \mathbb{E}[Y_i(0)] | D_i = 0]$$
$$= \mathbb{E}[Y_i(0) | D_i = 0] - \mathbb{E}[Y_i(0)] = 0$$

• and for $D_i = 1$:

 $\mathbb{E}[\epsilon_i | D_i = 1] = \mathbb{E}[Y_i(1) - \mathbb{E}[Y_i(0)] + \mathbb{E}[Y_i(1) - Y_i(0)] | D_i = 1]$ = $\mathbb{E}[Y_i(1) | D_i = 1] - \mathbb{E}[Y_i(1)] = 0$

- Thus, just using the randomization assumption, we have justified the use of regression.
- No functional form assumptions at all, only consistency.

Including covariates

- Completely randomized design → no need to control for covariates.
- Adding covariates won't matter for unbiasedness/consistency.
 - (Not true for stratified designs!)
- Still consistent even if functional form for X_i is misspecified.
- Effects of conditioning on covariates: reduce uncertainty in effect estimates

Next week

- More experiments, this time under Fisherian inference.
- Randomization inference: even fewer assumptions.
- Back to the lady tasting tea!
- Then: regression, matching, etc!