Gov 50: 14. Regression and
Causality (11)

Matthew Blackwell



1. Today's agenda
2. Heterogeneous treatment effects
3. Non-linear relationships

4. Causality and regression wrap up
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Where are we? Where are going?

® |ast couple of lectures:

P Learning about how to use regression to predict and estimate causal effects.
® Today:

P More interaction terms and heterogeneous treatment effects.

» Modeling non-linear relationships.
® HWS3 due tonight.
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2/ Heterogeneous treatment
offects



Social pressure experiment

® We'll look at the Michigan experiment that was trying to see if social
pressure affects turnout.
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Social pressure experiment

® \We'll look at the Michigan experiment that was trying to see if social
pressure affects turnout
® |oad the data and create an age variable:

social <- read.csv(”data/social.csv”)

social$age <- 2006 - social$yearofbirth
summary(social$age)

it Min. 1st Qu. Median Mean 3rd Qu. Max .
## 20.0 41.0 50.0 49.8 59.0 106.0

social.neighbors <- subset(social,

neighbors == | control == 1)
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Heterogeneous effects

® |Lasttime:
» How does the effect of the Neighbors mailer vary by previous voter versus

non-voters?
P Used an interaction term to assess effect heterogeneity between groups.

® What if we want to know how the effect of the Neighbors mailer varies by

age?
P Not just two groups, but a continuum of possible age values.
® Remarkably, the same interaction term will work here too!

oS

Y, =a+ @agei + ﬁzneighborsi + ﬁ3(agei X neighbors;)
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Predicted values from interacted model

Y, =a+piX;+ BaZ; + B3 XiZ;

‘ Control (Z; = 0) Neighbors (Z; = 1)
25 year-old (X, = 25) | &+ B, - 25 &+B - 25+B, 4B, 25
26 year-old(X, = 26) | G+, - 26 &+B - 26+PB,+B;-26

® Effect of Neighbors for a 25 year-old:

(@+ P25+ By + B3 - 25) — (@+B125) =By + B3 - 25

® Effect of Neighbors for a 26 year-old:

(@+B126 + By + B3 - 26) — (8 + B126) = By + B3 - 26

® Effect of Neighbors for a x year-old: ﬁz + 33 - X
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Interpreting coefficients

oS P

Y, =a+ ,@agei + ﬁzneighborsi + §3(agei X neighbors;)

~

® O average turnout for 0 year-olds in the control group.

,@1: slope of regression line for age in the control group.

~

Bo: average effect of Neighbors mailer for 0 year-olds.

33: change in the effect of the Neighbors mailer for a 1-year increase in age.

> Effect for x year-olds: ﬁz + 33 - X
> Effect for (x + 1) year-olds: B, + B3 - (x +1)
» Change in effect: 85
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General interpretation of interactions

Y, =a+BX;+BoZ; + B3X,Z;

~

® &: average outcome when X; and Z; are 0.
® B;: average change in Y; of a one-unit change in X; when Z; = 0
® B,: average change in Y; of a one-unit change in Z; when X; = 0

~

B3 has two equivalent interpretations:

> Change in the effect/slope of X for a one-unit change in Z;
> Change in the effect/slope of Z; for a one-unit change in X

® These hold no matter what types of variables they are!
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3/ Non-linear relationships



Linear regression are linear
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Linear regression are linear

V,=a+pBX;

® Standard linear regression can only pick up linear relationships.
® What if the relationship between X; and Y; is non-linear?
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Adding a squared term
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Adding a squared term

® |f we want to allow for non-linearity in age, we can add a squared term to
the regression model:

o

Y, = &+ Bjage; + B, (age?)

® We are now fitting a parabola to the data.

