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Terminology: Data and statistics

What is data? (variables, observations)

« Datasets are in a rectangle.

o What are the rows of the dataset called? observations

- Various kinds of observations: survey respondents, countries, states, elections, months, or years.

— We denote the number of observations as n.

o What are the columns of the dataset called? variables.

- Examples: age, percent vote for Obama, gender.

- We often use x to refer to a variable. So x; is the response for observation ¢ on variable z.

Types of variables

« Nominal: responses are unordered categories (religion, marital status, name)

« Ordinal: responses are ordered categories, distance between values has no intrinsic meaning (Survey
responses: strongly agree/agree/disagree/stronly disagree)

« Interval/continuous: responses ordered and distance matters (age, years of education, percent vote for
Obama).

What is a statistics?
« A statistic is a way of reducing the dimensionality or complexity of a group of observations.

o If we were infinitely smart, we could look at a dataset and know everything about it. But we are not
that smart so we need simple summaries of the data to tell us what is going on.

« Most of the things we are going to learn in this class will be statistics (mean, median, mode, standard
deviation, etc).



The center of the data

« We often want to know something about the central tendency of the data, which gives us a sense of the
typical observation:

- The average test score, the most common response to a survey question, etc.

Mean

« The mean is simply the average of the observations:

2T

n

T =
« Example, incomes ($1,000s): 30, 60, 60, 70, 80. T = w = 60.

« The number value of the observation must matter. Marital status (1 = Single, 2 = Married, 3 = Divorced,
4 = Widowed) is nominal and so has arbitrary numbers. Thus, the mean doesn’t mean much here.

« The mean is highly senstive to outliers (which is value very far from the rest of the data):

- Ifweadd amillionaire to the income data: 30, 60, 60, 70, 80, 1000, then T =
216.67.

30+60+60+70+80+1000 __
5 =

Median

o If we arranged all the observations in ascending (or descending) order, the median is the value in the
middle of this list (half of the values are above this number and half are below).

o Income example: (30, 60, 60, 70, 80). Half are below (30, 60) and half are above (70, 80).

« For even numbers (no exact middle), we take the average of the two middle values. Thus, income with
the millionaire: (30, 60, 60, 70, 80, 1000). We have two middle values (60 and 70) so we take their
average: w = 65.

« The median is more resistant to changing by outliers: it only goes to 65 when we add the millionaire.

Mode

 The most common value among the observations.

How many of you are seniors/juniors/sophmores?

Frequency distribution.

Is this a nominal, ordinal, or continuous variable?

Which one is the mode?




Measuring spread

Range

The range is the difference between the largest observed value and the smallest observed value.

The range only tells us about the extremes of the data: think about the difference in age between the
youngest student and the oldest student on campus.

Standard deviation

The standard deviation or s is a measure of how spread out the data is.

First, let’s look a deviation: (z; — Z). We want some idea of the “average” deviation, but it turns out
that if we average the deviations, we always get o, because the positive deviation cancel out the negative
ones.

Instead, we will have to use the squared deviations and then use a square root to get back the right
units. Here is the formula:

> (w —@)?

5= n—1

You can think of the SD as the square root of the average squared deviations.

Show examples of data with higher and lower SD.

Properties of the SD

The SD is never negative. When would it be 02 When there is no variation/no deviations.

The SD has the same units as the original variable.
The SD gives us an indication of where most of the data fall.
Empirical rule:

- Around 68% of the data falls bewteen £ — SD and T + SD.
- Around 95% of the data falls between T — 2 SDand z — 2 x SD.
- Around 99% of the data falls between z — 3 x SDand z — 3 x SD.



PSC2o00: Lecture 3

Matthew Blackwell

9/12/2012

Presidential approval data

« Have students download the dataset.

« Show approval dataset.

o What is the unit of observation of this data? poll result

Visualizing data
What is a Histogram
« Break the range of the data into equal sized bins.

« Draw a rectangle to have the height of the number of observations in that bin.

Histograms in R

« Basic use of hist() function.

« How to customize your histogram.

breaks = number of bins, no quotes

- col = name of color, in quotes (see color guide)

main = main title, in quotes

xlab = x-axis label, in quotes

What is a boxplot?

« A way to summarize the information of histogram.
« The box region represents the middle 50% of the data.
o The lines extend out to include roughly 95% of the data.

« Any points outside the line are outliers.



Boxplots in R

« Shockingly, use the boxplot() command.

Summarizing data

means, medians, modes

» We can use the summary () function, which will give us a variety of measures such as the median, mean,
minimum, maximum.

o We can also calculate the mean using the mean() function.

« We can calculate the median using the median() function.

standard deviation

o Calculate the standard deviation with sd()

Classwork

« First, I want you to subset the data to only be George Bush.
o Find the mean approval for Bush.

« Find the range that roughly contains 95% of his polls

Student evaluations

o Pick one volunteer

« Hand out evals.



PSC2o00: Lecture 4

Matthew Blackwell

9/17/2012

Z-scores
How big is big?
« We need to know if an observation is large or small relative to the rest of the distribution of data.

« But, as we know, different variables have different units, means, and amounts of spread. So, large in
one dataset might be close the average in another.

« We need a set of common units that we can use in any dataset to tell if a value is far from the mean in

either direction.

Calculating the Z-scores

o It is relatively easy to calculate the z-score for a given observation. Simply subtract the mean from the
obsevation and divide by the standard deviation (s):

o The z-score is no longer in the units of the variable (such as dollars or inches). It is now in terms of
standard deviations. So, if an observation has a z-score of —2, it is 2 SDs below the mean.

Examples of Z-scores

« Jane works at the Starbucks on campus, where she has a tip jar. She’s been keeping track of her daily
tips and has calculated that her mean daily tip is $1.56 with a standard deviation of 20 cents. Today,
she received $1.86 in tips. Calculate the z-score.

186 — 156 30
— 2T % 159D
¥ 20 59 — 199

« What about a day with $0.56?

56 — 156  —100
z = = = —5
20 20



Normal distribution

What is a distribution?

o A probability distribution is a function that describes the probability of different events happening.
Like a histogram.

« The distribution tells us where there is more and less probability of an observation falling. If we know
the distribution of a variable, we know where we should expect observations to fall.

o For example, we might have a distribution of waiting times for the bus (draw skewed distribution). It
tells us that most buses come in very little time, but a few buses come quite late.

« There are many different kinds of distributions and they all have special properties: binomial, poisson,
exponential, gamma, etc. But we are going to focus on one.

The Normal distribution

o (Draw normal curve) The normal distribution should be fairly familiar to you. It is sometimes called a
“bell-curve” distribution (we won't call it that).

« The Normal distribution has three key properties:

- Itis unimodel: it only has one peak at the mean.
- It is symmetric around the mean.

- It is everywhere positive: all values from negative infinity to positive infinity have some positive
probability of happening. But there the chances of something more than 2 or 3 SDs away from
the mean is very unlikely.

o There are two values that can affect the shape of the Normal distribution: its mean and its standard
deviation. Once we know these two values, we know everything about the Normal distribution for a
given variable.

« There is one special kind of Normal distribution: the standard normal distribtuion. It has mean o and
standard devation 1. The z-scores we calculated above are on the same scale as the standard normal.
Note that with a standard normal, a 1 means 1 SD above the mean; -2 means 2 SD below the mean, etc:
same as Z-Scores.

Normal tables

« We often need to know how likely some range of values are in a Normal distribution. We can figure
this out.

— First, we take our variable and standardize it to z-scores.

- Then, we can take that z-score and see how likely it would be to get value or greater in a standard
normal distribution. To figure that out, we can look in the back of our book.

« How do we get the probability of values less than some 2?

- It is the same the probability of being greater than —z, due to the symmetry of the Normal.



« How do we get the probability of values between two numbers?

- mean + 2 *x SD,mean — 2 SD

- Figure out how much is below and above the region (0.0228 above, 0.0228 below when z = 2).
So the total probability of being outside this region is 0.0456.

- To get the probability of being inside the region, we need to understand that the probabiliy of the
entire line (from —oo to o) is 1. Thus, if we break up the line into to two parts, inside the region
(A) and outside the region (B), the probability of these two events must add up to 1. Pr(A) +
Pr(B) = 1. Since we know that Pr(B) = 0.0456, we can use that to find Pr(A) = 1 - 0.0456 = 0.954.

Central Limit Theorem

o The reason the Normal distribution is so important is that it has a special place in statistics. The CLT
is deceptively simple, but very powerful:

The sums and means of measurements tend to have an approximately normal distribution. This
approximation gets more normal as more measurements are added to the sum or mean.

« This is huge: no matter what the distribution of the original variable, its mean or sum tends to be
normally distributed. That means if we have some variable that is just o/1 (like gender), it couldn’t
possibly be normal. But if we take the mean of a bunch of gender measurements, that mean will follow
an approximate normal distribution.

o Let’s say we were to take a survey of people and ask them if they are going to vote to re-elect President
Obama. The number of people who responded that they will vote for Obama will be normally dis-
tributed because it is the sum of many small measurements—each individual’s choice to vote or not.
Thus, if we were to collect many different samples and take the number of Obama voters in each sample
and then plot a histogram of all of those numbers, it would look like a normal distribution.

« Height is also normally distributed because it is the sum of many small measurements—the length of
your leg bones, spine, skull, your nutrition, and so on.
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Central Limit Theorem (Demo)

Fulton County Data
o This is data from Fulton County, GA. It has every registered voter and whether or not they voted.
« Notice that the turnout variable is o/1. No way it could be Normally distributed, right?

« I'wrotealittle script that will take lots of different samples of Fulton County and calculate the proportion
of people that turned out. Then, we’ll plot those sample means in a histogram to see what it looks like.

« Even early on you can see that the CLT is working.

Florida 2000 election data

« The butterfly ballot in Palm Beach County, Florida caused lots of confusion for people. The way the
ballot was set up, it alledgely confused some Al Gore voters into voting for Pat Buchanan.

« We're going to check if Palm Beach really had a very different pattern of voting than the other counties
to see if the butterfly ballot really caused any problems.

Looking at the data

« We have the election day and absentee returns for Pat Buchanan, along with his share of the vote on
election day and in the absentee ballots.

Buchanan election day fraction of the vote

o First, let’s plot a histogram of the Buchanan’s election day totals.
o Next, Let’s calculate z-scores for each row in the data using the formula we used last week.
o Lets try it with scale() now.

« Note that Palm Beach doesn’t exactly have a huge z-score for election day fraction. Does that mean we
can exonerate the butterfly ballot?



Buchancan absentee voters

« Not so fast. Instead of looking at just the election day totals, we can use the data more effectively. It
turns out that absentee voters in Palm Beach County did not use the butterfly ballot, only the voters on
election day.

« So, how might that help us? We might take a look at the difference between election day voters and
absentee voters to see if there was a big increase for Pat Buchanan on election day. If there was a big
jump, then the butterfly ballot could be the culprit.

o First, create a new variable called eday . inc that is the difference between Buchanan’s election day and
absentee vote fractions.

o Next, create a z-score for that variable.

o Is Palm Beach unusual? How likley was this increase, roughly?

Other explanations

« We would like to say if the butterfly ballot caused the unusual increase in the vote for Buchanan, but
can we? Are there any alternative explanations?
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Quick Review

o What have we learned so far: how to summarize data (find the mean, median, mode, standard devia-
tion, z-score) and describe distributions (the mean and standard deviation of the normal distribution).

o Describing the data we have is useful, but what we would like to do is learn about data that we don’t
have.

« Every variable you can think of has a distribution. We are going to learn about those distributions using
samples.

Samples

Terminology

« We have been implicitly talking about samples the entire class so far, but we want to define terms a bit
to speak more concretely about their usefulness for statistics.

« The population is the set of people/countries/observations that we are trying to make inferences about.
- Every student at UofR is an example of a population.

« The population mean is the average value of a variable in the population. We will represent this as (.
- 'The average height of students at UofR

« The population standard deviation (o) is the standard deviation of a variable in the population.
- The average height of students at UofR

« A sample is a subset of the population that we take in some way. We often take a random sample,
where we select observations randomly (such as drawing names out of a hat).

