
Gov 50: 14. Regression and
Causality (II)
Matthew Blackwell

Harvard University

Fall 2018

1 / 33



1. Today’s agenda

2. Heterogeneous treatment effects

3. Non-linear relationships

4. Causality and regression wrap up
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Where are we? Where are going?

• Last couple of lectures:

▶ Learning about how to use regression to predict and estimate causal effects.
• Today:

▶ More interaction terms and heterogeneous treatment effects.
▶ Modeling non-linear relationships.

• HW3 due tonight.
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2/ Heterogeneous treatment
effects

5 / 33



Social pressure experiment

• We’ll look at the Michigan experiment that was trying to see if social
pressure affects turnout.

• Load the data and create an age variable:

social <- read.csv(”data/social.csv”)
social$age <- 2006 - social$yearofbirth
summary(social$age)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 20.0 41.0 50.0 49.8 59.0 106.0

social.neighbors <- subset(social,
neighbors == 1 | control == 1)
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Heterogeneous effects

• Last time:

▶ How does the effect of the Neighbors mailer vary by previous voter versus
non-voters?

▶ Used an interaction term to assess effect heterogeneity between groups.
• What if we want to know how the effect of the Neighbors mailer varies by
age?

▶ Not just two groups, but a continuum of possible age values.

• Remarkably, the same interaction term will work here too!

𝑌𝑖 = 𝛼 + 𝛽1age𝑖 + 𝛽2neighbors𝑖 + 𝛽3(age𝑖 × neighbors𝑖)
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Predicted values from non-interacted model
• Let 𝑋𝑖 = age𝑖 and 𝑍𝑖 = neighbors𝑖:

𝑌𝑖 = 𝛼 + 𝛽1𝑋𝑖 + 𝛽2𝑍𝑖

Control (𝑍𝑖 = 0) Neighbors (𝑍𝑖 = 1)
25 year-old (𝑋𝑖 = 25)
26 year-old(𝑋𝑖 = 26)

• Effect of Neighbors for a 25 year-old:

(𝛼 + 𝛽125 + 𝛽2) − (𝛼 + 𝛽125) = 𝛽2

• Effect of Neighbors for a 26 year-old:

(𝛼 + 𝛽126 + 𝛽2) − (𝛼 + 𝛽126) = 𝛽2
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Visualizing the regression
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Predicted values from interacted model

𝑌𝑖 = 𝛼 + 𝛽1𝑋𝑖 + 𝛽2𝑍𝑖 + 𝛽3𝑋𝑖𝑍𝑖

Control (𝑍𝑖 = 0) Neighbors (𝑍𝑖 = 1)
25 year-old (𝑋𝑖 = 25)
26 year-old(𝑋𝑖 = 26)

• Effect of Neighbors for a 25 year-old:

(𝛼 + 𝛽125 + 𝛽2 + 𝛽3 ⋅ 25) − (𝛼 + 𝛽125) = 𝛽2 + 𝛽3 ⋅ 25

• Effect of Neighbors for a 26 year-old:

(𝛼 + 𝛽126 + 𝛽2 + 𝛽3 ⋅ 26) − (𝛼 + 𝛽126) = 𝛽2 + 𝛽3 ⋅ 26

• Effect of Neighbors for a 𝑥 year-old: 𝛽2 + 𝛽3 ⋅ 𝑥
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Visualizing the interaction
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Interpreting coefficients

𝑌𝑖 = 𝛼 + 𝛽1age𝑖 + 𝛽2neighbors𝑖 + 𝛽3(age𝑖 × neighbors𝑖)

• 𝛼: average turnout for 0 year-olds in the control group.

• 𝛽1: slope of regression line for age in the control group.
• 𝛽2: average effect of Neighbors mailer for 0 year-olds.
• 𝛽3: change in the effect of the Neighbors mailer for a 1-year increase in age.

▶ Effect for 𝑥 year-olds: 𝛽2 + 𝛽3 ⋅ 𝑥
▶ Effect for (𝑥 + 1) year-olds: 𝛽2 + 𝛽3 ⋅ (𝑥 + 1)
▶ Change in effect: 𝛽3

15 / 33



Interpreting coefficients

𝑌𝑖 = 𝛼 + 𝛽1age𝑖 + 𝛽2neighbors𝑖 + 𝛽3(age𝑖 × neighbors𝑖)

• 𝛼: average turnout for 0 year-olds in the control group.
• 𝛽1: slope of regression line for age in the control group.