® |n R, we can add a squared term, but we need to wrap it in I():

fit.sq <- Im(primary2006 ~ age + I(age”2), data = social)

coef(fit.sq)

## (Intercept) age I(age”™2)
## -0.0816804 0.0122736 -0.0000808

® [B,: how the effect of age increases as age increases.
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Predicted values from Im()

® \We can get predicted values out of R using the predict() function:
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Predicted values from lm()

® \We can get predicted values out of R using the predict() function:

predict(fit.sq, newdata = list(age = c(20, 21, 22)))

# 1 2 3
## 0.131 0.140 0.149

® (reate a vector of ages to predict and save predictions:

age.vals <- 20:85

age.preds <- predict(fit.sq, newdata = list(age = age.vals))
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Predicted values from lm()

® \We can get predicted values out of R using the predict() function:

predict(fit.sq, newdata = list(age = c(20, 21, 22)))

# 1 2 3
## 0.131 0.140 0.149

® (reate a vector of ages to predict and save predictions:

age.vals <- 20:85

age.preds <- predict(fit.sq, newdata = list(age = age.vals))

® Plot the predictions:

plot(x = age.vals, y = age.preds, ylim = c(0.1, 0.55),

xlab = "Age”, ylab = "Predicted Turnout Rate”,
col = "dodgerblue”, lwd = 2)
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Plotting predicted values
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Plotting lines instead of points

® |f you want to connect the dots in your scatterplot, you can use the type =
n-L ” (“line" tyDE)

plot(x = age.vals, y = age.preds, ylim = c(0.1, 0.55),

xlab = "Age”, ylab = "Predicted Turnout Rate”,
col = "dodgerblue”, lwd = 2, type = "1”)
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Plotting predicted values

Predicted Turnout Rate
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Comparing to linear fit

Predicted Turnout Rate
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Diagnosing nonlinearity

® Diagnosing nonlinearity can be easy with a single variable: just plot the
scatterplot.
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Diagnosing nonlinearity

® Diagnosing nonlinearity can be easy with a single variable: just plot the
scatterplot.

® With multiple variables, harder to diagnose.

® One useful tool: plotting residuals on y-axis versus variables with
suspected nonlinearities on the x-axis.

® Example: my weight again

health <- read.csv(”data/health2017.csv”)

w.fit <- lm(weight ~ steps.lag + dayofyear, data = health)
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Residual plot

plot(health$steps.lag, residuals(w.fit),
xlab = "Lagged Steps”, ylab = "Residuals”)

plot(health$dayofyear, residuals(w.fit),
xlab = "Day of the Year (out of 365)”, ylab = "Residuals’
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Residual plot

Residuals
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Add a squared term for a better fit

w.fit.sq <- lm(weight ~ steps.lag + dayofyear + I(dayofyear”2
data = health)

coef(w.fit.sq)

it (Intercept) steps.lag dayofyear
## 177 .4679 0.0521 -0.4439
## I(dayofyear”™2)
#H 0.0024
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Add a squared term for a better fit

w.fit.sq <- lm(weight ~ steps.lag + dayofyear + I(dayofyear”2
data = health)

coef(w.fit.sq)

#it (Intercept) steps.lag dayofyear
#it 177 .4679 0.0521 -0.4439
## I(dayofyear”™2)
#it 0.0024

plot(health$steps.lag, residuals(w.fit.sq),
xlab = "Lagged Steps”, ylab = "Residuals”)

plot(health$dayofyear, residuals(w.fit.sq),
xlab = "Day of the Year (out of 365)”, ylab = "Residuals’
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4] Causality and regression
Wrap up



Regression and causality

® When can we interpret a regression coefficient causally?
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Regression and causality

® When can we interpret a regression coefficient causally?

® Randomized control trial:

P Coefficient on binary treatment is estimate of the SATE
P True even if we add other independent variables.
» Other independent variables not causal

® Observational studies:

P Can only interpret coefficients as causal effect if we have controlled for all
confounders as additional independent variables.

» Confounders: other variables that cause both treatment and outcome.

P Before/after and diff-in-diff designs can be implemented with regression, too.
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® Everything up to this point: getting estimates.
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® Everything up to this point: getting estimates.
® How much uncertainty should we have about our estimates?
» Could we have seen this regression coefficient by chance alone?

® Next part of class: quantifying uncertainty.

P First stop: probability, the mathematical language of uncertainty.
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