— This class is a sample of UofR students. Is it random?
« The sample mean is the average value of a variable in a subset of the population. We call this =

- The average height of people in this class.



« The sample standard deviation is the standard deviation of a variable in a subset of the population. We
call this s.

- The standard deviation of heights in this class.
« A census is a sample that includes every single observation in the population.
- If we were to ask every student at UofR their height.

o Ingeneral, it is cost-prohibitive to do a census, so almost always work with samples. Our goal is to learn
about the population parameters (mean p and standard deviation o) from our sample. The Central
Limit Theorem actually provides the connection between our sample mean and the population mean.

Properties of samples

« We want to use samples to learn the truth about some population, but first it is useful to know the
properties of samples. That is, if we know what the population distribution looks like, what should the
sample look like? This will help us next week when we turn the questions around.

o Remember our mantra that the sums and means of random variables tend to be normally distributed.
Thus, no matter what the original distribution of the data, we know that the mean or sum of a sample
from that data will have a normal distribution.

« Not only this, but we actually know which normal distribution that the mean and sum follow.

The mean/expected value of the distribution of the mean is p.

The standard error of the distribution of the mean is %

The mean/expected value of the distribution of the sum is npu.

The standard error of the distribution of the sum is y/no.

o Thus, the sample mean follows a normal distribution that is centered around the true, population mean.
So our best guess about the population mean is the sample mean.

Standard deviation of dummy variables

« We know how to calculate the standard deviation for variables using the standard deviation formula,
but it turns out that we don’t need that much when we have a dummy variable, which is what we call
a variable that can either be o or 1.

« The proportion of 1’s is also the mean of a dummy variable. We sometimes refer to this as p.

« For a dummy variable, we only need to know the proportion of 1’s, which we refer to as p (note that
this is also the mean of the dummy variable). Thus, we can use this shortcut formula when we have a
dummy variable:

)

« Thus, we only need to know the proportion of 1s to be able to know the mean and standard deviation
of the variable.



Example

Let’s say we fill a bathtub with 1000 red marbles and 1000 blue marbles. Our variable might be z; = 1
for red marbles and x; = 0 for blue marbles. What kind of variable is this?

First, what is the true proportion of red marbles? (mean of x = i1 = 0.5)

If we were take a sample of 50 marbles from the bathtub, what would distribution would the mean of
the sample Z be? (Normal)

What percent of the sample would we expect to be red marbles? (50%)

How many of the marbles would you expect to be red? (25)

What is the standard deviation of this variable? (/0.5 x (1 — 0.5) = 0.5)

What is the standard error of the sample mean/proportion? (\0/% = %’7 =0.071)

How does this help us? It tells us where we would expect to see most of the sample proportions fall.
We know that 95% of them should fall within 2 SEs of the mean: 0.5 + 2 x 0.071 = [0.429, 0.571]
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Fulton County Revisited

Let’s review where we have been: we want to learn about the properties of samples from known popu-
lations.

Last week, we looked at the Fulton County data and tried to show that when we take a sample of 100
registered voters in Fulton County and take the proportion of that sampled that turned out to vote, we
see that the proportion followed a Normal distribution.

Now from last class, we know exactly what kind of Normal distribution we should expect from this
example. We know that in the population of Fulton County registered voters, the proportion of those
who turned out is 0.44. Remember we call this x or p.

First, since we know the population mean, we need to calculate the population S D, 0. We can use the

dummy variable shortcut: o = /p x (1 — p) = 1/0.44 x 0.56 = 0.496.

Now we want to know where we expect the sample mean to be, on average. We know that it should be
around the true mean, 0.44.

How much spread will there be around the true mean? To know that, we need to calculate the standard

error (SE). We can just apply the formula: ﬁ = ?/'% = 0.0496

Let’s actually go through the process of drawing a bunch of random samples, calculating the sample
mean in each, plotting the histogram of the sample means, and calculate the average and S'E of those
sample proportions.

Box models

How do we figure out what the population mean (1) and population standard devation (0)? We could
use the formulas from last week on the entire population, but that might be unwieldy.

When there are only a few different responses, we can use something called a box model to summarize
the population distribution. The basic idea is that we put each population value in the box in the same
proportion as in the population:

01222

In this example, the population would be % 0’s, % 1’s, and % 2.



What is nice aobut this is that the mean and standard deviation of the box model is the same as the
mean and standard deviation of the population.

Thus, in the above example, the population mean is L?’M =1.4.

Let’s calculate the SD:

\/(0 — 1424+ (1—- 142+ (2 142+ (2—14)2+ (2 —1.4)2 + (2 — 1.4)2

5—1
1.96 +0.16 + 0.36 + 0.36 + 0.36
n =
3.2
— =0.8
4

Exit polls

This is a dataset of states in the 2000 presidential election, reporting the results of an exit poll and the
actual results from the election.

Here we have the result of a sample, along with the true population values. First, let’s create a variable
that is the true proportion that voted for Bush in 2000 in each state.

Next, we can use R to figure out what the population SD is for each state. How do we do that?

Now that we have the population SD and the sample size n, we can calculate the standard error for
each of our polls. We can use the formula straight in R.

Now that we have the sample proportion, the population proportion, and the standard error, we can
use the z-score of the proportion to see if the exit poll results we see are unusual compared to the true
mean. What should expect? We should expect a nice normal distribution. Some above the their true
means and some below their true means, with not many above 2 or below -2.

What do we end up seeing? Almost all of them are negative and some are quite large. What might this
tell us about these exit polls?
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The probability of sample means and sums

o Let’s expand on what we covered a bit last week. Last week, we learned that if we knew the population
mean and the population standard deviation, then we would also know the distribution of the sample
mean or the sample sum in a sample from that population. Let try to go over an example of why we
might want to know that.

Suppose that Mac works at a pizza place and he makes an average of 20 pizzas in an hour, with a standard
deviation of 2.5 pizzas. Mac’s boss randomly chooses 100 hours to watch Mac make pizza to check his pro-
ductivity. During these 100-hour productivity checks, Mac’s boss fires anyone that makes fewer than 1950
pizzas. What is the probability that Mac will be fired after his productivity review?

o Weknow that the population mean here is 4+ = 20 and the population SDis ¢ = 2.5. From last week we
know that we expect the sample sum to have a normal distribution with men n x ¢ = 100 x 20 = 2000
and SE = /n x 0 = /100 x 2.5 = 25. Thus, we know that the distribution of the sample sum is
distributed normally with a center at 2000 with an SE of 25, which means that roughly 95% of the
distribution falls between p + 2 x SE = (1950, 2050).

« We need to know what the probability is of Mac being fired. We know he’s going to be fired when the
sum is less than 1950. We have a rough idea of how likely that is, but if we convert it to a z-score, it is
much easier to figure out the exact probability of being less than 1950 in the distribution we just drew.

o We can just apply the z transformation formula, slightly adjusted for the sample sum, which we refer
to as y here:

y—np 1950 — 2000

SE 25 B

We know that if we want the probability Pr(Z < —2), we can (by the symmetry of the Normal distribu-

tion), just look up the probability Pr(Z > 2), which is in the back of the book. Remember, we can do this
because there is just as much area in the upper tail of the normal as the lower tail of the normal.

-2

« We could look up 2 in this case, but we can also use what we know about the Normal. That is, we know
that 95% of the data is between -2 and 2 for a standard normal, so that means each tail much have 2.5%
of the data. Thus, the probability of Mac being fired is 0.025.



Learning about populations from samples

o Let’s say we get a completely new sample from a population we know nothing about. What's our best
guess about where the true mean of the population is? This is a much more practical direction since
we rarely, if ever, know what the true population looks like. Plus, if we did know that, why would we
want to take samples from that population?

« Since we know from last week that the expected value of a sample mean is just the population mean,
we can say that our best guess as to population mean is the sample mean. This gives us what we call a
“point estimate” which is really useful.

« We would like to say something more, though. We would like to express our uncertainty about where
the population mean might be. Thus, we will calculate a range of values that are plausible for where the
true mean might be. In fact, we will be calculating a confidence interval, which is always prefaced by a
number, such as a 95% confidence interval.

« We are turning our ship, but most of the mechanics of what we are doing will stay the same. We will
still have averages, standard errors, the normal distribution, etc.

Confidence intervals

« A confidence interval is simply: point estimate 4+ margin of error. The size of the margin of error is
related to the confidence level of the CI.

o Here is exact formula for an 100 x (1 — «)% confidence interval for the sample mean:

CI(lfa) =T+t Z%SE

Where za is the z-score at which the Normal table would put «/2 above that value. Thus, for a 95%
confidence interval, we have @ = 0.05, so that we need to find the z-score that corresponds to 0.05/2 =
0.025. We can look this up on the normal table: 1.96.

« Thus, the 95% confidence interval is:

Clgs =2 £1.96SE

We can also calculate the 9o or 80 percent confidence intervals:

Clgg =T+ 1.64SE

Clgyg =T+ 1.285F

« But, wait, you say, how do we know the SE if we don’t know anything about the population? Don't we
need to know o to calculate the SE?

« It turns out that in large samples we can use the sample standard deviation (s) in place of the population
standard deviation when calculating the the SE:



SE = S (sample mean)

NG

SE = +/ns (sample sum)

Opinion polls

Let’s go through an example of how to use confidence intervals. Suppose Ines wants to enter a primary
for a local office with 100,000 registered voters, but only wants to do so if she has a good chance of
winning. So she hires a polling firm, which takes a simple random sample of 2,500 voters. In the
sample, 1,328 support Ines.

Thus, the sample proportion in this case z = % = 0.53.

Now, Ines is very excited about this and thinks she has won the race already. What is the problem here?
There is some probability that she got this proportion just by random chance. It could be that, in the
population, she has less than 0.5 of the votes, but this happened to be a strange sample. How can we
figure out what a plausible range of values is for the true proportion? That’s right, a confidence interval.

If we want to calculate a 95% confidence interval, we already have two of the things we need: z = 0.53
and zo = 1.96. All that’s left is to calculate the standard error.

Again, remember that we don't have the population SD in this case, but we can just use the sample SD
in its place. And, since voting for Ines or not is a dummy variable, we can use the dummary variable
shortcut: s = \/p(1 — p) = 1/0.53 - (0.47) ~ 0.5.

Thus, the standard error is SE = \/% = % = 0.01, or one percentage point. Thus, we can now fill
in the confidence interval:

Clgs =z +£1.965SE =0.53 £1.96-0.01 = 0.53 +0.0196 ~ [0.51, 0.55]

Thus, we can have 95% confidence that Ines will win the election!

Next time we'll talk more about exactly how to interpret a confidence interval.
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Confidence interval for the mean

Review of Cls

o Let’s review confidence intervals. Why confidence intervals? Remember:

sample mean = population mean + chance error

Thus, we know that our sample mean is not exactly the same as our population mean and we want to give a
plausible range of values around the sample mean where the true mean could be.

« Last week we learned that the sample mean has a normal distribution centered around the true mean
() with a SE equal to o/+/n. Given that, we know that roughly 95% of the time the chance errors
above will be between -2 SE and 2 SE. That is, we know that chance error greater than 2 standard errors
from the population mean (in either direction) are rare. Thus, we know that roughly 95% of the time,
the sample mean will be within roughly 2 SEs of the true mean. But it could be above the true mean or
below the true mean, we don’t know. The confidence interval quantifies this procedure.

« So, once we have our sample mean, we can say, “Well, I know that this sample mean is unlikely to
be more than 2 SEs above the population mean and it is also unlikely to be 2 SEs below the popula-
tion mean”. Thus, we can take the interval that is 2 SEs away from the sample mean as a reasonable
confidence interval, given our data.

o If we wanted to be more or less confident, we could take a higher or lower number of SEs.
« Could we increase the SEs in the confidence interval to get an 100% confidence interval? It turns out
that we cannot, since there is always a possibility of an extremely large chance error.
Example of CI for the mean

Suppose the mayor of Rochester comes to us and asks us to find out the average income for the households in
Rochester. He gives us enough money to randomly sample 400 households and we calculate a mean income
of $27,000 with a standard deviation of $14,000. The mayor, having taken PSC200 in the past, is unsatisfied
with point estimates and asks for a 95% confidence interval around this mean.

o What do we need? First we need to recall the formula for the confidence interval:

Clgs =T+ 1.96SFE



« So, in this case, we already have Z and we already know that za = 1.96. So all we need is the SE.

