
Gov 2000 - 11. Interactions, Nonlinearities, and the
F-test

Matthew Blackwell
Harvard University
mblackwell@gov.harvard.edu

Fall 2016

Where are we? Where are we going?

• Last few weeks: linear regression at its most general, matrix form
• This week: effects that vary between groups and other loose ends
• Next week: troubleshooting the linear model

interactions
Data

Fish (2002) studies the relationship between predominantly Muslim societies and au-
thoritarianism. The question he is exploring is whether or not countries with Islam
as its largest religion are more likely to be authoritarian. To measure the level of de-
mocratization, we use the Freedom House score. But we also might think that its im-
portant to control for economic development since manyMuslim countries have high
GDP due to oil wealth. We can see the interplay between these variables in this graph
(where red dots are Muslim countries, and blue dots are non-Muslim countries):

load(”../data/FishData.RData”)

plot(FishData$income, FishData$fhrev, ylab = ”Democracy”, xlab = ”Log GDP per capita”, pch = 19, bty = ”n”, col = ifelse(FishData$muslim == 1, ’indianred’, ’dodgerblue’))
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Let’s run a regression model with income being log GDP per capita and a binary
variable muslim that is 1 when Islam is the largest religion in a country and 0 otherwise:

mod <- lm(fhrev ~ income + muslim, data = FishData)

summary(mod)

##

## Call:

## lm(formula = fhrev ~ income + muslim, data = FishData)

##

## Residuals:

## Min 1Q Median 3Q Max

## -3.3961 -0.8276 0.2804 0.9425 3.2467

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.1887 0.5560 0.339 0.735

## income 1.3970 0.1629 8.576 1.31e-14 ***

## muslim -1.6827 0.2379 -7.074 5.82e-11 ***

## ---
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## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 1.282 on 146 degrees of freedom

## Multiple R-squared: 0.5216, Adjusted R-squared: 0.515

## F-statistic: 79.58 on 2 and 146 DF, p-value: < 2.2e-16

Since muslim here is a binary variable, we can plot the two parallel regression lines
implied by this model:

plot(FishData$income, FishData$fhrev, ylab = ”Democracy”, xlab = ”Log GDP per capita”, pch = 19, bty = ”n”, col = ifelse(FishData$muslim == 1, ’indianred’, ’dodgerblue’))

abline(a = coef(mod)[1], b = coef(mod)[2], col = ”dodgerblue”, lwd = 3)

abline(a = coef(mod)[1] + coef(mod)[3], b = coef(mod)[2], col = ”indianred”, lwd = 3)
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But looking at the data here, we might notice that the red line for Muslim coun-
tries does not fit the lines very well. Maybe there is a different relationship between
income and democracy in Muslim and non-Muslim countries. An alternative way
of thinking about this is that this model assumes that the “effect” of being a Muslim
country is constant across levels of economic development. But this might be false!
To get around this, we can add an interaction term to our model.

First, let’s focus on a situation with a continuousXi (economic development) and
binary Zi (Muslim country). We can add another covariate to the baseline model
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that allows the effect of income to vary by Muslim status. This covariate is called an
interaction term and it is the product of the two marginal variables of interest:

incomei ×mulsimi

Here is the model with the interaction term:

Ŷi = β̂0 + β̂1Xi + β̂2Zi + β̂3XiZi

Literally this last term is just a new covariate that is the Xi multiplied by Zi. -
Thus, the design matrix, X looks like this:

X =


1 X1 Z1 X1 × Z1

1 X2 Z2 X2 × Z2
...

...
...

...
1 Xn Zn Xn × Zn


In R, we simply add a new term to the regression which is first:secondwhere first

and second are the names of marginal variables:

mod.int <- lm(fhrev ~ income + muslim + income:muslim, data = FishData)

summary(mod.int)

##

## Call:

## lm(formula = fhrev ~ income + muslim + income:muslim, data = FishData)

##

## Residuals:

## Min 1Q Median 3Q Max

## -3.8460 -0.5705 0.0940 0.8517 2.6307

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -1.3489 0.5400 -2.498 0.0136 *

## income 1.8592 0.1590 11.695 < 2e-16 ***

## muslim 5.7413 1.1338 5.064 1.23e-06 ***

## income:muslim -2.4267 0.3642 -6.662 5.23e-10 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 1.125 on 145 degrees of freedom

## Multiple R-squared: 0.6337, Adjusted R-squared: 0.6261

## F-statistic: 83.61 on 3 and 145 DF, p-value: < 2.2e-16
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Let’s look at the design matrix to see what this looks like:

head(model.matrix(mod.int))

## (Intercept) income muslim income:muslim

## 1 1 2.925312 1 2.925312

## 2 1 3.214314 1 3.214314

## 3 1 2.824126 0 0.000000

## 4 1 3.762078 0 0.000000

## 5 1 3.187803 0 0.000000

## 6 1 4.435542 0 0.000000

Note that it is easier and better to write the interaction term as first*second, which
adds each variable and its interaction to the model:

mod.int <- lm(fhrev ~ income*muslim, data = FishData)

summary(mod.int)