• 𝛽2: average effect of Neighbors mailer for 0 year-olds.
• 𝛽3: change in the effect of the Neighbors mailer for a 1-year increase in age.

▶ Effect for 𝑥 year-olds: 𝛽2 + 𝛽3 ⋅ 𝑥
▶ Effect for (𝑥 + 1) year-olds: 𝛽2 + 𝛽3 ⋅ (𝑥 + 1)
▶ Change in effect: 𝛽3

15 / 33



Interpreting coefficients

𝑌𝑖 = 𝛼 + 𝛽1age𝑖 + 𝛽2neighbors𝑖 + 𝛽3(age𝑖 × neighbors𝑖)

• 𝛼: average turnout for 0 year-olds in the control group.
• 𝛽1: slope of regression line for age in the control group.
• 𝛽2: average effect of Neighbors mailer for 0 year-olds.

• 𝛽3: change in the effect of the Neighbors mailer for a 1-year increase in age.

▶ Effect for 𝑥 year-olds: 𝛽2 + 𝛽3 ⋅ 𝑥
▶ Effect for (𝑥 + 1) year-olds: 𝛽2 + 𝛽3 ⋅ (𝑥 + 1)
▶ Change in effect: 𝛽3

15 / 33



Interpreting coefficients

𝑌𝑖 = 𝛼 + 𝛽1age𝑖 + 𝛽2neighbors𝑖 + 𝛽3(age𝑖 × neighbors𝑖)

• 𝛼: average turnout for 0 year-olds in the control group.
• 𝛽1: slope of regression line for age in the control group.
• 𝛽2: average effect of Neighbors mailer for 0 year-olds.
• 𝛽3: change in the effect of the Neighbors mailer for a 1-year increase in age.

▶ Effect for 𝑥 year-olds: 𝛽2 + 𝛽3 ⋅ 𝑥
▶ Effect for (𝑥 + 1) year-olds: 𝛽2 + 𝛽3 ⋅ (𝑥 + 1)
▶ Change in effect: 𝛽3

15 / 33



Interpreting coefficients

𝑌𝑖 = 𝛼 + 𝛽1age𝑖 + 𝛽2neighbors𝑖 + 𝛽3(age𝑖 × neighbors𝑖)

• 𝛼: average turnout for 0 year-olds in the control group.
• 𝛽1: slope of regression line for age in the control group.
• 𝛽2: average effect of Neighbors mailer for 0 year-olds.
• 𝛽3: change in the effect of the Neighbors mailer for a 1-year increase in age.

▶ Effect for 𝑥 year-olds: 𝛽2 + 𝛽3 ⋅ 𝑥

▶ Effect for (𝑥 + 1) year-olds: 𝛽2 + 𝛽3 ⋅ (𝑥 + 1)
▶ Change in effect: 𝛽3

15 / 33



Interpreting coefficients

𝑌𝑖 = 𝛼 + 𝛽1age𝑖 + 𝛽2neighbors𝑖 + 𝛽3(age𝑖 × neighbors𝑖)

• 𝛼: average turnout for 0 year-olds in the control group.
• 𝛽1: slope of regression line for age in the control group.
• 𝛽2: average effect of Neighbors mailer for 0 year-olds.
• 𝛽3: change in the effect of the Neighbors mailer for a 1-year increase in age.

▶ Effect for 𝑥 year-olds: 𝛽2 + 𝛽3 ⋅ 𝑥
▶ Effect for (𝑥 + 1) year-olds: 𝛽2 + 𝛽3 ⋅ (𝑥 + 1)

▶ Change in effect: 𝛽3

15 / 33



Interpreting coefficients

𝑌𝑖 = 𝛼 + 𝛽1age𝑖 + 𝛽2neighbors𝑖 + 𝛽3(age𝑖 × neighbors𝑖)

• 𝛼: average turnout for 0 year-olds in the control group.
• 𝛽1: slope of regression line for age in the control group.
• 𝛽2: average effect of Neighbors mailer for 0 year-olds.
• 𝛽3: change in the effect of the Neighbors mailer for a 1-year increase in age.

