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Where are we? Where are we going?

• Up until now: the linear regression model, its assumptions, and violations of
those assumptions

• This week: what can we do with panel data?

panel data
Motivation

Is there a relationship between democracy and, say, infant mortality? We could run
a big cross-national regression, but would that be convincing? Perhaps democratic
countries are different from non-democracies in ways that we can’t measure—they are
richer, provide benefitsmore efficiently, developed longer ago, or posses some cultural
trait that tends to make their health outcomes better. One idea is to look at countries
over time to see if we can get a better estimate of the effect of democracy on infant
mortality. It turns out that under certain assumptions, we can allow for violations of
zero conditional mean error if we have panel data (repeated observations over time),
such as the following:

ross <- foreign::read.dta(”../data/ross-democracy.dta”)

head(ross[,c(”cty_name”, ”year”, ”democracy”, ”life”, ”infmort_unicef”)])
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## cty_name year democracy life infmort_unicef

## 1 Afghanistan 1965 0 36.82 230

## 2 Afghanistan 1966 0 NA NA

## 3 Afghanistan 1967 0 37.80 NA

## 4 Afghanistan 1968 0 NA NA

## 5 Afghanistan 1969 0 NA NA

## 6 Afghanistan 1970 0 38.40 215

Notation

Let i continue to denote the unit, but now let t denote the time period. There are
still n units, each measured at T periods which we call a balanced panel. Of course,
the labeling here is somewhat arbitrary and we could rewrite this in terms of gen-
eral groups. Time is a typical application, but this could be other groupings such as
counties within states, states within countries, people within coutries, etc.

We assume the following linear model for the outcome of unit i at time t:

yit = x′
itβ + ai + uit

Here, xit is a vector of covariate which might be time-varying, ai is an unobserved
time-constant unit effect (fixed effect or unit effect), uit are the unobserved time-
varying “idiosyncratic” errors.

Pooled OLS, as its name implies, pools all observations into one regression and
treats all unit-periods (each it) as iid units. If the true model has the unit effect, then
we can think about how pooled OLS will work by writing the overall error as vit =
ai + uit:

yit = x′
itβ + vit

This has two potential problems: first, heteroskedasticity, and second possible viola-
tion of zero conditional mean errors. Both problems arise out of ignoring the unmea-
sured heterogeneity inherent in ai.

For instance, imagine that some of the covariates are correlated with ai, so that
Cov[xitj , ai] ̸= 0, where xitj is one covariate in the xit vector. Perhaps having demo-
cratic institutions is correlated with some unmeasured aspects of health outcomes,
like quality of health system or a lack of ethnic conflict. If this is true, then the zero
conditional mean error assumption will be violated in the pooled model because we
have

Cov[xitj , vit] = Cov[xitj , ai] + Cov[xitj , uit] ̸= 0

Note that this is a violation even if the idiosyncratic errors (uit) are uncorrelated with
the covariates. One way to think about this is that there is a time-constant omitted
variable or a set of time-constant omitted variables that are determining both yit and
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xit. The unobserved effect, ai, captures the total effect of all of these time-constant
omitted variables. For instance, if i represents individuals, then this might contain
their early childhood political socialization and other features that are fixed over time.

To move forward, we will make some assumptions on this model. First, we’ll as-
sume that if we could somehow measure ai and include it in the regression, then zero
conditional mean error will hold. That is, we’ll assume that E[uit|xit, ai] = 0 or,
equivalently, that the CEF in each time period is:

E[yit|xit, ai] = x′
itβ + ai.

We’ll see in a second that this assumptionwill not be enough to get around the omitted
variable problems, but this is a first step.

Finally, we’ll assume that we do have an i.i.d. sample across units. Letting Xi be
the T × k vector of covariates for unit i across all time periods (where each row of Xi

is x′
it) and let yi be the T × 1 vector of outcomes across time. Then, we’ll assume that

{(yi,Xi) : i = 1, 2, . . . , n} are i.i.d. draws from a population distribution.

