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1. Outliers, leverage points, and influential observations

2. Heteroskedasticity

3. Nonlinearity of the regression function
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Where are we? Where are we
going?

• Last few weeks: estimation and inference for the linear model
under Gauss-Markov assumptions (and sometimes conditional
Normality)

• This week: what happens when the assumptions fail? Can we
tell? Can we fix it?

• Next weeks: dealing with panel data.

3 / 67



Review of the OLS assumptions

1. Linearity: 𝑦𝑖 = 𝐱′
𝑖𝜷 + 𝑢𝑖

2. Random sample: (𝑦𝑖, 𝐱′
𝑖) are a iid sample from the population.

3. Full rank: 𝐗 is an 𝑛 × (𝑘 + 1) matrix with rank 𝑘 + 1
4. Zero conditional mean: 𝔼[𝑢𝑖|𝐱𝑖] = 0
5. Homoskedasticity: 𝕍[𝑢𝑖|𝐱𝑖] = 𝜎2𝑢
6. Normality: 𝑢𝑖|𝐱𝑖 ∼ 𝑁(0, 𝜎2𝑢)

• 1-4 give us unbiasedness/consistency
• 1-5 are the Gauss-Markov, allow for large-sample inference
• 1-6 allow for small-sample inference
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Violations of the assumptions

Three issues today:

1. Influential observations that skew regression estimates
2. Violations of homoskedaticity

▶ ⇝ SEs are biased (usually downward)

3. Incorrect functional form/nonlinearity
▶ ⇝ biased/inconsistent estimates
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1/ Outliers,
leverage points,
and influential
observations
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Example: Buchanan votes in
Florida, 2000

• 2000 Presidential election in FL (Wand et al., 2001, APSR)
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Example: Buchanan votes in
Florida, 2000
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Example: Buchanan votes

mod <- lm(edaybuchanan ~ edaytotal, data = flvote)
summary(mod)

##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 54.22945 49.14146 1.10 0.27
## edaytotal 0.00232 0.00031 7.48 2.4e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 333 on 65 degrees of freedom
## Multiple R-squared: 0.463, Adjusted R-squared: 0.455
## F-statistic: 56 on 1 and 65 DF, p-value: 2.42e-10
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Three types of extreme values

1. Leverage point: extreme in one 𝑥 direction
2. Outlier: extreme in the 𝑦 direction
3. Influence point: extreme in both directions

• Not all of these are problematic
• If the data are truly “contaminated” (come from a different

distribution), can cause inefficiency and possibly bias
• Can be a violation of iid (not identically distributed)
• Diagnostics are loose
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Leverage point definition
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• Values that are extreme in the 𝑥 direction
• That is, values far from the center of the covariate distribution
• Decrease SEs (more 𝑥 variation)
• No bias if typical in 𝑦 dimension
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Hat matrix

• First we need to define an important matrix
𝐇 = 𝐗 (𝐗′𝐗)−1 𝐗′

𝐮̂ = 𝐲 − 𝐗𝜷
= 𝐲 − 𝐗 (𝐗′𝐗)−1 𝐗′𝐲
≡ 𝐲 − 𝐇𝐲
= (𝐈 − 𝐇)𝐲

• 𝐇 is the hat matrix because it puts the “hat” on 𝐲:

𝐲̂ = 𝐇𝐲

▶ 𝐇 is an 𝑛 × 𝑛 symmetric matrix
▶ 𝐇 is idempotent: 𝐇𝐇 = 𝐇
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Hat values

𝐲̂ = 𝐗𝜷 = 𝐗(𝐗′𝐗)−1𝐗′𝐲 = 𝐇𝐲

• For a particular observation 𝑖, we can show this means:

̂𝑦𝑖 =
𝑛

∑
𝑗=1

ℎ𝑖𝑗𝑦𝑗

• ℎ𝑖𝑗 = importance of observation 𝑗 is for the fitted value ̂𝑦𝑖
• Leverage/hat values: ℎ𝑖 = ℎ𝑖𝑖 diagonal entries of the hat

matrix
• With a simple linear regression, we have

ℎ𝑖 = 1
𝑛 + (𝑥𝑖 − 𝑥)2

∑𝑛
𝑗=1(𝑥𝑗 − 𝑥)2

▶ ⇝ how far 𝑖 is from the center of the 𝐗 distribution
• Rule of thumb: examine hat values greater than 2(𝑘 + 1)/𝑛
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Buchanan hats

head(hatvalues(mod), 5)

## 1 2 3 4 5
## 0.04179 0.02285 0.22066 0.01556 0.01493
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Buchanan hats
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Outlier definition
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• An outlier is a data point with very large regression errors, 𝑢𝑖
• Very distant from the rest of the data in the 𝑦-dimension
• Increases standard errors (by increasing 𝜎̂2)
• No bias if typical in the 𝑥’s
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Detecting outliers

• Look for big residuals, right?
▶ Problem: ̂𝑢𝑖 are not identically distributed.
▶ Variance of the 𝑖th residual:

𝕍[ ̂𝑢𝑖 |𝐗] = 𝜎2𝑢(1 − ℎ𝑖𝑖)

• Rescale to get standardized residuals with constant variance:

̂𝑢′
𝑖 = ̂𝑢𝑖

𝜎̂√1 − ℎ𝑖𝑖

• Rule of thumb:
▶ | ̂𝑢′

𝑖 | > 2 will be relatively rare.
▶ | ̂𝑢′

𝑖 | > 4 − 5 should definitely be checked.

18 / 67



Buchanan outliers
std.resids <- rstandard(mod)
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Detecting outliers
• Standardized or regular residuals are not good for detecting

outliers because they might pull the regression line close to
them.

• Better: leave-one-out prediction errors,
1. Regress 𝐗(−𝑖) on 𝐲(−𝑖), where these omit unit 𝑖:

𝜷(−𝑖) = (𝐗′
(−𝑖)𝐗(−𝑖))

−1 𝐗′
(−𝑖)𝐲(−𝑖)

2. Calculate predicted value of 𝑦𝑖 using that regression:
̃𝑦𝑖 = 𝐱′

𝑖𝜷(−𝑖)
3. Calculate prediction error: ̃𝑢𝑖 = 𝑦𝑖 − ̃𝑦𝑖

• Possible relate prediction errors to residuals:

̃𝑢𝑖 = ̂𝑢𝑖
1 − ℎ𝑖
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Influence points
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• An influence point is one that is both an outlier and a
leverage point.

• Extreme in both the 𝑥 and 𝑦 dimensions
• Causes the regression line to move toward it (bias?)
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Overall measures of influence

• A rough measure of influence is to look at how the difference
between the fitted value and the predicted leave-one-out
value: ̂𝑦𝑖 − ̃𝑦𝑖

▶ This is equivalent to ̃𝑢𝑖ℎ𝑖, which is just the “outlier-ness ×
leverage”

• Cook’s distance (cooks.distance()): 𝐷𝑖 = ̃𝑢2
𝑖

(𝑘+1)𝜎̂2 × ℎ𝑖

▶ Basically: “normalized outlier-ness × leverage”
▶ 𝐷𝑖 > 4/(𝑛 − 𝑘 − 1) considered “large”, but cutoffs are arbitrary

• Influence plot:
▶ x-axis: hat values, ℎ𝑖
▶ y-axis: standardized residuals, ̂𝑢′

𝑖

22 / 67



Influence plot from lm output
plot(mod, which = 5, labels.id = flvote$county)

0.00 0.05 0.10 0.15 0.20 0.25

-4

-2

0

2

4

6

8

Leverage

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

lm(edaybuchanan ~ edaytotal)

Cook's distance

Palm Beach

Miami-Dade

Broward

23 / 67



Limitations of the standard tools

0 2 4 6 8

-1.0

-0.5

0.0

0.5

1.0

1.5

y

• What happens when there are two influence points?
• Red line drops the red influence point
• Blue line drops the blue influence point
• “Leave-one-out” approaches helps recover the line
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What to do about outliers and
influential units?