« Since this is a sample mean, we know that the SFE = Lﬂ, but all we have is the sample standard
deviation. Remember, though, that in large samples (roughly over 100), we can substitute s for o and
proceed as if nothing happened. Thus, we have

14 14
gp_ 0 _ s _ 14000 14000 _ .,

Vi Vi V400 20

« Now we can calculate our condifence interval:

Clys = £ 1.96SE ~ $27,000 &+ 2 - $700 = ($25600, $28400)

Interpretation of confidence intervals

What does 95% confident mean?

« It’s strange to say we are 95% confident about some interval containing the truth, since we know that
the the truth is either in our interval or it isn’t. What does this confidence interval actually mean?

o A 95% confidence interval should contain the true mean/proportion 95% of the time. That is, if we
were to draw repeated samples and do our whole procedure over and over again, 95 times out of 100,
our 95% confidence interval would contain the true mean/proportion.

o Thus, you might say that the confidence interval gives us a 95% chance of being “right”. Remember,
though the chances are in the sampling procedure, not the parameter. So, we do not say “there is a
95% chance that the population mean is in this interval” because the population mean is fixed at some
value. It’s the confidence interval that moves from sample to sample. Thus, we talk about the probability
that the confidence interval will “cover” or contain the truth. (Draw a couple of CIs).

Example with Fulton County

« This is the Fulton County data (again) and this time we are going to look at turnout, but we are going
to look at a confidence interval for the true proportion of people who turned out to vote.

o In class, we looked at a script that would draw repeated samples and

o What happens when we increase the size of our samples? What should happen to the size of the con-
fidence intervals?

How big of a sample size do I need?

o Let’s look at the formula for the CI again, this time, let’s plug in the value for the standard error:

Clgs =T +1.96SE =7 +

S



« One thing that jumps out at us is that the size of confidence interval is inversely proportional to the
sample size. That is, if we increase the sample size, we will decrease the size of the margin of error and
thus the confidence interval. We saw this in the Fulton County demonstration.

« Often we might want to know how to ensure we get a certain width confidence interval. We could
change the level of the CI, but suppose we wanted to keep the level constant. Well, we can write down
the formula for the margin of error:

M=z

wlR
Se

« Since we can’t change o and we don't want to change the level (which would change z), we can only
adjust n, the sample size. We can rearrange these to solve for n:

zao\?
=(50)
« Now, we can plug in the z we need for our confidence level, the population SD, the desired margin of
error, and get back the sample size we would need to get that margin of error.

« Note that we would have to know what the population standard deviation is in this case, but we haven't
even drawn a sample yet. We have no idea! Well, one thing we can do is provide a reasonable guess.
We know that most of the data is within two SDs of the mean, so if we can think of the rough upper
and lower bounds on the range of the data, we can simply divide that range by 4 to get a rough guess
of the SD.

Example

Let’s say we wanted to know many UR students we would have to sample to get an estimate of the average
height with a 1-inch margin of error on a 90% interval. What sample size would we need?

« First, we know that for a 90% confidence interval, we have zy g5 = 1.64. We also know that M = 1.
Now we just need to know o.

o Let’s think about the range of values we think heights on campus take. Let’s say that most people are
between 4’10” (58 inches) and 6’8” (80 inches). Given that we think that this represents rare events,
we probability think these are 2 SDs away from the mean in either direction. That mean the difference
between 8o inches and 58 inches (22 inches) is a rough guess of 4 SDs. Dividing that by 4 gives us our
guess of the SD: 22/4 = 5.5 inches.

« Now we can plug this in and see what our sample size would have to be:

zao\ 2 164-55)\2 2
n (227N _ (L6455 (9NT o
M 1 1

Thus, we would need to take a sample of at least 81 students to get a margin of error that is 1 inch or
smaller.
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An example start

Let’s suppose there are two people that are arguing about the upcoming presidential election. One
person, Nully, claims that the true percentage of people that will vote for Obama is exactly 50%. That
is, he says there will be a tie. His friend Alto think there’s no way it is a tie and claims that it must be that
either Romney or Obama are ahead: he claims that the true proportion of people voting for Obama is
not 50%.

To settle this, they hire a company to sample of size 500 from the population of likely voters and see
what proportion of them will vote for Obama. They find that (among people that are going to vote
for Romney or Obama) 52% say they will vote for Obama and the pollster reports a sample standard
deviation of 15.3 percentage points.

Nully says hah! Itis clear that the propotion is really 0.5 and this is just random error, there is a standard
deviation of 0.153 of course!

Alto says, hold on, but we need to look at the SE, not the SD. Because the SE tells us how far the sample
proportion should be from the true proportion. In this case, he calculates the SE = ﬁ = ?/'% ~ 0.7.
Alto then says, hah! you thought this could be due to random chance, but if the true were o.5, then the

value we got would be 3 SEs above that proportion:

52 — 50
~3
0.7

Why is this important? Nully asks. Alto responds by telling him that if his hypothesis is true and
the true value is 0.5, then the sample we got was very unusual! It is unlikely to be due to randome
chance. Something else is going on. It is either that we got an extremely abnormal sample or we should
reconsider Null’s hypothesis.

Hypotheses

The null hypothesis is the statement that a population parameter (like the population mean) takes a
certain value. This corresponds to the idea that any observed difference between the observed value
and the hypothesized value is due to chance. (We sometimes write this as Hy : ;1 = a, where a is the
hypothesized value.)



« In the above example the null hypothesis was the true proportion of likely voters that were going to
vote for Obama was o.5.

« The BMUF S O B U JVikknb#h€@ faltbdlent abdut the population. It states that the the true value of
the parameters is not the hypothesized value as in the null hypothesis. Thus, the alternative hypothesis
states that the difference between the observed value and the null hypothesis is real and not just due to
random chance. (We sometimes write this as Hp : L £ &, where a is the hypothesized value.)

« In the above example, the alternative hypothesis was that true proportion was O R.

SFTUTUBUJTUJDTBOETJHOJ DBODF MFWFMT

« A UFTU T i Bidedshitd dfbhe difference between the observed data and what we expected from
the null hypothesis.

« The test statistic gets bigger (in absolute value) as the observed data looks unusual compared the null
hypothesis. So big test statistics cast doubt on the null hypothesis. There are many different kinds of
tests, but we are going to focus on a few in this class.

o A [ U FRsTHd number of SEs away an observed mean or sum is from the expected value (where the
expected value comes from the null hypothesis). Here is the formula:

observed " expected _ ®" o
SE - SE

« In this case we are looking at a z-test for the mean. Here, ®¥is the mean that we calculated in the sample
and SE is just the standard error we calculated from the sample. Th g is the value from the null
hypothesis. (From the example above, we would have pg = 0.5.)

« A Q W B st is the chance of getting a test statistic this big (or bigger), if the null hypothesis is
right. The p-value is O RHd chance of the null hypothesis being right.

o Aresultis TUBUJTUJD B M Mep-Faldd 913ssBhBn®05. This is somewhat arbitrary, but it is
what most disciplines agree on.

$PO EFODFJOUFSWBMTBOEUFTUT

« A conclusion froma (1" ! )% confidence interval are the same as conclusions from a hypothesis test
at the ! %-level.

o What does that mean? It means that any value outside of a (1" ! )% confidence interval would be
rejected by a ! -level test.

« Thus, for instance, if we test the null hypothesis of 50, as in the first example, and we reject that at the 5%
level (that is, the p-value is below 0.05), then we also know that 50 would not be in the 95% confidence
interval.
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Difference in means

« A study finds that freshman at public universities work 10.2 hours a week for pay, on average, with an
SD of 8.5 hours. At private universities, the average is 8.1 hours and the SD is 6.9 hours. Each of these
results comes from independent samples of size 1000. Could this be due to random chance?

What is the difference in means?

« Up to now, we have been learning about the population mean from a single population. Average height
of UR students, for example. Very often we are interested in knowing is two different samples come
from the same population with the same mean. For instance, we might want to know if men’s and
women’s heights come from the same distribution.

« We can take two different samples (say men and women) and look if there is a difference in their means,
but remember that this difference could be due to random chance. Therefore, we want some way of
seeing if the difference in means that we calculate could be due to simple random chance and the
Central Limit Theorem.

o Our best guess about the difference in population means is simply the difference in sample means:

T12=21— X2

o This is the difference between the sample means and it’s an estimator for the difference in population
means:

H1—2 = K1 — K2

« This is all very similar to how we used the sample mean to learn about the population mean. The
difference in means is just a different population parameter.

« For the problem above, we can easily calculate the difference in means:

T1_2 = 10.2 — 8.1 = 2.1 hours



SE for a difference in means

« The difference in sample means comes from samples, so it must vary from sample to sample, just like
the mean (remember the Fulton county example). How much will it vary from sample to sample? We
can quantify that with the standard error of the difference in means:

SE1_» = \/SE% + SE%

o Where SEj is the standard error from the first sample (say, men) and S E» is the standard error from
the second sample (say, women). If we had continuous variables, we could plug in the formulas that
we know for these standard errors:

SD?  SD2
et Wt

ni n2

SE1 » =

o If we were comparing the means of two dummy variables (which would mean we were comparing
proportions), we can plug in our dummy variable shortcut:

SEL 5= \/pl(l —p1) . p2(1 —p2)

ny no

o The SE1_j tells us how much we should expect the difference in means to vary from sample to sample.
That is, we know that the distribution of sample difference in means, should center on the true differ-
ence in means with a normal distribution around it. The SEj_ tells us how spread out that normal
distribution should be.

o Lets calculate the SEq_» for the example:

8.52 6.92
1000 1000
72.25  47.61
7000 ' 1000
=+/0.07225 + 0.04761

0.12 =~ 0.346

ClI for a difference in means

« Now that we know how to calculate the standard error for a difference, we can easily calculate a confi-
dence interval for the true difference:



Clgs = #11 o+ 1.96SEq; o
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Hypothesis test for a difference in means
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Gender and views on the Iraq war
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Once we have this test statistic, we could use the table in the back of our book to calculate the p-value,
which is the probability of getting a test statistic this extreme or more extreme. It turns out we can
also use R to get the same quantity, using the pnorm function. The pnorm function takes in a z value
and gives the probability of being less than that value on a standard Normal distribution. This is the
opposite of what the table in the back of the book gives us. To get them to match, we use the following
structure: pnorm(..., lower.tail = FALSE), where ... is the z-value.

When we use the pnorm function with a z-test, remember that we have to first take the absolute value of
the z-value (so that we are getting the correct tail) and then double the result. This is because the p-value
is the probability of being more extreme than our observed z-value in either direction. If z = —1.5,
then we want to know the probability of being less than -1.5 and greater than 1.5. Since these two values
are the same, we can just find the probability of z > 1.5 and double that probability.

Let’s say that instead of performing a hypothesis test, we wanted to calculate a confidence interval.
Remember that we need to find the critical values z, /5. We have memorized some, like 1.96 for a
95% confidence interval, but we might want other CIs. We can use R to calculate these critical values
using the gnorm function. Again, R switches around from the back of the book, so we’ll use gnorm(. . .,
lower.tail = FALSE), where we will plug in «/2 where . . . is.

We can think of all of this as the “manual” way of doing things. There is a quicker way to do a test and
it’s called t. test(). If we pass two subsets of the data, it will perform a difference in means test along
with calculating a confidence interval. You'll notice this is called t. test() and not z. test(). It turns
out that there is a very similar test to the z-test that is called the ¢-test. It differs from the z-test in small
samples and does better there, but in large samples it is exactly the same z-test.
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Relationships between variables

A relationship exists between one variable and another when we can use one variable to predict the
value of another. For instance, we might want to predict the outcome of the election: specifically,
what percent of the vote will President Obama receive? We might see if the variables that measure the
economic state of country can help us predict Obama’s share of the vote.

