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1. Outliers, leverage points, and influential observations

2. Heteroskedasticity

3. Nonlinearity of the regression function
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Where are we? Where are we

going?

= Last few weeks: estimation and inference for the linear model
under Gauss-Markov assumptions (and sometimes conditional
Normality)

= This week: what happens when the assumptions fail? Can we
tell? Can we fix it?

= Next weeks: dealing with panel data.
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Review of the OLS assumptions

o @l > @ =

Linearity: y; = X\ B + u;

Random sample: (y;,x) are a iid sample from the population.
Full rank: X is an n x (k + 1) matrix with rank k£ + 1

Zero conditional mean: E[u;lx;] =0

Homoskedasticity: V[u|x;] = o2

Normality: u;x; ~ N(0, 02)

1-4 give us unbiasedness/consistency
1-5 are the Gauss-Markov, allow for large-sample inference
1-6 allow for small-sample inference



Violations of the assumptions

Three issues today:

1. Influential observations that skew regression estimates
2. Violations of homoskedaticity

» ~- SEs are biased (usually downward)
3. Incorrect functional form/nonlinearity

» ~~ biased/inconsistent estimates



1/ Outliers,
leverage points,

and influential
observations



Example: Buchanan votes in
Florida, 2000

= 2000 Presidential election in FL (Wand et al., 2001, APSR)

OFFICIAL BALLOT, GENERAL ELECTION
PALM BEACH

COUNTY, FLORIDA
NOVEMBER 7, 2000

r

es will
electors.)

(REPUBLICAN)
GEORGE W. BUSH - presioent
DICK CHENEY - vice pResiDENT

OFFICIAL BALLOT, GENERAL ELECTION
PALM BEACH COUNTY, FLORIDA
NOVEMBER 7, 2000

(DEMOCRATIC)
AL GORE -presioenT
JOE LIEBERMAN - vice pResIDENT

(REFORM)
PAT BUCHANAN - presipent
EZOLA FOSTER - vice PRESIDENT

(LIBERTARIAN)
HARRY BROWNE - presinent
ART OLIVIER - vice PRESIDENT

(SOCIALIST)
DAVID McREYNOLDS - presipent
MARY CAL HOLLIS - vice pResiDenT

(GREEN)
RALPH NADER -pResioenT
WINONA LaDUKE - vice pResiDent

(CONSTITUTION)
HOWARD PHILLIPS -presioent
J. CURTIS FRAZIER - vice PRESIDENT

(SOCIALIST WORKERS)
JAMES HARRIS - pResinent
MARGARET TROWE - vice PResIDENT

(WORKERS WORLD)
MONICA MOOREHEAD - presioent
GLORIA La RIVA -vice PRESIDENT

(NATURAL LAW)
JOHN HAGELIN - presioent
NAT GOLDHABER - vice PRESIDENT

WRITE-IN CANDIDATE
To vote for a write-in candidate, follow the
directions on the long stub of your ballot card.
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Example: Buchanan votes in
Florida, 2000

Buchanan Votes
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Example: Buchanan votes in
Florida, 2000
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Example: Buchanan votes

mod <- lm(edaybuchanan ~ edaytotal, data = flvote)

summary (mod)

##
##
##
##
##
##
##
##
##
##
##

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 54.22945 49.14146 1.10 Q.27
edaytotal 0.00232 0.00031 7.48 2.4e-10 x*x*

Signif. codes: @ '*xx' 0.001 'x*' 0.01 'x' ©0.05 '.' 0.1 ' ' 1
Residual standard error: 333 on 65 degrees of freedom

Multiple R-squared: 0.463, Adjusted R-squared: 0.455
F-statistic: 56 on 1 and 65 DF, p-value: 2.42e-10
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Three types of extreme values

1. Leverage point: extreme in one x direction
2. Qutlier: extreme in the y direction
3. Influence point: extreme in both directions

= Not all of these are problematic

= If the data are truly “contaminated” (come from a different
distribution), can cause inefficiency and possibly bias

= Can be a violation of iid (not identically distributed)

= Diagnostics are loose
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Leverage point definition