First differencing

To see what the assumptions we’ll need, it’s useful to focus on a particular setup with
two time periods and to think about using differencing to get rid of the unit effect.
That is, we’ll try to exploit panel data by changing our analysis from comparing levels
to comparing changes over time. Intuitively, the levels include the unobserved het-
erogeneity, but changes over time should be free of this heterogeneity. It’s easiest to
see the logic when we only have two time periods:

yi1 = x′
i1β + ai + ui1

yi2 = x′
i2β + ai + ui2

Let’s create a new variable, the change in y over time and see what the model looks
like for that variable:

∆yi = yi2 − yi1

= (x′
i2β + ai + ui2)− (x′

i1β − ai − ui1)

= (x′
i2 − x′

i1)β + (ai − ai) + (ui2 − ui1)

= ∆x′
iβ +∆ui

Note what changes in this first differencedmodel and what does not. For instance,
the coefficient on the levels xit is the same as the coefficient on the changes∆xi. Also
note that the fixed effects/unobserved heterogeneity drops out since it is constant over
time.
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Can we apply regular OLS to the differences? What assumptions will we need?
Linearity holds by our assumptions about linearity of the levels. The differences ∆yi
and ∆xi will be i.i.d. across units. There are two more assumptions to consider for
unbiasedness/consistency: no perfect collinearity and zero conditional mean error.

First, no perfect collinearity will also hold so long as xit has to change over time
for some units. If there is a variable that is constant over time, then it will be constantly
equal to 0 when differenced and there will be perfect collinearity between it and the
constant term. This shouldn’t be too surprising since the whole point of this differ-
encing is to remove the effects of time-constant omitted variables. We won’t be able
to separately net those effects out and estimate the effect of a time-constant variable.

Second, zero conditionalmean error in the FDcontextwouldmean thatE[∆ui|∆xi] =
0. Is this implied by the zero conditional mean error assumption on levels above,
E[uit|xitmai] = 0? Not quite. The FD zero conditional mean error assumption
would imply that the changes in the idiosyncratic error should be uncorrelated with
the changes in the covariates. Let’s see if that holds with a single covariate:

Cov[∆xi,∆ui] = E[(xi2 − xi1)(ui2 − ui1)]− E[(xi2 − xi1)]E[(ui2 − ui1)]

= E[(xi2 − xi1)(ui2 − ui1)]− 0

= E[xi2ui2] + E[xi1ui1]− E[xi2ui1]− E[xi1ui2]

From above, we know that the idiosyncratic errors in time t will be uncorrelated
with the covariates in time t, so that the first two terms will be equal to 0. But the other
two terms measure the correlation between the idiosyncratic error in time 1 and the
covariate in time 2, which the assumptions above did not address.

Thus, in order to use regular OLS to estimate the FD equation, we will need to
make a stronger zero-conditional mean error assumption. There are two options.
First, we can assume exactly what is needed for the FD, E[∆ui|∆xi] = 0, which
says that changes in the idiosyncratic error term are uncorrelated with changes in the
covariates. But just be sure to note that this is a stronger assumption that we made
above. Another option is to assume a form of so-called strict exogeneity on the levels
so that the idiosyncratic errors are uncorrelated with the covariates at any point in
time:

E[uit|xi1,xi2, . . . ,xiT , ai] = E[uit|xit, ai] = 0

This assumption is stronger than either of the the zero-conditional mean error as-
sumptions above (for levels or for differences). It implies that the correlation between
the idiosyncratic errors and the covariates are uncorrelated at any time point, future
or past:

Cov[xis, uit] = 0 ∀t.
One obvious violation of this assumption is if there is a lagged dependent variable in
the set of covariates.
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With either of these two assumptions in hand, OLS on the differences will produce
consistent estimates of the β vector.

First differences in R

pooled.mod <- lm(log(kidmort_unicef) ~ democracy + log(GDPcur), data = ross)

summary(pooled.mod)

##

## Call:

## lm(formula = log(kidmort_unicef) ~ democracy + log(GDPcur), data = ross)

##

## Residuals:

## Min 1Q Median 3Q Max

## -2.4590 -0.5476 0.0945 0.5013 2.2643

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 9.76405 0.34491 28.31 <2e-16 ***

## democracy -0.95525 0.06978 -13.69 <2e-16 ***

## log(GDPcur) -0.22828 0.01548 -14.75 <2e-16 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 0.7948 on 646 degrees of freedom

## (5773 observations deleted due to missingness)

## Multiple R-squared: 0.5044, Adjusted R-squared: 0.5029

## F-statistic: 328.7 on 2 and 646 DF, p-value: < 2.2e-16

library(plm)

fd.mod <- plm(log(kidmort_unicef) ~ democracy + log(GDPcur), data = ross,

index = c(”id”, ”year”), model = ”fd”)

summary(fd.mod)