• Is the data corrupted?
▶ Fix the observation (obvious data entry errors)
▶ Remove the observation
▶ Be transparent either way

• Is the outlier part of the data generating process?
▶ Transform the dependent variable (log(𝑦))
▶ Use a method that is robust to outliers (robust regression,

least absolute deviations)
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2/
Heteroskedasticity
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Review of homoskedasticity

• Remember:
𝜷 = (𝐗′𝐗)−1 𝐗′𝐲

• 𝕍[𝐮|𝐗] = Σ is the variance-covariance matrix of the errors.
• Assumptions 1-4 give us this expression for sampling variance:

𝕍[𝜷̂|𝐗] = (𝐗′𝐗)−1 𝐗′Σ𝐗 (𝐗′𝐗)−1

• Under homoskedasticity, we simplified this to:

𝕍[𝜷|𝐗] = 𝜎2 (𝐗′𝐗)−1

• Replace 𝜎2 with estimate 𝜎̂2 will give us our estimate of the
covariance matrix
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Non-constant error variance
• Homoskedastic:

𝕍[𝐮|𝐗] = 𝜎2𝐈 =
⎡⎢⎢⎢
⎣

𝜎2 0 0 … 0
0 𝜎2 0 … 0

⋮
0 0 0 … 𝜎2

⎤⎥⎥⎥
⎦

• Heteroskedastic:

𝕍[𝐮|𝐗] =
⎡⎢⎢⎢
⎣

𝜎2
1 0 0 … 0

0 𝜎2
2 0 … 0

⋮
0 0 0 … 𝜎2𝑛

⎤⎥⎥⎥
⎦

• Independent, not identical
• Cov[𝑢𝑖, 𝑢𝑗 |𝐗] = 0
• 𝕍[𝑢𝑖|𝐱𝑖] = 𝜎2

𝑖
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Violations of homoskedasticity

• Violations: magnitude of 𝑢𝑖 differ at different levels of 𝑋𝑖.
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Consequences of
Heteroskedasticity

• Standard error estimates biased, likely downward
• Test statistics won’t have 𝑡 or 𝐹 distributions
• 𝛼-level tests, the probability of Type I error ≠ 𝛼
• Coverage of 1 − 𝛼 CIs ≠ 1 − 𝛼
• OLS is not BLUE
• 𝜷 still unbiased and consistent for 𝜷
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Visual diagnostics

1. Plot of residuals versus fitted values
▶ In R, plot(mod, which = 1)
▶ Residuals should have the same variance across 𝑥-axis

2. Spread location plots
▶ y-axis: Square-root of the absolute value of the residuals
▶ x-axis: Fitted values
▶ Usually has loess trend curve, should be flat
▶ In R, plot(mod, which = 3)
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Diagnostics

plot(mod, which = 1, lwd = 3)
plot(mod, which = 3, lwd = 3)
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Dealing with non-constant error
variance

1. Transform the dependent variable
2. Model the heteroskedasticity using Weighted Least Squares

(WLS)
3. Use an estimator of 𝕍[𝜷|𝐗] that is robust to

heteroskedasticity
4. Admit we have the wrong model and use a different approach
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Example: Transforming Buchanan
votes

mod2 <- lm(log(edaybuchanan) ~ log(edaytotal), data = flvote)
summary(mod2)

##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.728 0.400 -6.83 3.5e-09 ***
## log(edaytotal) 0.729 0.038 19.15 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.469 on 65 degrees of freedom
## Multiple R-squared: 0.849, Adjusted R-squared: 0.847
## F-statistic: 367 on 1 and 65 DF, p-value: <2e-16
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Example: Transformed
scale-location plot

plot(mod2, which = 3)
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Weighted least squares

• Suppose that the heteroskedasticity is known up to a
multiplicative constant:

𝕍[𝑢𝑖|𝐗] = 𝑎𝑖𝜎2

where 𝑎𝑖 = 𝑎𝑖(𝐱′
𝑖) is a positive and known function of 𝐱′

𝑖
• WLS: multiply 𝑦𝑖 by 1/√𝑎𝑖:

𝑦𝑖
√𝑎𝑖

= 𝛽0
1

√𝑎𝑖
+ 𝛽1

𝑥𝑖1
√𝑎𝑖

+ ⋯ + 𝛽𝑘
𝑥𝑖𝑘
√𝑎𝑖

+ 𝑢𝑖
√𝑎𝑖
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WLS intuition

• Rescales errors to 𝑢𝑖/√𝑎𝑖, which maintains zero mean error
• But makes the error variance constant again:

𝕍 [ 1
√𝑎𝑖

𝑢𝑖|𝐗] = 1
𝑎𝑖

𝕍 [𝑢𝑖|𝐗]

= 1
𝑎𝑖

𝑎𝑖𝜎2

= 𝜎2

• If you know 𝑎𝑖, then you can use this approach to makes the
model homoeskedastic and, thus, BLUE again

• When do we know 𝑎𝑖?
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WLS procedure
• Define the weighting matrix:

𝐖 =
⎡⎢⎢⎢
⎣

1/√𝑎1 0 0 0
0 1/√𝑎2 0 0
⋮ ⋮ ⋱ ⋮
0 0 0 1/√𝑎𝑛

⎤⎥⎥⎥
⎦

• Run the following regression:

𝐖𝐲 = 𝐖𝐗𝜷 + 𝐖𝐮
𝐲∗ = 𝐗∗𝜷 + 𝐮∗

• Run regression of 𝐲∗ = 𝐖𝐲 on 𝐗∗ = 𝐖𝐗 and all
Gauss-Markov assumptions are satisfied

• Plugging into the usual formula for 𝜷:

𝜷𝑊 = (𝐗′𝐖′𝐖𝐗)−1𝐗′𝐖′𝐖𝐲
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WLS example
• In R, use weights = argument to lm and give the weights

squared: 1/𝑎𝑖
• With the Buchanan data, maybe the variance is proportional

to the total number of ballots cast:

mod.wls <- lm(edaybuchanan ~ edaytotal, weights = 1/edaytotal, data = flvote)
summary(mod.wls)

##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 27.06785 8.50723 3.18 0.0022 **
## edaytotal 0.00263 0.00025 10.50 1.2e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.565 on 65 degrees of freedom
## Multiple R-squared: 0.629, Adjusted R-squared: 0.624
## F-statistic: 110 on 1 and 65 DF, p-value: 1.22e-15
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Comparing WLS to OLS
plot(mod, which = 3, lwd = 2, sub = "")
plot(mod.wls, which = 3, lwd = 2, sub = "")
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Heteroskedasticity consistent
estimator

• Under non-constant error variance:

𝕍[𝐮|𝐗] = Σ =
⎡⎢⎢⎢
⎣

𝜎2
1 0 0 … 0

0 𝜎2
2 0 … 0

⋮
0 0 0 … 𝜎2𝑛

⎤⎥⎥⎥
⎦

• When Σ ≠ 𝜎2𝐈, we are stuck with this expression:

𝕍[𝜷|𝐗] = (𝐗′𝐗)−1 𝐗′Σ𝐗 (𝐗′𝐗)−1

• White (1980) shows that we can consistently estimate this if
we have an estimate of Σ:

𝕍̂[𝜷|𝐗] = (𝐗′𝐗)−1 𝐗′Σ̂𝐗 (𝐗′𝐗)−1

• Sandwich estimator with bread (𝐗′𝐗)−1 and meat 𝐗′Σ̂𝐗
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Computing HC/robust standard
errors

1. Fit regression and obtain residuals 𝐮̂
2. Construct the “meat” matrix Σ̂ with squared residuals in

diagonal:

Σ̂ =
⎡⎢⎢⎢
⎣

̂𝑢2
1 0 0 … 0
0 ̂𝑢2

2 0 … 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … ̂𝑢2𝑛

⎤⎥⎥⎥
⎦

3. Plug Σ̂ into sandwich formula to obtain HC/robust estimator
of the covariance matrix:

𝕍̂[𝜷̂|𝐗] = (𝐗′𝐗)−1 𝐗′Σ̂𝐗 (𝐗′𝐗)−1

• Small-sample corrections (called ‘HC1’):

𝕍̂[𝜷̂|𝐗] = 𝑛
𝑛 − 𝑘 − 1 ⋅ (𝐗′𝐗)−1 𝐗′Σ̂𝐗 (𝐗′𝐗)−1
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Robust SEs in Florida data
coeftest(mod)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 54.22945 49.14146 1.10 0.27
## edaytotal 0.00232 0.00031 7.48 2.4e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

coeftest(mod, vcovHC(mod, type = "HC0"))

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 54.22945 40.61283 1.34 0.1864
## edaytotal 0.00232 0.00087 2.67 0.0096 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Robust SEs with correction
lmtest::coeftest(mod, sandwich::vcovHC(mod, type = "HC0"))

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 54.22945 40.61283 1.34 0.1864
## edaytotal 0.00232 0.00087 2.67 0.0096 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

lmtest::coeftest(mod, sandwich::vcovHC(mod, type = "HC1"))

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 54.229453 41.232904 1.32 0.193
## edaytotal 0.002323 0.000884 2.63 0.011 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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WLS vs. White’s Estimator

• WLS:
▶ With known weights, WLS is efficient
▶ and 𝑆𝐸[𝜷𝑊𝐿𝑆] is consistent
▶ but weights usually aren’t known

• White’s Estimator:
▶ Doesn’t change estimate 𝜷
▶ Consistent for 𝕍[𝜷] under any form of heteroskedasticity
▶ Because it relies on consistency, it is a large sample result, best

with large 𝑛
▶ For small 𝑛, performance might be poor
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3/ Nonlinearity of
the regression
function
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Buchanan model, part 2

mod3 <- lm(edaybuchanan ~ edaytotal + absnbuchanan, data = flvote)
summary(mod3)

##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -29.34807 55.19635 -0.53 0.5969
## edaytotal 0.00110 0.00048 2.29 0.0253 *
## absnbuchanan 6.89546 2.12942 3.24 0.0019 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 317 on 61 degrees of freedom
## (3 observations deleted due to missingness)
## Multiple R-squared: 0.536, Adjusted R-squared: 0.521
## F-statistic: 35.2 on 2 and 61 DF, p-value: 6.71e-11
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Added variable plot

• Need a way to visualize conditional relationship between 𝑌
and 𝑋𝑗

• How to construct an added variable plot:
1. Get residuals from regression of 𝑌 on all covariates except 𝑋𝑗
2. Get residuals from regression of 𝑋𝑗 on all other covariates
3. Plot residuals from (1) against residuals from (2)

• In R: avPlots(model) from the car package
• OLS fit to this plot will have exactly 𝛽𝑗 and 0 intercept
• Use local smoother (loess) to detect any non-linearity
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Buchanan AV plot
par(mfrow = c(1, 2))
out <- car::avPlots(mod3, "edaytotal")
lines(loess.smooth(x = out$edaytotal[, 1], y = out$edaytotal[, 2]),

col = "dodgerblue", lwd = 2)
out2 <- car::avPlots(mod3, "absnbuchanan")
lines(loess.smooth(x = out2$absnbuchanan[, 1], y = out2$absnbuchanan[,

2]), col = "dodgerblue", lwd = 2)

-100000 0 100000 300000 500000

-500

0

500

1000

1500

2000

edaytotal | others

ed
ay

bu
ch

an
an

  
| o

th
er

s

-80 -60 -40 -20 0 20 40 60

-1000

-500

0

500

1000

1500

2000

absnbuchanan | others

ed
ay

bu
ch

an
an

  
| o

th
er

s

49 / 67



How to deal with non-linearity

• Breaking up categorical variables into dummy variables
• Including interaction terms
• Including polynomial terms
• Using transformations
• Using more flexible models:

▶ Generalized additive models and splines allow the data to tell
us what the functional form is.