°
°
% ¢ .
) ... Leverage Point
e °%° o.o Full sample
o 0%, o
° Yo ° °
° Wwithout leverage point
e 0% o0 ©
O .o“ °
o..o ¢ .'. °
.. 0 [ )
°
I T T T T T 1
-4 -2 0 2 4 6 8

Values that are extreme in the x direction

That is, values far from the center of the covariate distribution
Decrease SEs (more x variation)

No bias if typical in y dimension
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Hat matrix

= First we need to define an important matrix
H=X(XX)'X

i=y-Xpg
=y-X(X'X) ' X'y
=y - Hy
= (I-H)y

= H is the hat matrix because it puts the “hat” on y:

y = Hy

» H is an n x n symmetric matrix
» H is idempotent: HH = H
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Hat values

§=Xp=XXX)"'X'y = Hy
= For a particular observation i, we can show this means:
n
Yi = Zhijyj
j=1

= h;; = importance of observation j is for the fitted value y;

= Leverage/hat values: h; = h;; diagonal entries of the hat
matrix

= With a simple linear regression, we have

(x; —X)?

(= %)

» ~ how far i is from the center of the X distribution

h.

1
l:ﬁ+

= Rule of thumb: examine hat values greater than 2(k + 1) /n
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Buchanan hats

head(hatvalues(mod), 5)

## 1 2 3 4 5
## 0.04179 0.02285 0.22066 0.01556 0.01493

67



Buchanan hats
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Outlier definition

Outlier @

Full sample

= An outlier is a data point with very large regression errors, u;
= Very distant from the rest of the data in the y-dimension

= Increases standard errors (by increasing G2)

= No bias if typical in the x's
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Detecting outliers

= Look for big residuals, right?

» Problem: i; are not identically distributed.
» Variance of the ith residual:

Via;X] = 02(1 - hy;)

= Rescale to get standardized residuals with constant variance:

= Rule of thumb:

> |i;] > 2 will be relatively rare.
> |ii;| > 4 — 5 should definitely be checked.
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Buchanan outliers

Standardized Residuals
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Detecting outliers

= Standardized or regular residuals are not good for detecting
outliers because they might pull the regression line close to
them.

= Better: leave-one-out prediction errors,

1. Regress X(_;) on y(_;, where these omit unit i:

w ’ =1
By = (XoX) Xo¥en
2. Calculate predicted value of y; using that regression:
yi=x:B
3. Calculate prediction error: i; = y; — ¥;

= Possible relate prediction errors to residuals:

U
I~ 1-h,

4
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Influence points

e

6 Influence Point
4 -

2 -

0 Without influence point

8
-2 - ® r °®
[

= An influence point is one that is both an outlier and a
leverage point.

= Extreme in both the x and y dimensions

= Causes the regression line to move toward it (bias?)
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Overall measures of influence

= A rough measure of influence is to look at how the difference
between the fitted value and the predicted leave-one-out
value: y; — ¥;
» This is equivalent to #;h;, which is just the “outlier-ness x
leverage”

= Cook’s distance (cooks.distance()): D; = (kjﬁ x h;

» Basically: “normalized outlier-ness x leverage”
» D; >4/(n—k—1) considered “large"”, but cutoffs are arbitrary

= Influence plot:

» x-axis: hat values, h;
» y-axis: standardized residuals, 12:
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Influence plot from lm output

plot(mod, which = 5, labels.id = flvote$county)

v oOPalm Beach

Standardized residuals
N
1

0 ..
-2 4
44 --- Cook'sdistance. -~~~ iami-Dade®
I /l = T T T T
0.00 0.05 0.10 0.15 0.20 0.25

Leverage
Lm(edaybuchanan ~ edaytotal)
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Limitations of the standard tools

= What happens when there are two influence points?
= Red line drops the red influence point

= Blue line drops the blue influence point

= ‘“Leave-one-out” approaches helps recover the line
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What to do about outliers and
influential units?

= |s the data corrupted?

» Fix the observation (obvious data entry errors)
» Remove the observation
» Be transparent either way

= |s the outlier part of the data generating process?