## Oneway (individual) effect First-Difference Model

##

## Call:

## plm(formula = log(kidmort_unicef) ~ democracy + log(GDPcur),

## data = ross, model = ”fd”, index = c(”id”, ”year”))
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##

## Unbalanced Panel: n=166, T=1-7, N=649

##

## Residuals :

## Min. 1st Qu. Median 3rd Qu. Max.

## -0.9060 -0.0956 0.0468 0.1410 0.3950

##

## Coefficients :

## Estimate Std. Error t-value Pr(>|t|)

## (intercept) -0.149469 0.011275 -13.2567 < 2e-16 ***

## democracy -0.044887 0.024206 -1.8544 0.06429 .

## log(GDPcur) -0.171796 0.013756 -12.4886 < 2e-16 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Total Sum of Squares: 23.545

## Residual Sum of Squares: 17.762

## R-Squared : 0.24561

## Adj. R-Squared : 0.24408

## F-statistic: 78.1367 on 2 and 480 DF, p-value: < 2.22e-16

Differences-in-differences

One place where this framework is very easy to understand is when trying to assess the
impact of some treatment that was not randomly assigned, but there is some variation
over the timing of its implementation. For instance, let xit be an indicator of a unit
being “treated” at time t. Themost basic differences-in-differences estimation strategy
usually has two time periods, where no one is treated in the first period (xi1 = 0 for
all i) and some of the units are treated in the second. The goal is to know the effect of
being treated. Here is the basic model:

yit = β0 + δ0dt + β1xit + ai + uit

Here, dt is a dummy variable for the second time period and β1 is the quantity of
interest: it’s the effect of being treated.

To remove the fixed effect, let’s take differences:

(yi2 − yi1) = δ0 + β1(xi2 − xi1) + (ui2 − ui1)

Here, we can interpret these quantities by remembering that (xi2 − xi1) = 1 only
for the treated group in this DD setup and that (xi2 − xi1) = 0 only for the control
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group in this DD setup. Thus, δ0 represents the difference in the average outcome
from period 1 to period 2 in the untreated group, and β1 represents the additional
change in y over time (on top of δ0) associated with being in the treated group. The
key here is that we are comparing the change over time in the control group to the
change over time in the treated group. The differences between these differences is
our estimate of the causal effect:

β1 = ∆ytreated −∆ycontrol

Why is thismore credible than simply looking at the treatment/control differences
in period 2? Let’s look at that equation:

yi2 = (β0 + δ0) + β1xi2 + ai + ui2

Here there might be unmeasured reasons why the treated group has higher or lower
outcomes than the control group. This is picked up ai. If ai is correlated with the
treatment status, then zero conditionalmean error fails and our estimates are no good.
With differences-in-differences, we leverage the changes over time to help eliminate
these time-constant problems. Thus, the power comes from the over time variation.

One example of this type of technique is Lyall (2009) which was interested in an-
swering the following question: does Russian (that is, government) shelling of villages
cause insurgent (that is, non-governmental) attacks? We might think that artillery
shelling by Russians is targeted to places where the insurgency is the strongest. That
is, part of the village fixed effect, ai might be correlated with whether or not shelling
occurs, xit. This would cause any pooled OLS estimates to be biased. Instead Lyall
takes a diff-in-diff approach: compare attacks over time (∆yi) for shelled (xi2 = 1)
and non-shelled (xi2 = 0) villages.

Let’s cover the assumptions needed to get a consistent/unbiased estimate of β1
in this context. From above, we need zero conditional mean error for the changes:
E[∆ui|∆xi] = 0. Notice here that because no one is treated in the first period, we can
write∆xi = xi2, so that the key assumption is that treatment needs to be independent
of the idiosyncratic shocks:

E[(ui2 − ui1)|xi2] = 0

Implies that without treatment, the trend in the outcome over time is the same for the
treated and control groups. This assumption is sometimes called the parallel trends
assumption.

Of course, parallel trends might not be plausible. One way it might be violated
is called Ashenfelter’s dip, which is a empirical finding that people who enroll in job
training programs see their earnings decline prior to that training. In the Lyall paper,
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it might be the case that insurgent attacks might be falling in places where there is
shelling because rebels attacked in those areas and have moved on.