▶ Effect for 𝑥 year-olds: 𝛽2 + 𝛽3 ⋅ 𝑥
▶ Effect for (𝑥 + 1) year-olds: 𝛽2 + 𝛽3 ⋅ (𝑥 + 1)
▶ Change in effect: 𝛽3

15 / 33



Interactions in R
• You can use the : way to create interaction terms like last time:

int.fit <- lm(primary2006 ~ age + neighbors + age:neighbors,
data = social.neighbors)

coef(int.fit)

## (Intercept) age neighbors
## 0.097473 0.003998 0.049829
## age:neighbors
## 0.000628

• Or you can use the var1 * var2 shortcut, which will add both variable
and their interaction:

int.fit2 <- lm(primary2006 ~ age * neighbors, data = social.neighbors)
coef(int.fit2)

## (Intercept) age neighbors
## 0.097473 0.003998 0.049829
## age:neighbors
## 0.000628
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General interpretation of interactions

𝑌𝑖 = 𝛼 + 𝛽1𝑋𝑖 + 𝛽2𝑍𝑖 + 𝛽3𝑋𝑖𝑍𝑖

• 𝛼: average outcome when 𝑋𝑖 and 𝑍𝑖 are 0.

• 𝛽1: average change in 𝑌𝑖 of a one-unit change in 𝑋𝑖 when 𝑍𝑖 = 0
• 𝛽2: average change in 𝑌𝑖 of a one-unit change in 𝑍𝑖 when 𝑋𝑖 = 0
• 𝛽3 has two equivalent interpretations:

▶ Change in the effect/slope of 𝑋𝑖 for a one-unit change in 𝑍𝑖▶ Change in the effect/slope of 𝑍𝑖 for a one-unit change in 𝑋𝑖

• These hold no matter what types of variables they are!
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3/ Non-linear relationships
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Linear regression are linear

𝑌𝑖 = 𝛼 + 𝛽1𝑋𝑖

• Standard linear regression can only pick up linear relationships.
• What if the relationship between 𝑋𝑖 and 𝑌𝑖 is non-linear?
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Adding a squared term
• If we want to allow for non-linearity in age, we can add a squared term to
the regression model:

𝑌𝑖 = 𝛼 + 𝛽1age𝑖 + 𝛽2 (age2𝑖 )

• We are now fitting a parabola to the data.

• In R, we can add a squared term, but we need to wrap it in I():

fit.sq <- lm(primary2006 ~ age + I(age^2), data = social)
coef(fit.sq)

## (Intercept) age I(age^2)
## -0.0816804 0.0122736 -0.0000808

• 𝛽2: how the effect of age increases as age increases.
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Predicted values from lm()

• We can get predicted values out of R using the predict() function:

predict(fit.sq, newdata = list(age = c(20, 21, 22)))

## 1 2 3
## 0.131 0.140 0.149

• Create a vector of ages to predict and save predictions:

age.vals <- 20:85
age.preds <- predict(fit.sq, newdata = list(age = age.vals))

• Plot the predictions:

plot(x = age.vals, y = age.preds, ylim = c(0.1, 0.55),
xlab = ”Age”, ylab = ”Predicted Turnout Rate”,
col = ”dodgerblue”, lwd = 2)

21 / 33



Predicted values from lm()

• We can get predicted values out of R using the predict() function:

predict(fit.sq, newdata = list(age = c(20, 21, 22)))

## 1 2 3
## 0.131 0.140 0.149

• Create a vector of ages to predict and save predictions:

age.vals <- 20:85
age.preds <- predict(fit.sq, newdata = list(age = age.vals))

• Plot the predictions:

plot(x = age.vals, y = age.preds, ylim = c(0.1, 0.55),
xlab = ”Age”, ylab = ”Predicted Turnout Rate”,
col = ”dodgerblue”, lwd = 2)

21 / 33



Predicted values from lm()

• We can get predicted values out of R using the predict() function:

predict(fit.sq, newdata = list(age = c(20, 21, 22)))

## 1 2 3
## 0.131 0.140 0.149

• Create a vector of ages to predict and save predictions:

age.vals <- 20:85
age.preds <- predict(fit.sq, newdata = list(age = age.vals))

• Plot the predictions:

plot(x = age.vals, y = age.preds, ylim = c(0.1, 0.55),
xlab = ”Age”, ylab = ”Predicted Turnout Rate”,
col = ”dodgerblue”, lwd = 2)

21 / 33



Predicted values from lm()