» Transform the dependent variable (log(y))
» Use a method that is robust to outliers (robust regression,
least absolute deviations)
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2/
Heteroskedasticity



Review of homoskedasticity

= Remember:
B=(XX)"' Xy
= V[ulX] = X is the variance-covariance matrix of the errors.
= Assumptions 1-4 give us this expression for sampling variance:

VIBIX] = (X'X) ' X=X (X'X) '

= Under homoskedasticity, we simplified this to:
VIBIX] = 02 (X'X)"

= Replace o2 with estimate 2 will give us our estimate of the
covariance matrix
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Non-constant error variance

= Homoskedastic:

Q
ol\)
Q

o
o o

VuX] = 0?1 =

Heteroskedastic:

o2 0 0 0

2
V@uX] = 0 o5 O 0
0O 0 O o2

= Independent, not identical
Cov[u;, u;[X] =0

= Viulx;] = 012
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Violations of homoskedasticity

= Violations: magnitude of u; differ at different levels of X;.

Heteroskedastic Homoskedastic

T T T T T T 1 T T T T T T 1
00 05 10 15 20 25 3.0 00 05 10 15 20 25 3.0
X X
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Consequences of
Heteroskedasticity

= Standard error estimates biased, likely downward
= Test statistics won't have ¢ or F distributions

= @-level tests, the probability of Type | error # a
= Coverageof l—a Cls #1 -«

= OLS is not BLUE

—

= [ still unbiased and consistent for 8
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Visual diagnostics

1. Plot of residuals versus fitted values

» In R, plot(mod, which = 1)
» Residuals should have the same variance across x-axis

2. Spread location plots

» y-axis: Square-root of the absolute value of the residuals
» x-axis: Fitted values

» Usually has loess trend curve, should be flat

» In R, plot(mod, which = 3)
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Diagnostics

plot(mod, which

plot(mod, which

2000 ~
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|Standardized residuals!
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Dealing with non-constant error
variance

1. Transform the dependent variable

2. Model the heteroskedasticity using Weighted Least Squares
(WLS)

3. Use an estimator of V[EIX] that is robust to
heteroskedasticity

4. Admit we have the wrong model and use a different approach
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Example: Transforming Buchanan
votes

mod2 <- 1m(log(edaybuchanan) ~ log(edaytotal), data = flvote)

summary (mod2)

##

## Coefficients:

#i# Estimate Std. Error t value Pr(>|t])

## (Intercept) -2.728 0.400 -6.83 3.5e-09 *xx*

## log(edaytotal) 0.729 0.038 19.15 < 2e-16 **x

## ---

## Signif. codes: @ 'xxx' 0.001 '**' ©0.01 'x' .05 '.' 0.1 ' ' 1
##

## Residual standard error: 0.469 on 65 degrees of freedom
## Multiple R-squared: 0.849, Adjusted R-squared: 0.847
## F-statistic: 367 on 1 and 65 DF, p-value: <2e-16
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Example: Transformed
scale-location plot

plot(mod2, which = 3)

64@

JIstandardized residuals|

0.0 -

Fitted values
Im(log(edaybuchanan) ~ log(edaytotal))
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Weighted least squares

= Suppose that the heteroskedasticity is known up to a
multiplicative constant:

V[MZ|X] = aio'z

’

where a; = a;(x}) is a positive and known function of x;

= WLS: multiply y; by 1/ /a;:

. 1 M
XL = Bo—+ B ll.+“'+/5k

Vai 2 Vai

Xik " Ui

Vai
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WLS intuition

= Rescales errors to u;/ /a;, which maintains zero mean error

= But makes the error variance constant again:

a; i

% [Lu,.|x] = LV [wX]

2

= If you know q;, then you can use this approach to makes the
model homoeskedastic and, thus, BLUE again

= When do we know a;7
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WLS procedure

= Define the weighting matrix:

1/a; 0 0 0
wo| 0 e 00
S =
= Run the following regression:
Wy = WX + Wu
v* =X*f +u*

= Run regression of y* = Wy on X* = WX and all
Gauss-Markov assumptions are satisfied

—

= Plugging into the usual formula for f:

Bw = X'WWX)'X'W Wy
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WLS example