We could generalize the framework to handle covariates, which might make the
parallel trends assumption more plausible. For instance, the independence of the
treatment and idiosyncratic shocks might only hold conditional on covariates:

yi2 − yi1 = δ0 + z′iτ + β(xi2 −Ai1) + (ui2 − ui1)

Here, z′i is a vector of covariates and β is still the causal effect of the treatment. This
is sometimes called “regression diff-in-diff.”

fixed effects models
When people talk about “fixed effects models” or that they “included fixed effects”
what they usuallymean is that they did a specific transformation of the data similar to,
but distinct from the differences. In both, however, we transform the data to remove
the unobserved effect, ai. First note that taking the average of the y’s over time for a
given unit leaves us with a very similar model:

yi =
1

T

T∑
t=1

[
x′
itβ + ai + uit

]
=

(
1

T

T∑
t=1

x′
it

)
β +

1

T

T∑
t=1

ai +
1

T

T∑
t=1

uit

= x′
iβ + ai + ui

They key fact here is that because the unobserved effect is constant over time, so the
over-timemean of the ai is just ai itself. The fixed effects,within, or time-demeaning
transformation is when we subtract off the over-time means from the original data:

(yit − yi) = (x′
it − x′

i)β + (uit − ui)

If we write ÿit = yit − yi, then we can write this more compactly as:

ÿit = ẍ′
itβ + üit

Note that since ai is time-constant, it drops out of this specification.
What assumptions do we need to apply OLS to this? Again, linearity and i.i.d.

come from linearity and i.i.d. for the levels that we discussed above. No perfect
collinearity will again be satisfied so long as do not include any covariates that are
constant in time (since they will be a constant 0 column in the data). Finally, and again
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similar to first differencing, the zero conditionalmean idiosyncratic error,E[uit|xit, ai] =
0, is not sufficient for zero conditionalmean error of thewithin transformation: E[üit|ẍit] =
0. This is for similar reasons to the FD model, since the levels version of zero condi-
tional mean error only places restrictions on the correlation between uit and xit, but
the FE transformation is a function of all time periods.

Thus, in order to move forward, we will need to strengthen our zero conditional
mean error assumption to a strict exogeneity assumption:

E[uit|xi1,xi2, . . . ,xiT , ai] = E[uit|xit, ai] = 0

This assumption will imply that the time-demeaned idiosyncratic errors (üit) will be
uncorrelated with the time-demeaned covariates ẍit. This is because uit will be un-
correlated with all xis and so will also be uncorrelated with xi, which also implies that
ui will be uncorrelated with all xis and xi. Thus, under strict exogeneity, we can get
unbiased and consistent estimates of theβ vector by applying regular OLS to the time-
demeaned data above. We do need to slightly modify the degrees of freedom we use
for t-tests and variance estimation to account for the transformation tonT−n−k−1.
In particular, it is important to estimate the error variance as:

σ̂2
u =

∑n
i=1(yi − ŷi)

2

nT − n− k − 1

If you just demeaned the data yourself and ran the usual OLS, however, it would divide
the sum of the square residuals by nT − k− 1, which would mean that the SEs would
be understated. For this reason, it is useful to use functions dedicated to implementing
fixed effects (like plm()) or to use the dummy variable approach below.

Fixed effects with Ross data

fe.mod <- plm(log(kidmort_unicef) ~ democracy + log(GDPcur), data = ross,

index = c(”id”, ”year”), model = ”within”)

summary(fe.mod)

## Oneway (individual) effect Within Model

##

## Call:

## plm(formula = log(kidmort_unicef) ~ democracy + log(GDPcur),

## data = ross, model = ”within”, index = c(”id”, ”year”))

##

## Unbalanced Panel: n=166, T=1-7, N=649
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##

## Residuals :

## Min. 1st Qu. Median 3rd Qu. Max.

## -0.70500 -0.11700 0.00628 0.12200 0.75700

##

## Coefficients :

## Estimate Std. Error t-value Pr(>|t|)

## democracy -0.143233 0.033500 -4.2756 2.299e-05 ***

## log(GDPcur) -0.375203 0.011328 -33.1226 < 2.2e-16 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Total Sum of Squares: 81.711