Note, though, that just because there is a relationship between two variables does not mean that there
is a causal relationship between them. That is, just because we observe a pattern (the sun rises when I
wake up) does not mean that this is causal (my waking up does not cause the sun to come up). We will
talk more about causality in a few weeks.

Last time we talked about the relationship between two variables, but it was a certain type of variables:
the difference in means between two groups. In general, we were looking at explaining the variation
in one variable with another variable that was categorical (men vs. women, private vs. public schools,
etc).

This is pretty limiting, though. We would like to find the relationship between different sorts of vari-
ables. In particular, what happens if we want to know how a variable varies with a continuous variable.
Not just men versus women, but now we want to know how income varies with years of education.

The first thing we could do it dichotomize the problem—create two groups (finished college or not) and
run a difference in the mean incomes. But this is unsatisfying: what about other changes in education?

Some terminology

The variable we are trying to explain is called the dependent variable or the outcome variable, or y. Our
goal is to find out how this variable changes when other variable change.

The variables that are causing the changes in the dependent variable are called independent variables or
explanatory variables or just x. These variables explain the variation in the outcome variable.

Scatterplots

A scatterplot shows the relationship between two variables. For each observation, we plot the point on
the graph that represents that observation’s value of each variable.
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Bivariate Regression

Using a line to describe relationships
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residual = y; — ¢

« How does OLS pick the slope and intercept of the regression line? It minimizes the sum of the squared
residuals. That is, it minimizes this quantity:

(i —9)°

o Why does it minimize the squared residuals instead of the just the residuals?
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The linear regression model

o Last time we talked about investigating the relationships between variables and we talked about how
we can summarize many relationships with a line. This helps us find out how one variable changes with
another variable.

« Example: we might want to know the relationship between percent turnout (y) in a state and the percent
ads that are negative in that state (x).

« Today, we are going to talk about how we evaluate and interpret regression. Typically with a regression
we are going to ask three questions. Does a relationship have statistical significance? Does it have causal
significance? And does it have substantive signifiance?

o To start, let’s talk about what the linear regression model is. We said that it summarizes the relationship
between two variables as a line, but we can be more specific.

« The linear regression model describes the mean of y conditional on values of x. So, with the exmaple
of turnout and negativity, a linear regression shows how the average turnout changes as we change
negativity. This generalizes the difference in means we looked at earlier. Now, we can see the difference
in the mean of y between any two values of .

Assumptions
o We have a random sample of the population.
 The mean of y is related to x by a linear equation: y = o + &
« The conditional distribution of y at each value of = is Normal.

 The conditional SD o of y is identical at each x-value.

Statistical Significance

« Statistical significance is the same question we asked with difference in means. We want to know if the
slope we estimate could have been due to random chance. Before we do that, it is useful to know how
we interpret the slope and the intercept.



Interpretation of the coefficients

o The value of the intercept is the estimated mean of the dependent variable when the independent vari-
able is zero. For example, if we are looking at the relationship between turnout and negative ads, this
would be the mean turnout when there are no negative ads.

« The value of the slope has this interpretation: for a one-unit change in x, we estimated a /3 change in
y. For example, if the slope on the negative ads variable was 3, we would say: “a one percentage point
increase in negative ads leads to a 3 percentage point increase in turnout.”

o If the true slope [ is o, then there is no relationship between the dependent variable and the indepen-
dent variable. That would mean that no matter how many negative ads were on TV, the average turnout
would always be the same.

Standard Errors and Confidence intervals

« Remember that we have estimated the slope and the intercept from a sample. We would like to get a
sense for the uncertainty of these estimates just like we uncertainty for the sample mean, the sample
proportion, and the sample difference in means.

« Remember, the SE of an estimate tells us how much the estimates vary from sample to sample. In fact,
it turns out that our estimates, B and & are just sums and means of the observed data. This implies
that, like the regular sample mean and the difference in means, the slope and intercept estimates are
normally distributed.

o We can use the SE to perform a hypothesis test. With differences in means, we took a certain null
hypothesis and tried to find evidence against it. Then, the null hypothesis was that there is no difference
in means between the two groups (Hy : p1 — p2 = 0). This is the same as saying there is no relationship
between the groups and the variable we are investigating.

 With regression, we want to set up a similar null hypothesis: that there is no relationship between the
independent variable and the dependent variable. When does that happen? When the slope is zero:
Hy : 8 = 0. Thus, the alternative hypothesisis H4 : 8 # 0.

« With this null hypothesis, we can calculate a p-value that tells us, if the null hypothesis were true, how
likely would a slope this big or bigger be? To start this, we calculate a ¢-test (which is exactly the same as
a z-test):

,_B=B_ B
SE(B)  SE(P)
« This test is almost exactly the same as the z-test from earlier except in small (n < 50) samples. That
is, most of our intuitions will stay the same. If we get a ¢-test of more than 2, we know that this must

have been a fairly unusual sample. To be more precise, we can look at the p-value, which is given by
our output from R.

« We say that a slope or relationship is statistically significant if the p-value is below 0.05. This is usually
indicated with stars or astericks in the regression table.

o R can also calculate confidence intervals and we can see if o falls in the confidence interval.



Causal Significance

o We'll be brief, because we have more to say about this in a few weeks.

« Causal significance requires you to think of why our independent variable might (or might not) cause
the dependent variable to change.

« By saying that = causes y, we are saying that if we were to force z to take a different value, y would also
change.

o Not all relationships are causal: some happen because a third variable causes both the indepdent and
dependent variables. For instance, there is a positive relationhip between sales of ice cream cones and
accidental drowning deaths. But this is not because ice cream causes drowning, but rather because the
weather (heat waves, specifically) cause people to buy ice cream and go for more swims (which results
in more accidents).

« We need to think of any of these lurking variables that might cause these spurious relationships.

Substantive Significance

o Are the estimated effects large in pratice? Are they are enough to care about. For instance, what if we
estimated 3 = 0.005 for the regression of turnout on percent of ads that are negative. That means, for a
one percentage point increase in negativity, we would see a 0.005 percentage point increase in turnout.
That’s fairly small! We can think of how small that is by thinking about the largest possible change in
negativity: from 0% negative ads to 100% negative ads. If (3 is a one-unit change, then 100 x £ is a
100-unit change. Therefore, going from 0% to 100% would only lead to a 0.5 percentage point increase
in the average turnout. Going from no negative ads to all negative ads would only increase turnout
from (let’s imagine) 35.2% to 35.7%. That’s pretty small!

« In the above example, we looked at a large change in z (traversing its entire range) and saw it produced
a small change in y. Sometimes, we might look at other sorts of changes.

o We know that the standard deviation (SD) of a variable is similar to the average deviation from the
mean. Instead of a one-unit change in # (which might be quite small), we may want to consider a
“typical” change in z: a one-SD change.
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*OUFSQSFUUJOH 3FHSFTTJPOOVUQVU 'SPN 3

« Today, were going to learn how to interpret regression output R. To do so, we are going to look at
a fairly small dataset that looks at the relationship between economic performance and how leftist a
government is.

o Last week we learned how to produce a scatterplot with p |0t ( We also learned how to store a model
using I'm () It turns out we can use the sum m a fync}ion on the output from Im (Jo give us a
regression table.

« In the regression table, we can see the slope and the intercept, along with the t-tests and p-values for
each estimate. We can look at the p-values to determine if our slope or intercept at statistically signif-
icant. Our rule is that if the p-value is below 0.05, then we can reject the null hypothesis of no effect
and say the relationship is significant.

o Alternatively, we could look at confidence intervals. To do this, we can just use the ¢ o n fin tffipction
on the regression output. By default this gives us a 95% confidence interval, but we can change that
with the | e v eargument (we can set it to 0.99 for instance to get a 99% confidence interval). With this,
we can see if 0 is in a 95% confidence interval. If it is not, we can say that the relationship is statistically
significant.

$BVTBM4JHOJ DBODF

« We'll be brief, because we have more to say about this in a few weeks.

o Causal significance requires you to think of X | Hur independent variable might (or might not) DBV T F
the dependent variable to change.

« By saying that X causes Yy, we are saying that if we were to force X to take a different value, y would also
change.

o Not all relationships are causal: some happen because a third variable causes both the indepdent and
dependent variables. For instance, there is a positive relationhip between sales of ice cream cones and
accidental drowning deaths. But this is not because ice cream causes drowning, but rather because the
weather (heat waves, specifically) cause people to buy ice cream B Ogh for more swims (which results
in more accidents).

« We need to think of any of these lurking variables that might cause these TQVSJPVT SFMBUJPOTIJQ



4VCTUBOUJWF 4JHOJ DBODF

t "SFUIFFTUJNBUFEF FDUT MBSHF JO QSBUJDF "SFUIFZBSFFOPVH
FTUJNBOPEB GPS UIF SFHSFTTJPOPGUVSOPVUPOQFSDFOUPGBETU
POFQFSDFOUBHF QPJOU JODSFBTFJO OFHBUJWJUZ XFXPVME TFFE
BUTGBJSMZTNBMM 8FDBO UIJOLPGIPXTNBMMUIBUJTCZ UIJOLJ
OFHBUJWJUZ GSPN "p OFHBUJW FBETBP G WOd BHBGB DM FTBETF O* G
%"~ VOJUDIBOHF FSFGPSF HPJOHGSPN "pUP % "pXPVME POMZ MF
JOUIFBWFSBHF UVSOPVU (PJOH GSPN OP OFHBUJWF BET UP BMM ¢
GSPN MFU TJIJNBHJOF <+ SpUP <+ ep BU TQSFUUZ TNBMM

t *OUIFBCPWFFYBNQMF XF MP¥ ULFEBBUFESMBGH B DTEFOHWRE 3G SBOHF BC
BTNBMM Dy BOAHNFIUINFT XFNJIJHIUMPPLBUPUIFSTPSUT PG DIBOHFT

t 8F LOPX UIBUUIF TUBOEBSE EFWJBUJPO 4% PG B WBSJBCMF JT TJI
NFBO *OTUFBE PG B PRFXVODUNJIBIWHFFIRVIUF TNBMM XF NBZ XBC
iUZQJDBMwDBBROOHF 4% DIBOHF
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4VCTUBOUJWF 4JHOJ DBODF

t "SFUIFFTUJNBUFEF FDUT MBSHF JO QSBUJDF "SFUIFZBSFFOPVH
FTUJNBUOPB GPS UIF SFHSFTTJPOPGUVSOPVUPO QFSDFOUPGBETU
POFQFSDFOUBHFQPJOUJODSFBTFJO OFHBUJWJUZ XFXPVME TFFE
BUTGBJSMZ TNBMM 8FDBO UIJOLPGIPXTNBMMUIBUJT CZ UIJOLJ
OFHBUJWJUZ GSPN "p OFHBUJW F®BEITBJP Gk pOJ HRE OM FTBE T O G
%"~ VOJUDIBOHF FSFGPSF HPJOHGSPN "pUP %" "pXPVME POMZ MF
JOUIF BWFSBHF UVSOPVU (PJOH GSPN OP OFHBUJWF BET UP BMM ¢
GSPN MFU TIJNBHJOF <+ SpUP<» sp BUTQSFUUZTNBMM

t *OUIFBCPWFFYBNQMF XF MP»Y ULFEBBUFESMBGH BDTEFOMB 36 SBOHF BC
BTNBMM DUBLOANFIUAINFT XFNIJHIUMPPLBUPUIFSTPSUT PG DIBOHFT

t 8F LOPX UIBUUIF TUBOEBSE EFWJBUJPO 4% PG B WBSJBCMF JT TJI
NFBO *OTUFBE PG B PRFXVODUNJIBIWHFFIRVIUF TNBMM XF NBZ XBC
iUZQJDBMwDBBROOHF 4% DIBOHF