= In R, use weights = argument to 1m and give the weights
squared: 1/a;

= With the Buchanan data, maybe the variance is proportional
to the total number of ballots cast:

mod.wls <- 1m(edaybuchanan ~ edaytotal, weights = 1/edaytotal, data

summary (mod.wls)

H##

## Coefficients:

# Estimate Std. Error t value Pr(>|t])

## (Intercept) 27.06785 8.50723 3.18 0.0022 *x

## edaytotal 0.00263 0.00025 10.50 1.2e-15 *x*xx
#H# -—-

## Signif. codes: @ 'xxx' 0.001 '*x' 0.01 'x' ©.05 '.' 0.1 ' ' 1
#i#

## Residual standard error: 0.565 on 65 degrees of freedom
## Multiple R-squared: 0.629, Adjusted R-squared: 0.624
## F-statistic: 110 on 1 and 65 DF, p-value: 1.22e-15
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Comparing WLS to OLS

plot(mod, which = 3, 1lwd = 2, sub = "")

plot(mod.wls, which = 3, 1Iwd = 2, sub = "")

|Standardized residuals]
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|Standardized residuals|
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=
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1000
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Heteroskedasticity consistent
estimator

= Under non-constant error variance:

2 0 0 0

2
vuxj—z-| © 3 0 - 0
0 0 0 .. o2

= When X # ¢2I, we are stuck with this expression:

VIBIX] = (X'X) ' X=X (X’X)

White (1980) shows that we can consistently estimate this if
we have an estimate of X:

VIBX] = (X'X) ' X=X (X'X) "'

= Sandwich estimator with bread (X’X)_1 and meat X'TX
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Computing HC/robust standard
errors

1.

Fit regression and obtain residuals @

2. Construct the “meat” matrix £ with squared residuals in

diagonal:
@2 0 0 .. 0
5|00t
0 0 0 .. @2

Plug ¥ into sandwich formula to obtain HC/robust estimator
of the covariance matrix:

VIgX] = (X'X) ' X=X (X'X)"

Small-sample corrections (called 'HC1'):

VIBIX] = —— - (XX)” X'EX (X'X)"

1
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Robust SEs in Florida data

coeftest(mod)

#it

## t test of coefficients:

#H#

#i#t Estimate Std. Error t value Pr(>|t])

## (Intercept) 54.22945 49.14146 1.10 Q.27

## edaytotal 0.00232 0.00031 7.48 2.4e-10 **%

#H -—-

## Signif. codes: @ '#x*' 0.001 'x*' 0.01 'x' .05 '.' 0.1 ' "1

coeftest(mod, vcovHC(mod, type = "HC@"))

#H#

## t test of coefficients:

#H#

## Estimate Std. Error t value Pr(>|t])

## (Intercept) 54.22945 40.61283 1.34 0.1864

## edaytotal 0.00232 0.00087 2.67 0.0096 **

## ---

## Signif. codes: @ 'x*x' 0.001 'xx' 0.01 'x' ©.05 '.' 0.1 ' ' 1
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Robust SEs with correction

Imtest: :coeftest(mod, sandwich::vcovHC(mod, type = "HC0"))

##

## t test of coefficients:

#it

#it Estimate Std. Error t value Pr(>|t])

## (Intercept) 54.22945 40.61283 1.34 0.1864

## edaytotal 0.00232 0.00087 2.67 0.0096 *x

#H ---

## Signif. codes: @ 'xxx' 0.001 'xx' 0.01 'x' .05 '.' 0.1 ' ' 1

Imtest::coeftest(mod, sandwich::vcovHC(mod, type = "HC1"))

#H#

## t test of coefficients:

#H#

## Estimate Std. Error t value Pr(>|t])

## (Intercept) 54.229453 41.232904 1.32 0.193

## edaytotal 0.002323 0.000884 2.63 0.011 *

## ---

## Signif. codes: @ 'x*x' 0.001 'xx' 0.01 'x' ©.05 '.' 0.1 ' ' 1
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WLS vs. White’s Estimator

= WLS:

» With known weights, WLS is efficient
» and SE[Bws] is consistent
> but weights usually aren't known