## Residual Sum of Squares: 23.012

## R-Squared : 0.71838

## Adj. R-Squared : 0.53242

## F-statistic: 613.481 on 2 and 481 DF, p-value: < 2.22e-16

Fixed effects with Ross data

• Pooled model with a time-constant variable, proportion Islamic:

p.mod <- plm(log(kidmort_unicef) ~ democracy + log(GDPcur) + islam,

data = ross, index = c(”id”, ”year”), model = ”pooling”)

summary(p.mod)

## Oneway (individual) effect Pooling Model

##

## Call:

## plm(formula = log(kidmort_unicef) ~ democracy + log(GDPcur) +

## islam, data = ross, model = ”pooling”, index = c(”id”, ”year”))

##

## Unbalanced Panel: n=136, T=1-7, N=583

##

## Residuals :

## Min. 1st Qu. Median 3rd Qu. Max.

## -2.3500 -0.4880 0.0807 0.4740 2.2200

##

## Coefficients :

## Estimate Std. Error t-value Pr(>|t|)
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## (Intercept) 10.30607817 0.35951939 28.6663 < 2.2e-16 ***

## democracy -0.80233845 0.07766814 -10.3303 < 2.2e-16 ***

## log(GDPcur) -0.25497406 0.01607061 -15.8659 < 2.2e-16 ***

## islam 0.00343325 0.00091045 3.7709 0.0001794 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Total Sum of Squares: 757.57

## Residual Sum of Squares: 331.63

## R-Squared : 0.56224

## Adj. R-Squared : 0.55839

## F-statistic: 247.884 on 3 and 579 DF, p-value: < 2.22e-16

• FE model, where the islam variable drops out:

fe.mod2 <- plm(log(kidmort_unicef) ~ democracy + log(GDPcur) + islam,

data = ross, index = c(”id”, ”year”), model = ”within”)

summary(fe.mod2)

## Oneway (individual) effect Within Model

##

## Call:

## plm(formula = log(kidmort_unicef) ~ democracy + log(GDPcur) +

## islam, data = ross, model = ”within”, index = c(”id”, ”year”))

##

## Unbalanced Panel: n=136, T=1-7, N=583

##

## Residuals :

## Min. 1st Qu. Median 3rd Qu. Max.

## -0.6990 -0.1220 0.0109 0.1300 0.7490

##

## Coefficients :

## Estimate Std. Error t-value Pr(>|t|)

## democracy -0.129693 0.035865 -3.6162 0.0003332 ***

## log(GDPcur) -0.379997 0.011849 -32.0707 < 2.2e-16 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Total Sum of Squares: 78.768

## Residual Sum of Squares: 21.855
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## R-Squared : 0.72254

## Adj. R-Squared : 0.55151

## F-statistic: 579.423 on 2 and 445 DF, p-value: < 2.22e-16

Least squares dummy variable

As an alternative to the within transformation, we can also include a series of n − 1
dummy variables for each unit. Gives the exact same point estimates as with time-
demeaning and it automatically gets the right degrees of freedom so it can be imple-
mented with standard functions like lm(). The main disadvantage of this approach is
that it is computationally difficult with large n, since we have to run a regression with
n+ k variables. It is often much faster to demean the data.

Example with Ross data

library(lmtest)

lsdv.mod <- lm(log(kidmort_unicef) ~ democracy + log(GDPcur) + as.factor(id),

data = ross)

coeftest(lsdv.mod)[1:6,]

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 13.7644887 0.26597312 51.751427 1.008329e-198

## democracy -0.1432331 0.03349977 -4.275644 2.299393e-05

## log(GDPcur) -0.3752030 0.01132772 -33.122568 3.494887e-126

## as.factor(id)AGO 0.2997206 0.16767730 1.787485 7.448861e-02

## as.factor(id)ALB -1.9309618 0.19013955 -10.155498 4.392512e-22

## as.factor(id)ARE -1.8762909 0.17020738 -11.023558 2.386557e-25

coeftest(fe.mod)

##

## t test of coefficients:

##

## Estimate Std. Error t value Pr(>|t|)

## democracy -0.143233 0.033500 -4.2756 2.299e-05 ***

## log(GDPcur) -0.375203 0.011328 -33.1226 < 2.2e-16 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Fixed effects versus first differences

Under strict exogeneity of the idiosyncratic error and time-constant unobserved error,
both fixed effects and first differences are unbiased and consistent. In fact, with T = 2
the estimators produce identical estimates. So which one is better when T > 2? If
they are both unbiased, we need to look to efficiency—which of them will have lower
uncertainty in their estimates?