▶ Complicated math, but important ideas.
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Basis functions

• Basis functions are the function of 𝑥𝑖 that we include in the
model:

▶ Examples we’ve seen: ℎ𝑚(𝑥𝑖) = 𝑥𝑖, ℎ𝑚(𝑥𝑖) = 𝑥2
𝑖 ,

ℎ𝑚(𝑥𝑖) = log(𝑥𝑖)

• Different basis functions will allow for different forms of
non-linearity

• We could always break up 𝑋𝑖 into bins and estimate piecewise
constant:

ℎ1 = 1, ℎ2 = 𝟙(𝑏1 < 𝑥𝑖 < 𝑏2), ℎ3 = 𝟙(𝑥𝑖 > 𝑏2)

• 𝑏1 < 𝑏2 are knots
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Piecewise constant
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Piecewise linear

• We could allow there to be different regression lines in each
bin by adding interactions:

ℎ1(𝑥𝑖) = 1, ℎ2(𝑥𝑖) = 𝑥𝑖,
ℎ3(𝑥𝑖) = 𝟙(𝑏1 < 𝑥𝑖 < 𝑏2), ℎ4(𝑥𝑖) = 𝑥𝑖𝟙(𝑏1 < 𝑥𝑖 < 𝑏2),
ℎ5(𝑥𝑖) = 𝟙(𝑥𝑖 ≥ 𝑏2), ℎ6(𝑥𝑖) = 𝑥𝑖𝟙(𝑥𝑖 ≥ 𝑏2)
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Piecewise linear
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Continuous piecewise linear

• Problem: piecewise functions are discontinuous.
• Can use clever basis functions to get continuous piecewise

linear function of 𝑋𝑖:

ℎ1(𝑥𝑖) = 1, ℎ2(𝑥𝑖) = 𝑥𝑖,
ℎ3(𝑥𝑖) = (𝑥𝑖 − 𝑏1)+, ℎ4(𝑥𝑖) = (𝑥𝑖 − 𝑏2)+

• (𝑥𝑖 − 𝑏1)+ = 𝑥𝑖 − 𝑏1 when 𝑥𝑖 > 𝑏1, 0, otherwise
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Why continuous?

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝛽2(𝑥𝑖 − 𝑏1)+ + 𝛽3(𝑥𝑖 − 𝑏2)+ + 𝑢𝑖

• Value at 𝑏1 approaching from below:

𝛽0 + 𝛽1𝑏1

• Value at 𝑏1 approaching from above:

𝛽0 + 𝛽1𝑏1 + 𝛽2(𝑏1 − 𝑏1)+ = 𝛽0 + 𝛽1𝑏1

• Function is thus continuous at the knot points, but slopes
change:

▶ 𝛽1 = slope when 𝑋𝑖 < 𝑏1
▶ 𝛽1 + 𝛽2 = slope when 𝑏1 < 𝑋𝑖 < 𝑏2
▶ 𝛽1 + 𝛽2 + 𝛽3 = slope when 𝑋𝑖 > 𝑏2
▶ Function is continuous at cutpoints
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Continuous piecewise linear
h2 <- x
h3 <- 1 * (x > -1.5) * (x - -1.5)
h4 <- 1 * (x > 1.5) * (x - 1.5)
reg <- lm(y ~ h2 + h3 + h4)
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Cubic splines

• Continuous piecewise linear has “kinks” at the knots, but we
probably want “smooth” functions.