= White's Estimator:

» Doesn't change estimate 8

Consistent for V[B\] under any form of heteroskedasticity
Because it relies on consistency, it is a large sample result, best
with large n

For small n, performance might be poor

vV

v
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3/ Nonlinearity of
the regression
function



Buchanan model, part 2

mod3 <- lm(edaybuchanan ~ edaytotal + absnbuchanan, data

summary (mod3)

#it

## Coefficients:

## Estimate Std. Error t value Pr(>|t])
## (Intercept) -29.34807 55.19635 -0.53 0.5969
## edaytotal 0.00110 0.00048 2.29 0.0253 *

## absnbuchanan  6.89546 2.12942 3.24  0.0019 *x*

#H# --—-

## Signif. codes: @ 'xxx' 0.001 '**' 0.01 'x' .05 '.' 0.1 ' ' 1
##

## Residual standard error: 317 on 61 degrees of freedom

#i# (3 observations deleted due to missingness)

## Multiple R-squared: ©.536, Adjusted R-squared: 0.521

## F-statistic: 35.2 on 2 and 61 DF, p-value: 6.71e-11
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Added variable plot

= Need a way to visualize conditional relationship between Y
and X;
= How to construct an added variable plot:
1. Get residuals from regression of Y on all covariates except X;

2. Get residuals from regression of X; on all other covariates
3. Plot residuals from (1) against residuals from (2)

= In R: avPlots(model) from the car package
= OLS fit to this plot will have exactly //Z\J and 0 intercept
= Use local smoother (loess) to detect any non-linearity
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Buchanan AV plot

par(mfrow = c(1, 2))
out <- car::avPlots(mod3, "edaytotal”)
lines(loess.smooth(x = out$edaytotall, 11, y = out$edaytotall, 21]),

col = "dodgerblue”, lwd = 2)

out2 <- car::avPlots(mod3, "absnbuchanan)

lines(loess.smooth(x = out2$absnbuchanan[, 1], y = out2$absnbuchanan(
2]1), col = "dodgerblue”, lwd = 2)
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How to deal with non-linearity

= Breaking up categorical variables into dummy variables
= Including interaction terms

= Including polynomial terms

= Using transformations

= Using more flexible models:

» Generalized additive models and splines allow the data to tell
us what the functional form is.
» Complicated math, but important ideas.
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Basis functions

= Basis functions are the function of x; that we include in the
model:
» Examples we've seen: h,,(x;) = x;, h,,(x;) = x7,
hm(x,-) = log(xi)
= Different basis functions will allow for different forms of
non-linearity

= We could always break up X; into bins and estimate piecewise
constant:

I’l] = 1, h2 = ]].(b] < x,- < bz), h3 = ]1(xl- > bz)

= b; < b, are knots
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Piecewise constant
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Piecewise linear

= We could allow there to be different regression lines in each
bin by adding interactions:

hy(x;) =1, hy (x;) = x;,
h5 ()Ci) = ]l(x,- > bz), h6(xl-) = xi]l(x,- > bz)

53 /67



Piecewise linear

o,
1-\..&.{{.\ RIS o
.. °* % . - .
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Continuous piecewise linear

= Problem: piecewise functions are discontinuous.

= Can use clever basis functions to get continuous piecewise
linear function of X;:

hy(x;) =1, hy (x;) = x;,
hs(x;) = (x; =by)ys  ha(xy) = (x5; —by)s

= (x; —by); =x; —b; when x; > by, 0, otherwise
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Why continuous?

Yi = Bo+ Bixi+ Ba(x; —by), + B3(x; —by)y +u,

= Value at b; approaching from below:

Bo + B1by

= Value at b; approaching from above:
Bo+ B1by + Ba(by —by)y = Bo+ B1by

= Function is thus continuous at the knot points, but slopes
change:
» B1 = slope when X; < b;
» B+ Bo = slope when b; < X; < by
> B+ By + B3 = slope when X; > b,
» Function is continuous at cutpoints
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Continuous piecewise linear

2 <= %

h3 <- 1 % (x > -1.5) * (x - -1.5)
h4 <- 1 % (x >1.5) *x (x - 1.5)
reg <- Im(y ~ h2 + h3 + h4)




Cubic splines

= Continuous piecewise linear has "kinks" at the knots, but we
probably want “smooth"” functions.