It turns out that when the idiosyncratic errorsuit are uncorrelatedwith each other,
FE is more efficient and when the idiosyncratic errors uit are serially correlated in a
particular way (they follow a random walk), FD is more efficient. The truth is usually
in between and so it isn’t clear whichwill bemore efficient in any particular example—
depends on n, T , and the true model. One thing we can probably say is that large
differences between the FE and FD estimates should make us worry about the validity
of our assumptions.

random effects
Random effects model

With a random effects approach, we take the same basic model for the levels and im-
pose a slightly stronger assumption on the heterogeneity. For instance, take the basic
model:

yit = x′
itβ + ai + uit

The key random effect assumption is that we will assume that the covariates are un-
correlated with the unit effect, ai. More precisely, we will assume that

E[ai|xi1,xi2, . . . ,xiT ] = E[ai] = 0.

We also continue to assume strict exogeneity,

E[uit|xi1,xi2, . . . ,xiT , ai] = E[uit|xit, ai] = 0,

which implies that ai are uncorrelated with the uit.
Obviously these assumptions are stronger than for FE or FD, since there we made

no assumptions about the correlation between the unobserved unit effect and the co-
variates. Here, we assume that they are (mean) independent. Of course, this means
that the ai cannot be thought of as a confounder and so the random effects models
assumes that ai are not an omitted variable in theway that FE or FDmodels do. Specif-
ically, we can treat vit = ai + uit as a combined error that satisfies zero conditional
mean error:

E[ai + uit|xit] = E[ai|xit] + E[uit|xit] = 0 + 0 = 0
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Thus, under these random effects assumptions, pooled OLS is actually unbiased and
consistent. It it not, however, since the Gauss-Markov assumptions are not satisfied.
Furthermore, the standard errors from conventional OLS will be incorrect. This is
what RE analyses are designed to fix.

Quasi-demeaned data

Random effectsmodels usually transform the data via what is called quasi-demeaning
or partial pooling:

yit − θyi = (x′
it − θx′

i) + (vit − θvi)

Here θ is between zero and one, where θ = 0 implies pooled OLS and θ = 1 implies
fixed effects. Doing some math shows that

θ = 1−
[

σ2
u

Tσ2
a + σ2

u

]1/2
.

Here, σ2
u is the variance of uit and σ2

a is the variance of ai. The random effect esti-
mator runs pooled OLS on this model replacing θ with an estimate θ̂, where the this
based on estimates of σ2

u and σ2
a.

You can do basic random effects with linear models using plm() and more general
random effects models using lmer() from the lme4 package.

Example with Ross data

re.mod <- plm(log(kidmort_unicef) ~ democracy + log(GDPcur), data = ross,

index = c(”id”, ”year”), model = ”random”)

coeftest(re.mod)

##

## t test of coefficients:

##

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 12.312868 0.255008 48.2842 < 2.2e-16 ***

## democracy -0.191796 0.033957 -5.6482 2.431e-08 ***

## log(GDPcur) -0.360927 0.011009 -32.7839 < 2.2e-16 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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coeftest(fe.mod)

##

## t test of coefficients:

##

## Estimate Std. Error t value Pr(>|t|)

## democracy -0.143233 0.033500 -4.2756 2.299e-05 ***

## log(GDPcur) -0.375203 0.011328 -33.1226 < 2.2e-16 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

coeftest(fd.mod)

##

## t test of coefficients:

##

## Estimate Std. Error t value Pr(>|t|)

## (intercept) -0.149469 0.011275 -13.2567 < 2e-16 ***

## democracy -0.044887 0.024206 -1.8544 0.06429 .

## log(GDPcur) -0.171796 0.013756 -12.4886 < 2e-16 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Fixed effects versus random effects

Let’s look at the errors in the random effects model:

vit − θvi = (1− θ)ai + uit − θui.

If there is correlation between xit and ai, then there will also be correlation between
xit − θxi and vit − θvi. This correlation will cause zero conditional mean error to be
violated. Again, this implies that it is crucial for REmodels that the ai be uncorrelated
with the independent variables. Basically, REmodels can help us fix up standard errors
in a similar way the WLS helps us with SEs.