"EEJOHB EVNNZWBSJBCMFUPBSFHSFTTJPO

t SFMBUJPOTIJQ CFUXFFO FEVDBUJPO BOE JODPNF JU NJHIU CF UIF
XPVMEBMTP JIJNBHJOF UIBU XPNFO POBWFSBHF IBWF MPXFS JODP!I
JPXEPTFFJIJGUIJTIJTUIFDBTF *UUVSOTPVUXFDBOBEEBEVNNZW

y:"+!1x+!2d

t SBFDBO GPSNVMBUF QSFEJDUFEWBMVFT KVTUBTCFGPSF
¢=b+p1X+ pzd

t8BFBMTP FTUIJNBUFUIFTFWBMVFTVTIJOHUIFTBNF NBDIJOFSZ 0-4 X
UIFTRVBSFE SFTJEVBMT

%0



!N
(yi! %)?
i=1
t)PXEPFTUIJTB FDUUIF MJOFT UIBU XFIBWF 8FMM OPX XFFTTFOU
XIFO=1 BOE BOPUI#FSOXIFO

t/ PUFUIBUXFDBODBMDVBUF FBDI PG UIFTIPMSBEFM G F T DFHBOF®@BPSFT CZ C
NFO UIFSFHSFTTJPO MJOF JT KV TBUI WIFGQGBNFN BHFSNUBINEPIQPE XJU I

d=0):y="!+"1x+"2" 0=1 + "1x

t 8IFd=1 GPS XPNFO XFIBWHBOFOYNSBBTFTPVS MJGF BB ® WHRSIAW B N\
PGUIJTBTBOJODSFBTFUPUIFJOUFSDFQU

d=1):y=!+"1x+"2" 1= +"1x+"2=(! +"2)+ "1X

t VT BEVNNZWBSJBCMFJO UIF SFHSFTTJPO XJMMBMMPX GPS EJ F¢
SFQSFTFOUTUIFEJ FSFODFJONFBOT CKUXFFU IWITFHSPRNVNQET BFO EJ
FODFJONFBOTEJTDVTTIJPO GSFNFBEOISFERHOWNRDAVEBITFSFODF JO E
CFUXFFONFOBOE XPNFO XIP IBWF UIF;TBINFSMFWO MTPGI F EVPBW P B |
POJODPNF XJUIJOMFWFMT PG HFOEFS

t 8l1Z NJHIU XFJODMVEF B EVNNZ WBSJBCMF *U UVSOT PVUUIBU JU
DPSSFMBUJPOT -FU TUIJOLBCPVUUIF SFMBUJPOTIJQ CFUXFFO IF
Ul HSBEF BOE Ul HSBEF ,JET UBLF B UFTU XIJDIUFMMT UIFN XIBL
8F NJHIUTFF B QPTJUJWF SFMBUJPOTIJQ PWFSBMM%UBMMFS DIJM|
JOUSPEVDFB EVNNZWBSJBCMF GPS Ul HSBEF WFSTVT Ul HSBEF
UIFSFJTOP SFMBUJPOTIJQ CFUXFFO IFJHIUBOENBUIBDIJFWFNFOL

t JTJT BO FYBANQIQF PG T (BBSBEBYJPOTIJQ UIBU IPMET JO HFOFSBM
TVCHSPVQT

"EEJOHDPOUJOVPVTWBSJBCMFTUPBSFHSFTTJPO

t *OTUFBEPGBEVNNZWBSJBCMF XFNJHIUXBOUUP DPOUSPM GPS B
PGUIFF FDUPG EFWFMPQNFOUJO UFSNT PG (%1 QFSDBQJUB PO DJ
PG EFBUIT EVFUP QPMJUJDBM WIPMFODF DJWJM XBST SJPUT DPV
BTTPDJBUFE XJUINPSFDPO JDU 8F NJHIU XBOU UP NBLFTVSFUIBU
DPVOUSJFT XJUINJOFSBM BOE PIJM XFBMUIBSF NPSFMJLFMZ UP IB\
PWFS BOE NPSF MJLFMZ UP IBWF IJHIFS JODPNFT VT XF NJHIU XBE
SFHSFTTIJPO QFSDFOUPG (%1 DPNJOHGSPNOBUVSBM SFTPVSDFT

t*UUVSOTPVUXFDBOBEEBDPOUJOVPVTWBSJBCMFJO UIFTBNF XB:

yi=1+"1X1+ "2X2

S



t/PXxy; BOe BSFCPUIDPOUJOVPVT WBSJBCMFT #FGPSHF=XFBIBE UXP SF
POF&PIS /PX UIPVHI XFIBWFBOJO OJUFOVNCFS PG SFHSFTTJPO M
X2 4PJU TOPUGFBTIJCMFUPESBXUIFSFHSFTTIJPO MJOFTBOZNPSF

t BFDBO JOUMBSIESFMUB TINIJMBS GBTIJPO BT XFEPBCPWF

01 JTUIFFHDXURBITIFME YFE
0!l JTUIFFXXDXUREGITIFME YFE
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"EEJOHDPOUJOVPVTWBSJBCMFTUPBSFHSFTTJPO

t * OTUFBEPGBEVNNZWBSJBCMF XFNJHIUXBOUUP DPOUSPM GPS B
PGUIFF FDUPG EFWFMPQNFOUJO UFSNT PG (%1 QFSDBQJUB PO DJ
PG EFBUIT EVFUPQPMJUJDBM WIPMFODF DJWJM XBST SJPUT DPV
BTTPDJBUFE XJUINPSFDPO JDU 8F NJHIU XBOU UP NBLFTVSFUIBU
DPVOUSJFT XJUINJOFSBM BOE PIJM XFBMUIBSF NPSFMJLFMZ UP IB\
PWFS BOE NPSF MJLFMZ UP IBWF IJHIFS JODPNFT VT XF NJHIU XBE
SFHSFTTJPO QFSDFOUPG (%1 DPNJOHGSPNOBUVSBM SFTPVSDFT

t*UUVSOTPVUXFDBOBEEBDPOUJOVPVTWBSJBCMFJO UIFTBNF XB:

yi=1+"1X1+ "2Xo

t 8IIMFIJT BOPUIFSJOEFQFOEFOU W5 IDEPOWRS PN WBEMBOF® DB VMGIU J
UIFNBJOJOEFQEFOU WBSJBCMF XFBSFJOUFSFTUFE JO

t/PXxy; BOE BSFCPUIDPOUJOVPVT WBSJBCMFT #FGPSIH=XFBIBE UXP SF
POF&PIS /PX UIPVHI XFIBWFBOJO OJUFOVNCFSPGSFHSFTTJPO N
X2 4PJU TOPUGFBTJCMFUPESBXUIFSFHSFTTIJPO MJOFTBOZNPSF

t BF DBODBMDVMBUF 4&T BOEDPO EFODFJOUFSWBMT JO UIF TBNF XE
JOUFSQSFUBUJPO "4& UFMMTVTIPX NVDI XF BYRG8 DUPUNB B Z GIS\PE\U F
TBNQMFUPTBNQMF FGPSNVMBTDIBOHFTMJHIUMZ XIFOZPV BEE B
PGUIJTGPSVT VT PVSQSPDFEBVWSFGEBY EFUFSBIMOIZOHHGB DBOU J
BT XJUIPOFWBSJBCMF

t 8BF DBO JOUMBSIESFMUB TINIJMBS GBTIJPO BT XFIBWF CFGPSF XJUIPOF

0)PMEXHPOTUBOU B PORY UFB BTRIRHEEO HE JO
0)PMEXOPOTUBOU B POFKYWFB BTBIRHEEO HE JO

t81ZJTIPMEJOHUIJOHT YFE PSIiDPOUSPMMJOH GPSw UIFN JNQPSI

SFMBUJPOTIJQT 3FNFNCFSUIFSFMBUJPOTIJQ CFUXFFO JDF DSFBN
XFEJEO UUIJOLUIBOBVEBBXBGNOBEFBEUIT CVUUIBUUIFXFBUIFS QS
*G XFXFSFUPDPOUSPMGPSPSIPME YFEUIF XFBUIFS CZ TBZ NBL.
PSPOMZ XIFOJU TIPU XFXPVMETFFUIBUUIFTQVSJPVT SFMBUJP
JTDBVTFECZ VDUVBUJPOTJOUIF XFBUIFS *G UIF XFBUIFS XBT BM’
UJPOTIJQ BOZNPSF

%0



.VMUIJQMF3FHSFTTJPO

t 8F WFTFFO SFHSFTTJPO XJUIPOFPSUXPWBSJBCMFTOPXBOEOPUI
NPSFWBSJBCMFT #VU STU XIZNJHIUXFEPUIJT "HBJO JG XF XBC
XFIBWFFTUIJNBUFEJT OPUTQVSJPVT XF XBOU UPDPOUSPM GPS W
OOFDPOUSPM WBSJBCMF NJHIUOPU CF FOPVHI

t*UUVSOTPVUUIBUXFDBONPSFUIBOKVTUPOFWBSJBCMF 8IBU XPV|
NPEFM

Yi="1+ " Xe+ "oXo+ oo+ "Xk

t :PVDBO TFF UIBU XFIOPR EBAVQFFOEFOU WBSJBCMFT JOTUFBE PG % PS S &
UJOVPVTPS EVNNZ

t " HBJO UIF4&TBOE $*T XJMMDPNFGSPN3 CVUUIFZIBWFUIFTBNFJ
t 8BFIBWFUIFTBNFJOUFSQSFUBUJPOBCPVUUIFDPF DJFOUTIFSFBT

0)PMEJOH BMM UIF JOEFQ EE-PQRWBRIIBRE N8 ©OBIETF@R BO HF J O
0)PMEJOH BMM UIF JOEFQ EE-PQRWBRIIBREZ N8 ©OBIETF@R BO HF J O
oyBOETP PO

JPX XFMMEPFTUIJT SARHSFTTJPO QSFEJDU

t6TIJOHPVSTLIMMT PG SFHSFTTIJPOJOUFSQSFUBUJPO XFDBOTFFII
EFOUWBSJBCMF CVUXF NJHIU XBOU UP HRFPE\WS/DIIFESP BF N IHIN B X@ K B
UIFEFQFOEFOU WBSJBCMF

t 0OOF XBZUP EPUP NFBTVSF UIJT XPVME CF UPYyTWIRIIPEK X¥ M BIPHSER BJ
NPEFM FQSPCMFNJTUIBUXFOFFETPNFUIJOHUPDPNQBSFJUUP &
QSFEJDUJPOT UIPTFCBTFEPOOPJOEFQFOEFOUWBSJBCMFT

t BUJT XFDBODPNQBSFUIFQSFEJDUJPOT GSPNPVS SFHSFTTJPO

p=06 + '61X2+ Id2X2+ Lot 'q<Xk %0

"OEDPNQBSFUIFTF QSFEJDUJPOT XJUI UXPXF GSPNF S EEFM Q36 BPNDWV
BCRVUWUIPVUBOZDPWBSJBUFT T KVTUUIFTBNQMF NFBO

t 0OODF XFIBWF UIFTF UXP QSFEJDUQ8PHJXE IFPEPHSEBNIEF-SFXPINPEFMT
QSFEJDUJPOFSSPSJTUIFEJ FSF OyDE-CCH W DERFFOFUEIFDBLOAUEWS BIMAYB-C MP\GH
XF IBWF DB MIWH 8 BN BaMIA

t ' SPNUIJTTFUVQ XFDBODBMDVMBUF B NFBTVSFPG IYPX BFMDM BWSNMC
UIJT NFRTRSFTRVBSBET B OVNCFS CFUXFFO "BOE % UIBUUFMMT V-
WBSJIBYUPBWIDT FYQMBIJOFECZUIFJOEFQFOEFOUWBSBJCMFT