• We can get predicted values out of R using the predict() function:

predict(fit.sq, newdata = list(age = c(20, 21, 22)))

## 1 2 3
## 0.131 0.140 0.149

• Create a vector of ages to predict and save predictions:

age.vals <- 20:85
age.preds <- predict(fit.sq, newdata = list(age = age.vals))

• Plot the predictions:

plot(x = age.vals, y = age.preds, ylim = c(0.1, 0.55),
xlab = ”Age”, ylab = ”Predicted Turnout Rate”,
col = ”dodgerblue”, lwd = 2)

21 / 33



Predicted values from lm()

• We can get predicted values out of R using the predict() function:

predict(fit.sq, newdata = list(age = c(20, 21, 22)))

## 1 2 3
## 0.131 0.140 0.149

• Create a vector of ages to predict and save predictions:

age.vals <- 20:85
age.preds <- predict(fit.sq, newdata = list(age = age.vals))

• Plot the predictions:

plot(x = age.vals, y = age.preds, ylim = c(0.1, 0.55),
xlab = ”Age”, ylab = ”Predicted Turnout Rate”,
col = ”dodgerblue”, lwd = 2)

21 / 33



Predicted values from lm()

• We can get predicted values out of R using the predict() function:

predict(fit.sq, newdata = list(age = c(20, 21, 22)))

## 1 2 3
## 0.131 0.140 0.149

• Create a vector of ages to predict and save predictions:

age.vals <- 20:85
age.preds <- predict(fit.sq, newdata = list(age = age.vals))

• Plot the predictions:

plot(x = age.vals, y = age.preds, ylim = c(0.1, 0.55),
xlab = ”Age”, ylab = ”Predicted Turnout Rate”,
col = ”dodgerblue”, lwd = 2)

21 / 33



Plotting predicted values
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Plotting lines instead of points

• If you want to connect the dots in your scatterplot, you can use the type =
”l” (“line” type):

plot(x = age.vals, y = age.preds, ylim = c(0.1, 0.55),
xlab = ”Age”, ylab = ”Predicted Turnout Rate”,
col = ”dodgerblue”, lwd = 2, type = ”l”)
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Plotting predicted values
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Comparing to linear fit
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Diagnosing nonlinearity

• Diagnosing nonlinearity can be easy with a single variable: just plot the
scatterplot.

• With multiple variables, harder to diagnose.

• One useful tool: plotting residuals on y-axis versus variables with
suspected nonlinearities on the x-axis.

• Example: my weight again

health <- read.csv(”data/health2017.csv”)
w.fit <- lm(weight ~ steps.lag + dayofyear, data = health)
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Residual plot

plot(health$steps.lag, residuals(w.fit),
xlab = ”Lagged Steps”, ylab = ”Residuals”)

plot(health$dayofyear, residuals(w.fit),
xlab = ”Day of the Year (out of 365)”, ylab = ”Residuals”)
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Residual plot
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Add a squared term for a better fit

w.fit.sq <- lm(weight ~ steps.lag + dayofyear + I(dayofyear^2),
data = health)

coef(w.fit.sq)

## (Intercept) steps.lag dayofyear
## 177.4679 0.0521 -0.4439
## I(dayofyear^2)
## 0.0024

plot(health$steps.lag, residuals(w.fit.sq),
xlab = ”Lagged Steps”, ylab = ”Residuals”)

plot(health$dayofyear, residuals(w.fit.sq),
xlab = ”Day of the Year (out of 365)”, ylab = ”Residuals”)
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Residual plot, redux
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4/ Causality and regression
wrap up
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Regression and causality

• When can we interpret a regression coefficient causally?

• Randomized control trial:

▶ Coefficient on binary treatment is estimate of the SATE
▶ True even if we add other independent variables.
▶ Other independent variables not causal

• Observational studies:

▶ Can only interpret coefficients as causal effect if we have controlled for all
confounders as additional independent variables.

▶ Confounders: other variables that cause both treatment and outcome.
▶ Before/aǒter and diff-in-diff designs can be implemented with regression, too.
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On deck

• Everything up to this point: getting estimates.

• How much uncertainty should we have about our estimates?

▶ Could we have seen this regression coefficient by chance alone?

• Next part of class: quantifying uncertainty.

▶ First stop: probability, the mathematical language of uncertainty.
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