» What does smooth mean? Continuous derivatives!
» ~~ use higher-order polynomials in the basis functions
= Cubic spline basis: bases that produce continuous functions

with continuous first and second derivatives

hy(x;) =1 hy(x;) = hs(x;) = x?

) i
hy(x;) = X?, hs(x;) = (x; = blﬁ? he(x;) = (x; — bz)z
= Basic idea: local polynomial regression (between knots) that

have to connect and be smooth at the knots.

» Ensure this by allowing only the coefficient on the cubic term
to change at the knot point.
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Cubic spline

2 <= %

h3 <- x*2

h4 <- x*3

h5 <- 1 % (x > -1.5) * (x - -1.5)"3
he <- 1 x (x >1.5) *x (x - 1.5)"3
reg <- Im(y ~ h2 + h3 + h4 + h5 + h6)




Cubic spline vs global

<- X
<- x"2

<= 1A
<- Im(y ~ h2 + h3 + h4)

Global Cubic

Local Cubic Spline
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Knotty problems

= Any function can be approximated as we increase the number
of knot points.

= How to choose the number/location of knot points?

» More knot points ~~ “rougher” function, less in-sample bias,
more variance.

» Fewer knot points ~» “smoother” function, more in-sample
bias, less variance.

= |n-sample fit might be great, out-of-sample fit might be
terrible.

= More general smoothing approaches have different ways of
representing this trade-off other than knots.
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Cross-validation

= General strategy for bias-variance trade-offs: cross-validation.

= Set aside units to test out-of-sample prediction

= Cross-validation procedure:

1.
2.

Choose a number of evenly spread knots, b.

Withhold unit i, estimate the CEF of y; given x; using a cubic
spline with b knots.

Get predicted value for i, j)i’b' and caculate squared prediction
error: (y; — 9312

Repeat 2-3 for each observation and take that average to get
the MSE with b knots.

Repeat 1-4 for different values of b and choose the value of b
that has the lowest MSE.
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Automatic knot selection

smth <- smooth.spline(x, y)

plot(x, y, ylim
lines(smth, col

c(-3, 3), pch = 19, col = "grey50"”, bty =
"indianred”,

lwd = 2)

"n"
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Generalized additive models

= Generalized additive models (GAMs) allow you to estimate
the spline of any particular variable in the regression.

» Each spline is additive: y; = f; (x;1) + £ (x12) + u;
= Can plot the AV-plot of the spline to get a sense for the
nonlinearity of the functional form.

= Use cross-validation to select the number of knots
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GAM example fit

## library(mgcv) ## GAM package

out <- gam(edaybuchanan ~ s(edaytotal) + s(absnbuchanan), data = flvote,
subset = county != "Palm Beach")

##
## Family: gaussian
## Link function: identity

##

## Formula:

## edaybuchanan ~ s(edaytotal) + s(absnbuchanan)

H##

## Parametric coefficients:

## Estimate Std. Error t value Pr(>|t])

## (Intercept) 221.84 6.41 34.6 <2e-16 *xx

## -——

## Signif. codes: 0@ 'xxx' 0.001 'xx' 9.01 'x' 0.05 '.' 0.1 ' ' 1
##

## Approximate significance of smooth terms:

## edf Ref.df F p-value

## s(edaytotal) 6.85 7.82 10.6 1.6e-09 **x

## s(absnbuchanan) 2.95 3.64 22.6 1.6e-11 **xx

HHEE s

## Signif. codes: @ 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

## R-sq.(adj) = ©0.95 Deviance explained = 95.8%

## GCV = 3129 Scale est. = 2592.3 n =63



Example: generalized additive
models

plot(out, shade = TRUE, residual = TRUE, pch = 1)
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Summary

= For influential points, and nonlinearity:

» Check your data! summary(), plot(), etc

» Use transformations to make assumptions more plausible
» Weaken linearity when you need to.
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