(V8



t)PXJTJUDBMDVMBUFE 8F EPQU$PTE3 D BMDB/MWMEREB EBIERASOXIW FEBP S
DPWBSJBUFTJTDBMMFE USSP (yBMTVNTPIT TRBENSHFBITVSF PG UIF QS
FSSPS XJUl OP DPWBSJBUFT 8IBUJTUIFQSFEJDUJPO FSSPS GPS P!
SFTIEBSBMT (y! ¥2 /PUFUIBUUIFCPPLDBMMTUIJTUIFTVNPG T TRVBS

t ' JOBMMZ XF DB®RDBXMDIWMBORURK NVDIPG UIFUPUBMWBSJBUJPO 5
SFHSFTTJPO

_ TSS! SSR s
- TSS
t/ PUFUIBUXFDBODPNQBSFEJ FSFOW SEZHPINTE SRECTH XKFI® KB IB-ETEB N F

BOBEEJUJPOBMJOEFQFOEFOUWBSJBCMF UP UIFRNR PPENF UFSINBO FFF
IPXJNQPSUBOUJU JYJTGPS QSFEJDUJOH

RZ

.VMUJQMF SFHSFTTJPO JO 3

t .VMUJQMF SFHSFTTJPOJO3JTBMNPTUFYBDUMZUIF TBNFBT CJWBSES
PVS OFX WBSJBQEBNDDR UPO

> mod <- Im(turnout ~ rain + polltax + literacy,
> summary(mod)

Call:
Im(formula = turnout ~ rain + polltax + literacy, data = rain)

Residuals:
Min 1Q Median 3Q M a x
-46.157 -7.035 -0.177 7.019 35.208

Coefficients:
Estimate Std. Error t value Pr(>]|t])
(Intercept) 65.48146 0.06547 1000.172 < 2e-16 ***

rain -1.04233 0.30585 -3.408 0.000655 **=*
polltax 7.80947 2.80870 2.780 0.005432 **
literacy 1.41006 0.27279 5.169 2.37e-07 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 10.51 on 27397 degrees of freedom
Multiple R-squared: 0.001802, Adjusted R-squared: 0.001693
F-statistic: 16.48 on 3 and 27397 DF, p-value: 1.067e-10

t/PX FBDI SPXPG UIFDPF DIJFOUT UBCMF IBT % UIF FTUIJNBUFE DP
GPSUIBU FTUINBWEBUJTWIBT GPS UIBP WBMMFCOFS BOEIZBDUWHRTJIT UF
DPF DIJFOUCFJOHFRVBMUP"~



t /PXJOUIFTFDPOE UP MBTU MBRO 5 Z®NSEE-GV/RIN BATEURF s Fa r e d
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"TTPDJBUJPOBOE $BVTBUJPO

t 8BFIBWFUBMLFEBCPVUDBVTBMTJHOJ DBODFVQUPUIJTQPJOU CV
DBVTBMJUZNFBOTPSIPXXFTIPVMEUIJOLBCPVUJU

t & YBNQMFT EFNPDSBDZDBVTFTFDPOPNJD HSPXUI OCBNB XPO CFD

8IZEP XFDBSF

t OPXJOHDBVTBM SFMBUJPOTIJQTIFMQT FYQMBJO XIBUIBTIBQQFO
PVSDIPIJDFPG QPMJDZ

"TTPDJBUJPOBOEJUT QJUGBMMT

t BIFOXFFTUBCMJTIBSFMBUJPOTIJQVTIJOHSFHSFTTJPO UIFSFDPVI
BUXPSL *UDRVMBWHIUBBBVIFFS UIBUUIFZBSFCPUIDBVTFECZB

Z 8JUIEFNPDSBDZBOEHSPXUI XFNJHIUUIJOLUIBUTUSPOH QSPQ
HSPXUIBOEEFNPDSBDZ

t #FXBS®BVNIBBMMBDZ BTTPDJBUJPO EPFTOPUJNQMZDBVTBUJPO

t 1JUGBMM >% 4QVSJPVT SFMBUJPOTIJQT SIFORUCHNIUFAQAR BBVE BIURIPJ
CFDBVTFB UIIZSPWYWBBSRHBEMEKIF TBZ UIBU UIF SFRIBBIPOOAIDBIM M U | |
WBSJB GMBPBBPSLIOH WBBI®GWN OEFS

t8JUIBTQVSIPVT SFMBUJPOTIJQ BXYEITFHEVBRIIPDIEHBEQ CFUXFFO

t 1JU G BQVAVT USIPNDWVNBDTZU Q SADFFEBVTFJU CVU UIJTJTO KM@RVTIETUP DP
y

t1JUGBMM»>« "MBDLPGBTTPDJBUJPO EPFTOPUNFBO OPDBVTBUJPC
UFOEUPHPOFHBUJWFBOEHPJOHOFHBUJWFIFMQTUIFN UIFOJU X

$PVOUFSGBDUVBMT

t0OOFEF OJUJPOUIBUXFXIJMNDFPVPD UG ECBDRDRIBID PGTOBYTBMJIUZ

%0



t-FU TyBOMUIF EFQFOEFOU WB S IBAMEFOXDF OFXB IGRSBWVF UIF EFQFO
WBSJIJBCMFUBLFXXGQFCG-FOF GIFFSIDB-VTBMTF FDU PG

DBV T B M K(H D W0)

t 8IBUEPFTUIJTNFBO -FUTTBZXFBSFUBMLJOHBCPVUUIFF FDUP
UIJTB FSOPRQ) dPIPDBNBOZ QBHFT * XPVME XSJUF J@OB)XAIPX P ESJO
NBOZQBHFT*XPVME XSJUFJG *XFSFUP BCTXSFBRBJOI6 SPRUBRFIOR 4PNF
Xx=0 UIBPOUSPM

t/PX UIFSF TBGVOEBNFOUBMQSPCMFNIFSF JTNPSOJ@BH*ESBOLD
JUTUIFOVNCFSPGQBHFT*XSJUKO§fCB XBWFWHAS H AWDWWPR PUFRSE B U
LOPXIPX NBOZ QBHFT * XPVME IBWF XSJUUFO JGUIRBE&E\OPEBINBEEODUB M
QSPCMFNPGDBVTBMJOGFSFODF

t BF DBOOFWFSPCTFSWFUIFTBNFVOJUJOUXPEJ FSFOUTDFOBSJP"
HSPVQUIBU EJEOPU SFDFIWFUIFUSFBNUFOUBOETFFIPXUIFZ EJE

t*OUIJT FYBNQMF XFNJHIUUSZUP OETPNFPOFFYBDUMZ MJLF NF X
PVSQSPEVDUJWJUJFT *G*IBEBUXJO UIJTNJHIUCFQPTTJCMF

t 3BBSFMZ XFDBO®QFTTG PIMNBPNQYESZF NZ QSPEVDUJIJWJUZ PO POF EBZ
QSPEVDUJIJWJIUZ PO B EBZ XJUIPVUDP FF VT *XPVMEVTFNZTFMG
TINIJMBSUPNZTFMG #VUJUNJHIUOPU XPSLJGUIFDP FFEPFTO U

"TTFTTJOH $BVTBUJPO JO 3FHSFTTJPOT

t4P XFTBJEUIBUXFXBOUUP OEDPNQBSBCMKHSPMRBENVBWFMBWF BB\
F FDY B6GZ XPVMEJUCFUIFDBTFUIBUUXPHSPVQTBSFOPY DPNQBSB
GBDUPS

t 5SPTFFUIJT UIJOLBCPVUUIFDP FFFYBNQMF 4VQQPTF*UPPLBMMP
NZQSPEVDUJIJWJIJUZ UP XIFO*EPO UESJOLDP FF FTFUXPHSPVQTI
z GBDUPS TUSFTT OO EBZT UIBU *BN NPSFTUSFTTBEOXEIUFIOEPSL *
UP XSJUF NPSF CFDBVTF*BNVOEFSBEFBEMJOF VT UIFDP FF EI
DPNQBSBCMF

t*OUIJTDBTFUIFSFMBUJPOTIJQCFUXFFODP FFBOEQSPEVDUJWJU.
PGDP FFBOEUIFF FDUPGTUSFTT

t ) PXEP XFBWPJE UIFTFLJOET PG QSPCMFNT 8F DPVME DPNQBSF DF
MPXTUSFTT "OEUIFODPNQBSFDP FFBOEOPO DP FFEBZTPOMZ XJ
UIFDP FFBOEOPO DP FFEBZTBSFDPNQBSBCMF

t VT XF XBOPOBFSVMBOZ QPUFOUJBM DPOGPVOEFS [ GBDUPS 8F XB
IPMEJOHUIPTF DPOGPVOEFSTDPOTUBOU )PXEP XFEPUIBU 8FMM
MPX TUSFTTEBZTBOEESPQBOZEBZUIBUJTIJHITUSFTT #VUUIJT

S



t 5 PDPOUSPM GPSUIFTFQPUFOUJBM[ GBDUPST XFOFFEUPJODMVE
TUIMMTUBUJTUJDBMMZ TJHOJ DBOUB FSXFJODMVEFUIPTF WBSJE
BOEUIFZDBOOPU FYQMBJO UIF SFMBUJPOTIJQ XFTFF *G XFDBOO|
UIFOXFDBOBSHVFUIBUUIF SFMBUJPOTIJQ XFTFFJTDBVTBM

t $BO XFCFTVSFUIBU XFIBWFFTUBCMJTIFEDBVTBMJUZ
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4VCTUBOUJWF 4JHOJ DBODF3FWJTJUFE

t ) PXDBO XFFWBMVBUFTVCTUBOUJWF TIJHOJ DBODFJOBNPSFTZTUHF
IPX NVDUBQIOBUMHFIGOD SFBTFT PSS BRIDVWEBIMTOPX XF IBWF MPPLFE
POF VOJU D{B&HIFORXOUIBU B POF ¥ OMRBEIME GMEBAYF 8QU B POF VOJU
DIBOHF NJHIUOPUCFUIBUJNQPSUBOU 8IBUJG XF XFSFMPPLJOH B
BOEIBQQJOFFPMIME XFDBSFBCPVUBPOF VOJUJODSFBTFJODSFBTF J
DBSFBCPVUUIFEJ FSFODFCFUXFFO's™ """BOE’'s” ""% BOOVBMJOD
XJUIJODPNF XFDBSFBCPVUMBSHFS DIBOHFTUIBOUIFTUSBJHIUG
iISJHIUw DIBOHFUIBU XFDBSFBCPVU 8IMMJUCFEJ FSFOUJOEJ FS

t S(FDBOUIJOLPGUIFTFDIBOHFTBTTQSFBE 8IZEP XFUIJOLPGBPOF
BT CFJOHITNBMMw BUTCFDBVTFJU TTNBMM SFMBUJWF UP UIF T
%" """VQUPNIJMMJPOT OCWJPVTMZ BEPMMBSJT TNBMMJO UIBU S

t * OTUFBEPGBPOF VOJUDIBOHF XIJDINBZPSNBZOPUCFJIJNQPSUBO
XFNJHIUXBOU UPAMRIVIBGIFKE BEDU JT XF NJHIU MPPLGPSBISFBTPOBC
)PXEP XFEF OFiISFBTPOBCMFwPSiUZQJDBMwDIBOHF GPS EJ FSFO!I

t 0OOFNFBTVSFPGTQSFBEJTUIFSBOHF CVUUIJTNJHIUCFUPP NVDI
TIJHOJ DBODF DIBOHJOH JODPNF GSPNJU TNJOJNVNUPJUT NBYJN!
MJLFBEPMMBSJTUPP MJUUMF NIJMMJIJPOT PG EPMMBSTJTUPP NVD

t " OPUIFS NFBTVSFPGTQSFBEUIBUXFDBOVTFGSPNWBSJBCMF UP W
BDUVBMMZBHPPENFBTVSFPGBUZQJDBMDIBOHF XFLOPXUIBUBO
GSPN <«4% UP <4% DPOUBJOTBMNPTU BMM R GTUBFESBWR) Z4APF B THRAOHE
iUZQJDBMwD'TBOHFTBNF UIJNF BP®BT4Bo@BBOME MBSHF DIBOHF

t JTHIWFTVTBHPPE XBZUPKVEHFTVCTUBOUJWF XXJQJ DIFGDFE DP
P
SFWJFX

t"DPOGPVOEFS [ GBDUPS MVSLJOHWBSBEYEMBTU B WEFSXIBUGBIMIUAB B
IPX XF XBOUUP IPMEUIFTFDPOGPVOEFSTDPOTUBOU CFDBVTFJG U
MPOHFS DBOXDEBBYWH F CP U
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"TTFTTJOH $BVTBUJPO JO 3FHSFTTJPOT