Only FE/FD can consistently estimate effects when there is unmeasured hetero-
geneity correlated with the independent variables. But RE does allow us to include
time-constant covariates, while FE does not. This is an advantage, but the advantage
is somewhat lost if we can’t consistently estimate the effect of this time-constant vari-
able. Wooldridge comes down hard on the side of FE: “FE is almost alwaysmuchmore
convincing than RE for policy analysis using aggregated data.”
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A more general model is that of correlated random effects which allows for some
structured dependence between xit and ai. See Wooldridge (2010) for more on these
models.

clustering
We are often in situations where the data we have is not i.i.d., but that units are cor-
related within groups and independent across groups. We often call these groups
clusters and they arise very often in applied work. For example, think back to the
Gerber, Green, and Larimer (2008) social pressure mailer example. Their design ran-
domly sample households and randomly assign them to different treatment condi-
tions, but the measurement of turnout is at the individual level. From the point of
view of the linear model we have been discussing, this could lead to a violation of the
iid/random sampling assumption. This is because the errors of individuals within
the same household are correlated. This will lead to problems with the development
of our uncertainty estimates (standard errors, variances) since it relied on i.i.d.

More generally, we have clustering or clustered dependence when there are G
clusters or groups, each with some number of units, which might be related. We
will label the observations, yig where g ∈ {1, . . . ,m} represents clusters, and the
i ∈ {1, . . . , ng} labels the units,where ng is the number of units in cluster g and
n =

∑m
g=1 ng is the total number of units. Here, units belong to a single cluster.

For example, we might have: voters in households, individuals in states, students in
classes, or rulings in judges.

Of course, if there are just clusters with no dependence within the cluster, then
everything is iid and we can just proceed with OLS and the linear model as usual.
Let’s build a linear model that encodes the within-cluster dependence:

yig = x′
igβ + vig = x′

igβ + ag + uig

We’ll refer to the ag as the cluster error component and uig as the unit error com-
ponent, where ag and uig are assumed to be independent of each other. Furthermore,
we assume that the zero conditional mean error holds, E[vig|xig] = 0, so that OLS is
unbiased and consistent. Thus, we are in a world more similar to the random effects
model above rather than the fixed effects assumptions. Note that these assumptions
are weaker than the RE ones since we don’t have to assume strict exogeneity.

Let Xg be the ng × k matrix of covariates for cluster g and let yg , vg , and ug be
the vectors of outcomes, combined errors, and unit errors for the cluster. With this,
we can write the clustered or grouped linear model as:

yg = Xgβ + vg = Xgβ + ag + ug
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Let y be the n × 1 vector of outcomes across all clusters, with X and v defined
similarly. Then, we can write the linear model as usual as:

y = Xβ + v

Thus, we can write the model now at the unit-level, cluster-level, or entire-sample
level.

We’ll continue to assume that zero conditionalmean error holds so thatE[vg|Xg] =
0. To investigate the properties of this model, let the variance of the two components
be V[ag|Xg] = ρσ2 and V[uig|Xg] = (1 − ρ)σ2, which implies that the variance of
the overall error is V[vig|Xg] = σ2:

V[vig|Xg] = V[ag + uig|Xg]

= V[ag|Xg] + V[uig|Xg]

= ρσ2 + (1− ρ)σ2 = σ2

We call ρ ∈ (0, 1) is called the within-cluster correlation. To see why, first note that
we can calculate the covariance between two units i and s in the same cluster is ρσ2

Cov[vig, vsg|Xg] = Cov[ag + uig, ag + usg|Xg]

= Cov[ag, ag|Xg] + Cov[ag, usg|Xg] + Cov[uig, ag|Xg] + Cov[uig, usg|Xg]

= V[ag|Xg] + 0 + 0 + 0 = ρσ2

With this in hand, it is easy to see that correlation between units in the same group is
gust ρ:

Cor[vig, vsg|Xg] =
Cov[vig, vsg|Xg]√
V[vig|Xg]V[vsg|Xg]

=
ρσ2

√
σ2σ2

= ρ

Finally, note that with this structure, the covariance of two units i and s in different
clusters j and k:

Cov[vig, vsk|X] = Cov[ag + uig, vk + usk|X]