▶ What does smooth mean? Continuous derivatives!
▶ ⇝ use higher-order polynomials in the basis functions

• Cubic spline basis: bases that produce continuous functions
with continuous first and second derivatives

ℎ1(𝑥𝑖) = 1, ℎ2(𝑥𝑖) = 𝑥𝑖, ℎ3(𝑥𝑖) = 𝑥2
𝑖

ℎ4(𝑥𝑖) = 𝑥3
𝑖 , ℎ5(𝑥𝑖) = (𝑥𝑖 − 𝑏1)3+, ℎ6(𝑥𝑖) = (𝑥𝑖 − 𝑏2)3+

• Basic idea: local polynomial regression (between knots) that
have to connect and be smooth at the knots.

▶ Ensure this by allowing only the coefficient on the cubic term
to change at the knot point.
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Cubic spline
h2 <- x
h3 <- x^2
h4 <- x^3
h5 <- 1 * (x > -1.5) * (x - -1.5)^3
h6 <- 1 * (x > 1.5) * (x - 1.5)^3
reg <- lm(y ~ h2 + h3 + h4 + h5 + h6)
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Cubic spline vs global

h2 <- x
h3 <- x^2
h4 <- x^3
rr <- lm(y ~ h2 + h3 + h4)
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Knotty problems

• Any function can be approximated as we increase the number
of knot points.

• How to choose the number/location of knot points?
▶ More knot points ⇝ “rougher” function, less in-sample bias,

more variance.
▶ Fewer knot points ⇝ “smoother” function, more in-sample

bias, less variance.

• In-sample fit might be great, out-of-sample fit might be
terrible.

• More general smoothing approaches have different ways of
representing this trade-off other than knots.
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Cross-validation

• General strategy for bias-variance trade-offs: cross-validation.
• Set aside units to test out-of-sample prediction
• Cross-validation procedure:

1. Choose a number of evenly spread knots, 𝑏.
2. Withhold unit 𝑖, estimate the CEF of 𝑦𝑖 given 𝑥𝑖 using a cubic

spline with 𝑏 knots.
3. Get predicted value for 𝑖, ̂𝑦−𝑖

𝑖𝑏 and caculate squared prediction
error: (𝑦𝑖 − ̂𝑦−𝑖

𝑖𝑏 )2.
4. Repeat 2-3 for each observation and take that average to get

the MSE with 𝑏 knots.
5. Repeat 1-4 for different values of 𝑏 and choose the value of 𝑏

that has the lowest MSE.
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Automatic knot selection
smth <- smooth.spline(x, y)
plot(x, y, ylim = c(-3, 3), pch = 19, col = "grey50", bty = "n")
lines(smth, col = "indianred", lwd = 2)
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Generalized additive models

• Generalized additive models (GAMs) allow you to estimate
the spline of any particular variable in the regression.

▶ Each spline is additive: 𝑦𝑖 = 𝑓1(𝑥𝑖1) + 𝑓𝑥(𝑥𝑖2) + 𝑢𝑖

• Can plot the AV-plot of the spline to get a sense for the
nonlinearity of the functional form.

• Use cross-validation to select the number of knots
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GAM example fit
## library(mgcv) ## GAM package
out <- gam(edaybuchanan ~ s(edaytotal) + s(absnbuchanan), data = flvote,

subset = county != "Palm Beach")

##
## Family: gaussian
## Link function: identity
##
## Formula:
## edaybuchanan ~ s(edaytotal) + s(absnbuchanan)
##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 221.84 6.41 34.6 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(edaytotal) 6.85 7.82 10.6 1.6e-09 ***
## s(absnbuchanan) 2.95 3.64 22.6 1.6e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.95 Deviance explained = 95.8%
## GCV = 3129 Scale est. = 2592.3 n = 63
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Example: generalized additive
models

plot(out, shade = TRUE, residual = TRUE, pch = 1)
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Summary

• For influential points, and nonlinearity:
▶ Check your data! summary(), plot(), etc
▶ Use transformations to make assumptions more plausible
▶ Weaken linearity when you need to.
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