t4P XFTBJEUIBU XFXBOUUP OEDPNQBSBCMKHSPMPBNMVBW FBWF B B\
F FDXY BGZ XPVMEJUCFUIFDBTFUIBUUXPHSPVQTBSFOPY DPNQBSB
GBDUPS

tSPTFFUIJT UIJOLBCPVUUIFDP FFFYBNQMF 4VQQPTF*UPPLBMMP

NZQSPEVDUJIJWJUZ UP XIFO*EPO UESJOLDP FF FTFUXPHSPVQTI
z GBDUPS TUSFTT OO EBZT UIBU *BNNPSFTUSFTTBEOEUIFIOEPSL *
UP XSJUF NPSF CFDBVTF*BN VOEFSBEFBEMJOF VT UIFDP FF EI
DPNQBSBCMF

t*OUIJTDBTFUIFSFMBUJPOTIJQCFUXFFODP FFBOEQSPEVDUJWJU.
PGDP FFBOEUIFF FDUPGTUSFTT

t ) PXEP XFBWPJEUIFTFLJOET PG QSPCMFNT 8F DPVME DPNQBSF DF
MPXTUSFTT "OEUIFODPNQBSFDP FFBOEOPO DP FFEBZTPOMZ XJ
UIFDP FFBOEOPO DP FFEBZTBSFDPNQBSBCMF

t VT XF XBOPOBSFSVMBOZ QPUFOUJBM DPOGPVOEFS [ GBDUPS 8F XB
IPMEJOHUIPTF DPOGPVOEFSTDPOTUBOU )PXEP XFEPUIBU 8FMM
MPX TUSFTTEBZTBOEESPQBOZEBZUIBUJTIJHITUSFTT #VUUIJT

t 5 PDPOUSPM GPSUIFTFQPUFOUJBM|[ GBDUPST XFOFFEUPJODMVE
TUIJMM TUBUJTUJDBMMZ TIJHOJ DBOUB FSXFJODMVEFUIPTF WBSJE
BOEUIFZDBOOPU FYQMBJO UIF SFMBUJPOTIJQ XFTFF *G XFDBOO|
UIFOXFDBOBSHVFUIBUUIF SFMBUJPOTIJQ XFTFFJTDBVTBM

t $BOXFCFTVSFUIBU XFIBWFFTUBCMJTIFEDBVTBMJUZ

SBOEPNJ[FEFYQFSINFOUTBOE $BVTBMJUZ

t 8IFO XFSVOSFHSFTTJPOTIPXDBOXFCFTVSFUIBUXFIBWFFMJNJO
DPVMEBMXBZTCFMVSLIOHWBSJBBMET PVUUIFSFUIBUDBVTF CPU

t 0OOF XBZUP FAMGBDOWPSH JT UP SBEEBBM@EBNMXHBOI TIHO *NFBO UIBU
JOPVSTUVEZ XF JQBDPJO BOE=1®OBEG UBIAWIRQUEIGF WERIR BRRUWM M
UIFBOEPNBTTPEBBRNE®GPNJI[BUJIPO

t 81ZJTSBOEPNJ[BUJPOTP QPXFSGVM #FDBVTFPODF XF SBOEPNIJI[F
iUSFBUFEw HSPVQ BOE UIF iDPOUSPMw HSPVQ #FGPSF XF NJHIU C|
QFPQMF XFSFJOUIFUSFBUFEHSPVQPSUIFDPOUSPMHSPVQ *NBH
XPVMECFMJFWFUIBUUIPTFDBNQBJHOT UIBUHP OFHBUJWF USFBL
NBJOQPTIJUIJWF DPOUSPMHSPVQ POBOVNCFSPGEJ FSFUBUUSJC
MIJLFMZ UP IBWFPQQPOFOUTUIBU IBWFHPOFOFHBUJWF FUD

t 8IFO XF SBOEPNJ[F BMM PG UIFTF EJ F$ROMIKB O H UNBQ @B BC FD B\CT
JOUIFUSFBUFE PS DPOUSPM HSPVQJT UIF SBOEPNJ[BUJPO% UIF DI

(V8



OFHBUJWJUZ UP DBNQBJHOT FO PO BWFSBHF KVTUBT NBOZ DMF
SBDFT

VT XIFO XF SBOEPNJ[F UIFSF NVTUCF OP DPOGPVOEFST [ GBDUP
IBWF UP DBVBE&ERWYWU TIODF XFLOPX UIBU OPUIJOHXFYDFQU IFITF P J(
NVTUCFOP[ GBDUPST

8IFO XF SVO B SFHPRTXIFOJPGBOEPNJ[PEIMNMFOF KVTU UIFXKDBVTBM F
BOEOPUEVFUPBOZPUIFSDPOGPVOEFST

8JUIPVUSBOEPNJ[BUJPO JUJTWFSZIBSEUPEF OJUJWFMZDPODMYV
JTBMXBZTUIFQPTTIJCIMJUZUIBUTPNFPOFXJIMMTBZXFNJTTFETPN
UIBUQPTTJCJIMJIUZ

&YBNQMFT PG 3BOEPNJ[FE&YQFSIJNFOUTJO 1PMJUJDBM4DJFOD

t

t

t

-BCFYQFSJINFOUT

#SJOHJO TPNF WPMVOUFFST BOE SBOEPNMZ TIPX UIFN FJUIFS QPTJ
DJUJPOBM FMFDUJPO FO NFBTVSFIPX NVDIUIFZ SENFNCFS UIF B
FIJUIFSDBOEJEBUF IPXUIFZGFFMBCPVUFJUIFSDBOEJEBUF

(BNFUIFPSZFYQFSJIJNFOUT )BWFQFPQMFDPNFJOUPUIFMBCBOEIB
SBOEPNMZBTTJHOJOHEJ FSFOUDPOEJUJPOT 'PSJOTUBODF XF N
HBNF XI1JDIJTBCBSHBJOJOHHBNF 1MBZFS % HPFT STUBOE NBLFT
1MBZFSSDBOFJUIFSBDDFQUUIFEJWJTJPOBOEFBDIHFUTUIFJSTIE
BSFXBSE 1PMJUJDBMTDJFOUJTUTIBWF SVOFYQFSJINFOUT XIFSF L
GBLF PQQPOFOUTFJUIFSGSPNUIFJSFUIOJDHSPVQPSBOPUIFS FI
XIFUIFS FUIOJDHSPQVTHFOFSBUFDPPQFSBUJPO

AVSWFZ &YQFSJINFOUT

'SBNJOH 8F DBOJOTJHIUJOUPIPXQFPQMFNBLFQPMJUJDBMEFDJT
TUPSZPSRVFTUJPO 'PSJOTUBODF XFNJHIUBTLBCPVUXIFUIFS B/
TQBDF JO %PXOUPXO 3PDIFTUFS *G XFVTFBIi'SFF 4QFFDIw GSBNF
PG BMMPXJOH UIF SBMMZ BOE JG XFVTFBIi)BUF $SINFTw GSBNF QF
SBOEPNMZBTTJHO FJUIFSUIF'SFF4QFFDIPS UIF)BUF $SIJNFT 'SBN
RVFTUJPOJT PO UIFBOTXFS

'JFME &YQFSJINFOUT

)BWFBDBOEJEBUFGPSP DFSBOEPNMZBTTJHOUIFJSDBNQBJHO TUS
BQQFBMT

(057 SBOEPNMZDBMM NBJM UFYUQPUFOUJBM WPUFSTUPTFF JG X
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SFWIJFXPGEVNNZWBSJBCMFTJO SFHSFTTJPO

t SFNFNCFS CBDL UP XIFO XFIBEBCIJWBSJBUF SFHSFTTJPO BOE XF XE
JPXEJEUIBU XPSL )FSF TUIFGPSNVMB XFMPPLFE BU

y="1+"1x+ "5d

t "OE SFNFNCFSIPXTIPXFE XIBUUIBU NFBOU 8F QMYMHHFE IPXWIFEJ
SFHSFTTJPOMJOF DIBOHFE

d=0):y="!+"1x+"2! 0=1 + "X

d=1):y=1l+"ix+"2! 1=1+"x+"2=(! +"2)+ "1X

t 8IFO XFESBXUIFTFUXP MJOFT XIBUEP XFTFF 8F TFFUIBUUIFZ BS
BTTVNFTUIBUXYIAFBPFOUWPBOUBDSPTTUIFHSPVQT *TUIJTCFMJFWB

%J FSFOUHSPVQT EJ FSFOUTMPQFT

t BFNJHIUOPUUIJOLUIBUEJ FSFOUHSPVQT IBWF UOPPB/N B HMEPEM™ FE
EJ FSFOUUZQFTPGVOJUTBSFCFIJOHQPPMFEUPHFUIFSJOUIF TBNI
F FDUT 8FNJHIUUIJOLUIBUUIFSFJTBEJ FSFOUSFMBUJPOTIJQCFL
XPNFO JTDPVMECFEVFUPEJ FSFOUQSPDFTTFT *UDPVME CF UIB
BSFOFWFS QSPNPUFE UP IJHIFS QBJE QPTJUJPO JODPNQBOJFT XIF
CVUUIBUUIJT EJTDSIJNJOBUJPOJTO UBTTUSPOH XJUI MPXFS FEVD
UIBUXPNFOBSFNPSFMJLFMZUP ESPQPVUPGUIFMBCPS GPSDF UIB
XPNFO SFDFIWFOPJODPNF XIJDICSJOHT EPXOUIFBWFSBHFJODP|

t 8IBUEP XFEP XIFOXFGBDFUIJT QSPCMFN OOF PQUJPOJTUP SVOUCL
FBDIPGUIFHSPVQT $SFBUFTVCTFUTPGUIFEBUBGPSFBDIHSPVQ
JTXPVMEBMMPXFBDIHSPVQUPIBWFBEJ FSFOUTMPQF GPSFBDI W
PGJOEFQFOEFOUWBS&ZIGBBEMEFI GTXFQAUNMXAFBAFWBOU JO POFPGUIFH

t#VUUIIJTBQQSPBDIMFBWFT TPNFUIJOHUPCFEFTIJSFEGPS UXP SFB
UIJTXPVMEPOMZ XPSLGPSEVNNZWBSJBCMFT PSBDBUFHPSJDBM\
4FDPOE JUEPFTO UBMMPXVTUPEJSFDUMZDPNQBSFUIFTMPQFTC

%0



t-FUTTBZXFXFSFUPSVOUXPSFHSFTTIJPO POFGPSNFOBOEPOFGP
POFEVDBUJPOGPSFBDI *UJTIJHIMZVOMIJLFMZUIFZXIJMMCFFYBD!I
XPVMEMIJLFUP LOPEKWESHBDHBFUXFFO UIFUXP TMPQFTPSJGUIFZ|
UIFTBNF OGDPVSTF UIJTTPVOETBMPUMILFPVSUZQJDBMTFUVQ
XFXBOUUPLOPXJGUIBUEJ FSFODFJTCJHFOPVHIUPCFSFBMPS J

t 5P EPUIJT XFBSFHPJOHUPJOUSPEVDFB OFX UZQBRPSBWBIBBAMK!
"OJOUFSBDUJPOUFSNJTBWBSJBCMF UIBU XFDSFBUF CZ NVMUJQI
IPXBOJOUFSBDUJPOCFUXFFOBDPOUJOVPVTWBSJBCMFBOE B EVN

y="!+"1x+"2d+ "3(x!d)
t SFDBO XPSLUISPVHI UIF SFGSFFBDP B ¥R\OF GISTWU MFU TMPPL BU
(d=0):y="! +"3x+"21 0+"3x! 0)=1 +"1x
t 8IF@=0 UIJTJIJTKVTUB SFHSFTTUBOMI®PRFUIJOUFSDFQU
t /PXd=1