= Cov[ag, vk|X] + Cov[ag, usk|X] + Cov[uig, vk|X] + Cov[uig, usk|X]

= 0 + 0 + 0 + 0 = 0

If we write the overall model errors across all groups as v, then we can figure out
what the covariance matrix of this vector of errors is. Remember that in the linear
model, the covariance matrix of the error is diagonal, with variances along the diag-
onal and 0s off the diagonal. With clustered dependence, this won’t be the structure.
To see what the structure will be, let’s focus on an example with two clusters (though
we will need far more to actually perform inference):
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v =
[
v1,1 v2,1 v3,1 v4,2 v5,2 v6,2

]′

V[v|X] = Σ =



σ2 σ2 · ρ σ2 · ρ 0 0 0
σ2 · ρ σ2 σ2 · ρ 0 0 0
σ2 · ρ σ2 · ρ σ2 0 0 0
0 0 0 σ2 σ2 · ρ σ2 · ρ
0 0 0 σ2 · ρ σ2 σ2 · ρ
0 0 0 σ2 · ρ σ2 · ρ σ2


In general, we can write the covariance matrix as a block diagonal, which means

that there are matrices along the diagonal and 0s elsewhere. By independence, the
errors are uncorrelated across clusters:

V[v|X] = Σ =


Σ1 0 . . . 0
0 Σ2 . . . 0

. . .
0 0 . . . Σm


Here, Σg = V[vg|Xg] is the ng × ng covariance matrix of the errors for cluster g.
Again, this says that errors can be correlated within clusters (on the block diagonal),
but errors are uncorrelated across clusters.

Correcting for clustering

1. Including a dummy variable for each cluster (fixed effects, next week)
2. Random effects models
3. Cluster-robust (“clustered”) standard errors
4. Aggregate data to the cluster-level and use OLS yg = 1

ng

∑
i yig

• Ifng varies by cluster, then cluster-level errors will have heteroskedasticity
• Can use WLS with cluster size as the weights

Cluster-robust standard errors

• Leads to this matrix:

V[β̂|X] =
(
X′X

)−1

 m∑
j=1

X′
jΣjXj

(X′X
)−1
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• Way to estimate this matrix: replace Σj with an estimate based on the within-
cluster residuals, v̂j :

Σ̂j = v̂jv̂′
j

• Final expression for our cluster-robust covariance matrix estimate:

V̂[β̂|X] =
(
X′X

)−1

 m∑
j=1

X′
jv̂jv̂′

jXj

(X′X
)−1

• With small-sample adjustment (which is what most software packages report):

V̂a[β̂|X] =
m

m− 1

n− 1

n− k − 1

(
X′X

)−1

 m∑
j=1

X′
jv̂jv̂′

jXj

(X′X
)−1

Example

load(”../data/gerber_green_larimer.RData”)

social$voted <- 1 * (social$voted == ”Yes”)

social$treatment <- factor(social$treatment, levels = c(”Control”, ”Hawthorne”, ”Civic Duty”, ”Neighbors”, ”Self”))

mod1 <- lm(voted ~ treatment, data = social)

source(”vcovCluster.R”)

library(lmtest)

coeftest(mod1, vcov = vcovCluster(mod1, ”hh_id”))

##

## t test of coefficients:

##

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.2966383 0.0013096 226.5172 < 2.2e-16 ***

## treatmentHawthorne 0.0257363 0.0032579 7.8997 2.804e-15 ***

## treatmentCivic Duty 0.0178993 0.0032366 5.5302 3.200e-08 ***

## treatmentNeighbors 0.0813099 0.0033696 24.1308 < 2.2e-16 ***

## treatmentSelf 0.0485132 0.0033000 14.7009 < 2.2e-16 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Just a few things to keep in mind about CRSEs. First, CRSEs do not change our
estimates β̂ and so they cannot fix bias. Instead, CRSE is consistent estimator ofV[β̂]
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given clustered dependence that relies on independence between clusters but doesn’t
depend on the correct specification of the correlational structure within clusters. For
instance, the RE models above require this structure to be correctly specified. CRSEs
are usually bigger than conventional SEs so it is typically safe to use them as a “conser-
vative” approach. Finally, remember that consistency of the CRSE are in the number
of groups, not the number of individuals within each group. Because of this, CRSEs
can be incorrect with a small (< 50 maybe) number of clusters.
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