(d=1):y="1+";x+",0 1+ "3(x!1)
! +II1X+II2++II3X

(P +"2)+("1+ "3)X

t VT XJdF1l XFIBWFBOFXSFHSFTTJPO MJOR X'%UIBHAF EFREPEFXUFS
KVTUIBEBEVNNZWBSJBCMF CVUOPX X#"BMTHPPXBWMBBJTF§ROBU X
DBOIBWFEJ FSFOUF FDUTJO FBDIHSPVQ

t JTIJTTVQFSDPPM /PXPVSHSPVQTIBWFEJ FSFOUTMPQFT CVUJU
UBUJPOPGFBDIDPF DJFOU

o! UIFJOUFSDEQU XIFO
0"y UIFTMP@EXIFO

0"2 UIFDIBOHFJO UIFJQERIHEXBRU CFUXFFO

0"3 UIFDIBOHFJO TUMPQEFW@EWXRAQATUIFDPF DJFOUPOUIFJOUFS
BOEJUNFBTVSFTIPXEJ FSFOUUIFTMPQFTBSF CFUXFFO UIF HS
CPUIHSPVQTBSFUIFTBNF VT XFDBOGPSNVMBUFB ‘*p DPO EF
BOETFFJGJUJTEJ FSFOUGSPN"™ *GJUJTTUBUJTUJDBMMZ TJH
BEJ FSFOUTMPQF UIFF FDUWBSJFTCFUXFFOUIFHSPVQT

t 8IFOXFJOUFSQSFUUIFTUBUJTUJDBMTIJHOJ DBODFPGBOJOUFSBD
UIBOCFGPSF 8JUIPUIFS WBSJBCMFT XFMFEEEZET{B/80B P O FB/ OB FW DIBC
JFSFXFBSFHPJOHUPVTF TMJHIUMZ EJAdEFSFOIPWRABY BOHF & UBXZI B
"3 MBSHFS TNBMMFSAdHBO UIFF FDUGPS

t"MMPGUIJTTUBZTFYBDUMZUIFTBNF XIFOXFBEENPSFJOEFQFOEF

S



Varying slopes across a continuous variable

o What if the effect of one variable depends not on a dummy variable, but instead on a continuous vari-
able?

y=14+"1X;+"2X2+"3(X1 ! X2)

o We can rewrite this to see how the interaction works:

y="!4+"1X1 +"2X2 +"3(X1! X2)
:l + (ll1 +|| 3X2)X1 +|| 2X2

o Look carefully at how we wrote this, now the effect of a one-unit change in X; depends is (" 1 + " 3X2).
You can see that the effect of X; depends on the value of X2. Thus, a one-unit change in X leads to a
" 9 unit change in y, but also a " 3 unit change in the effect of X;.

o If X; is the main variable we care about, we can interpret the coefficients in the following way:

I': the intercept when X = 0.

- "1: a one-unit change in X; leadstoa’

1 unit change in y when X = 0.
- "9: a one-unit change in X5 leads to a " 5 unit change in y when x; = 0.

- "3: a one-unit change in X5 leads to a " 3 unit change in the effect of X;.
« Note that we could interpret " 3 in the opposite way:
- "3: a one-unit change in X; leads to a " 3 unit change in the effect of X».

o Again, we have to be careful in how we interpret our coefficients. The effects of X; and X2 are no longer
“holding all other variables constant” because they depend on each other.
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*OUFSBDUJPOTCFUXFFO UXP EVNNZT

t-FUTSFWIJFX XIBUXFEJEMBTUUJNFCZUBMLJOHBCPVUBTQFDJBM

y=1+"1dy+ "2t + "3(dy! dp)

t FSFBSFGPVSQPTTIJCMFXBZTBQFSTPO DPWNELRWE, V,JETF UXP EVNI
SFDBOTFFIPXFBDIPGUIFTFEPFTUPPVS SFHSFTTJPO

(0,0):y=1+"10+",0+"350! 0)= !

(L,0):y=1 +"11+",0+" 311 0)=1 +",
0,1):y="1 +"10+",1+"30! 1)=1 + ",

(LD :y=1+"11+"21+"3(11 1) =1 + "1+ "2+ "3

t JTHIWFTVTUIFGPMMPXJOH JOUFSQSFUBUJPOTPGUIFDPF DJFOL
o! UIFJOUFSDFQUBEGBEPUI
0"y UIFF FDXIF®=0
0", UIFF FPXIF@®=0
0"3 UIFDIBOHFJ@ KIFB+GPS UIFDIBOHF J XIFQEUP G
/IBSZJOH TMPQFTBDSPTTBDPOUJOVPVT WBSJBCMF

t8IBUJGUIFF FDUPG POFWBSJIJBCMFEFQFOET OPUPOBEVNNZ WBS.
BCMF

y="1+"1xs+ "2X2+ "3(X1! X2)

t BF DBO SFXSJUFUIJTUPTFFIPXUIFJOUFSBDUJPO XPSLT

%0



=1+ "X+ "oxo+ "a(Xe ! X2)

<
|

P4 ("1+ "aXo)X1 + "oX2

t -PPLDBSFGVMMZBUIPX XFXSPUFUIJT OPX EIFGFFHEF P&,B POF VOJ
PV DBO TFF UIBWUEF R FOBRTPRO UXF WBIMBP PG VOJUW,DMEBHTF UG B
"2 VOJU DIBOKFVJIW BWOD B BIBO R FJIEK | F

t*&6 JTUIFNBJOWBSJBCMF XFDBSFBCPVU XFDBOJOUFSQSFUUIFD

o! UIFJOUFSRKFPU XIFO

0"y BPOF VOJUxh NBEOBEHTJWROBU DIBXHFQ ©0

0"2 BPOF VOJUxb NBEOBEHTIWROBU DIBXHFQ ©0

0"s BPOF VOJUxb BEOBEHTIWOBU DIBOHF JIJ&XUIFF FDU PG

t/ PUFUIBU XFDPVMEJOIFASQEFTUIUF XBZ
0"3s BPOF VOJUxp BEBEHTIWOBU DIBOHF JIJXUIFF FDU PG

t"HBJO XFIBWFUPCFDBSFGVMJO IPX XF JOU KSEXREFBFFVSGSHNMF CHFD L
ilPMEJOHBMMPUIFSWBSJBCMFTDPOTUBOUwWCFDBVTFUIFZEFQFO

*OUFSBDUJPOTJO 3

t 8IFO XFHP UP BEEPVSJOUFSBDUJPOT UP PVS SFHSFTTJPO NPEFM
BEEBOPUIFSWBSJBCMF XIJDIJT KVTU UIF :UXPUMB S XB dWVAFVOBENFT FDWP
GPMMPXJOHTZOUBY

mymod <- Im(depvar ~ indvarl + indvar2 + indvarl:indvar2, data = mydata)

t ) FSFXFKVTUBEEFEPOFNPSFUFSNXIJDIJTUIFJOUFSBDUJPO UFSN

t BFDBOJOUFSBDUUXPEVNNZWBSJBCMFT BEVNNZWBSJBCMFBOE B
WBSJBCMFT

(V8
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%S %o S %o S

8IBUJGBOF FDUJTOPO MJOFBS

t 8IFOXFMPPLBUBSFHSFTTJPO UIFF FDU PG BO JOERRBIAHEFOAU%YNV B S
UIFOUIFF BD&KIBBOHFTCZ %"~ UIR@WUIFF FDUJT

t % PFTUIJT BMXBZT NBLF TFOTF 1SPCBCMZ OPU UIJOLPGUIFF FDLU
UIBU % ZFBS PG FEVBUJPOJO IJHITDIPPMIBTUIFTBNFF FDUBTPOF

t APNFUJNFT FDPOPNJTUT DBMM UIJT EIJNJOJTIJOH NBSHJOBM SFUV
TNBMMFSBTXFDPOTVNFNPSFPGJU JOLPGIPXHPPEUIF STUQJFI
QJFDFPGDBLF *UTQSPCBCMZUIFDBTFUIFF FDUPGDBLF PO ZPVE

t 81ZEP XFDBSFBCPVUUIJT #FDBVTFTPNFUJNFTUSZJOHUP UBMJO
CVUOPO MJOFBS
"EEJOHB OPO MJOFBSUFSNUPBSFHSFTTJPO

t ) PXDBO XFBMMPXUIFF FDUPGBWBSJBCMFUPDIBOHF BU EJ FSFO
TUSBOHF CVU XFIBWFBMSFBEZ MFBSOFEIPXUP MFUUIFF FDUPG
WBSJBCMF XFJOUFSBDUUIPTFUXP WBSJBCMFT

t 8IFO XF XBOU UP TFFIPXUIFF FDUPG B WBSJBCMF DIBOHFT BDSPT
XJUIJUTFEMG
y="+I1x+!(x"Xx)

t-FUTKVTUSFXSJUFUIJT GPSNVMBUP TFF XIBUJTHPJOHPO

y="+(l1+ 12x)x

t 8IBUEPFTUIJT UFMMYVITYrBOWBZSDHBU BOE WIBUY WkF E FRPROEG PO
UIF WBMMVPRGBUOIJ®IFO UIF F FIQ UYOIBMBIPGHE POF V&JWUIFO-DEIFB PJ O

X DIBOHKT CZ

%0



t4PL,& 0BOE>0 UIFOUIFF FDUHFU TNBVHWHIS BFQEVABYVWBS BPNF QP
F FDUCFDPNFT OFHBUJWFBOE UIFOHFUTNPSFBOENPSFOFHBUJW
MPPLT MJLFBOJOWFSUFE 6 TIBQFPSBQBSBCPMB

t*OGBDU XFDBOUIJOL PG UIJTXBITNPEFSMBOMMB FIFOFDBBEPG BT B MJ

y= "+ X+ 1ox?

t JTITFYBDUMZUIFTBNFBTUIFFRVBUIJPOGPSBQBSBCPMBGSPNBO
"1y Bl@ EXJdIJ IBaO E

y = ax’+ bx+ ¢

t JTHIWFTVTF TPNF MFWFSBHF PO IPX UP RMIDLMREBRP DRHEQ EHIOW F
TRVBSFE UFSN UFMM VT JG UIF QB3SBERMBS E BBDOD JDHWHS Ta- Td B Q-G
lo<0 " UFMMT VT XIBUUIF 2, J0UFHEHDEFQMPENBSOSEDPNQMJIJDBUFE *U T
TNBMMDIBOHFOBSOWHEFOFSBM JUUFMMTVTIPX KBBFQ UIF QBSBCPM

t 0OOF MBTU QPJOU XFDBOVTFUIFSFHSFTTJPO UP UFMM VT JG UIFSF
F FDUMPPLT SPVHIMZ MJOFBS 8F EP UIJT CZ D4 F DITIDMHAFPB BN\UBRUJIG |
=0 UIFOXFKVTUHFUCBDLUIFPSJHIJOBM SFHSFTTJPO XJUIBMJO
UPTFFJGBWBSJBCMFIBYB OPO MJOFBS F FDU PO

t $IFDLJOHTVCTUBOUJWF TJHOJ DBODFJTB MJUUMF EJ FSFOU IFSF |
X ZPVIBWFUP QJbBeRVB MMFOBIGBEIOWBMVBUF JU 'PSJOTUBODF ZP
NFBXB®E TFFIPXBPOF A %APVBEH®DGFBTF

(6+ 19+ SD)+ 1&g+ SD)?) ! (6 + 19w+ 1Q8?)

/PO MJOFBS F FDUTJO 3

t *OPSEFSUP SVOBSFHSFTTJPO XJUIBOPO MJOFBSUFSNJO 3 XFIB
UIFNPEFM 8FIBWFUPVTFUIJTTZOUBY

mymod <- Im(depvar ~ indvar + I(indvar”2), data = mydata)

t8IBUTHPJOH PO IFSF 'JIRindverPREBINBUFLOPO MJOFBS RVBESBUJD
HSFTTJPO 60GPSUVOBURWAr XEADEBY UFKI/EBBIEEU LOPX XIBU UIFTF
IBWF UP XSBQY&JIODWEFPO UIFDBQJUBMJTJINQPSUBOU

t 0OODFZPVIBWF UIFTVNNBSZPG UIFNPEFM ZPVDBOVTFBMMUIF VT

(V8