##

## Call:

## lm(formula = fhrev ~ income * muslim, data = FishData)

##

## Residuals:

## Min 1Q Median 3Q Max

## -3.8460 -0.5705 0.0940 0.8517 2.6307

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -1.3489 0.5400 -2.498 0.0136 *

## income 1.8592 0.1590 11.695 < 2e-16 ***

## muslim 5.7413 1.1338 5.064 1.23e-06 ***

## income:muslim -2.4267 0.3642 -6.662 5.23e-10 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 1.125 on 145 degrees of freedom

## Multiple R-squared: 0.6337, Adjusted R-squared: 0.6261

## F-statistic: 83.61 on 3 and 145 DF, p-value: < 2.2e-16
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How can we interpret this model? We’ll repeat our exercise from a few weeks ago
and plug in the two possible values of Zi. First, when Zi = 0:

Ŷi = β̂0 + β̂1Xi + β̂2Zi + β̂3XiZi

= β̂0 + β̂1Xi + β̂2 × 0 + β̂3Xi × 0

= β̂0 + β̂1Xi

Next, when Zi = 1:

Ŷi = β̂0 + β̂1Xi + β̂2Zi + β̂3XiZi

= β̂0 + β̂1Xi + β̂2 × 1 + β̂3Xi × 1

= (β̂0 + β̂2) + (β̂1 + β̂3)Xi

Thus, we can think of this regression producing two regression lines:

Intercept for Xi Slope for Xi

Non-Muslim country (Zi = 0) β̂0 β̂1
Muslim country (Zi = 1) β̂0 + β̂2 β̂1 + β̂3

plot(FishData$income, FishData$fhrev, ylab = ”Democracy”, xlab = ”Log GDP per capita”, pch = 19, bty = ”n”, col = ifelse(FishData$muslim == 1, ’indianred’, ’dodgerblue’))

abline(a = coef(mod.int)[1], b = coef(mod.int)[2], col = ”dodgerblue”, lwd = 3)

abline(a = coef(mod.int)[1] + coef(mod.int)[3], b = coef(mod.int)[2] + coef(mod.int)[4], col = ”indianred”, lwd = 3)
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In a more general context, we can interpret the coefficients from an interaction
model as:

• β̂0: average value of Yi when both Xi and Zi are equal to 0
• β̂1: a one-unit change in Xi is associated with a β̂1-unit change in Yi when
Zi = 0

• β̂2: average difference in Yi between Zi = 1 group and Zi = 0 group when
Xi = 0

• β̂3: change in the effect of Xi on Yi between Zi = 1 group and Zi = 0

• β̂3: change in the effect of Zi on Yi given a one-unit change is Xi

In a model with an interaction, we refer to the marginal variable, Xi and Zi, as
the lower-order terms. It is very important to always include these marginal effects.
Why? Well, imagine we omitted the lower order term for muslim:

wrong.mod <- lm(fhrev ~ income + income:muslim, data = FishData)

summary(wrong.mod)

##

## Call:

## lm(formula = fhrev ~ income + income:muslim, data = FishData)

##

## Residuals:

## Min 1Q Median 3Q Max

## -3.5338 -0.7332 0.2524 0.8582 3.0619

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -0.04646 0.51333 -0.091 0.928

## income 1.48368 0.15202 9.760 < 2e-16 ***

## income:muslim -0.61372 0.07255 -8.460 2.56e-14 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 1.217 on 146 degrees of freedom

## Multiple R-squared: 0.5689, Adjusted R-squared: 0.563

## F-statistic: 96.34 on 2 and 146 DF, p-value: < 2.2e-16
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plot(FishData$income, FishData$fhrev, ylab = ”Democracy”, xlab = ”Log GDP per capita”, pch = 19, bty = ”n”, col = ifelse(FishData$muslim == 1, ’indianred’, ’dodgerblue’), xlim = c(-0.5,4.5), ylim = c(-0.5, 7))

abline(a = coef(wrong.mod)[1], b = coef(wrong.mod)[2], col = ”dodgerblue”, lwd = 3)

abline(a = coef(wrong.mod)[1], b = coef(wrong.mod)[2] + coef(wrong.mod)[3], col = ”indianred”, lwd = 3)

abline(v = 0, col = ”grey50”)
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What’s the problem here? We’ve restricted the intercepts to be the same for both
models:

Ŷi = β̂0 + β̂1Xi + 0× Zi + β̂3XiZi

Intercept for Xi Slope for Xi

Non-Muslim country (Zi = 0) β̂0 β̂1
Muslim country (Zi = 1) β̂0 + 0 β̂1 + β̂3

Basically, dropping the lower order term implies that there is no difference be-
tween Muslims and non-Muslims when income is 0. Or, practically, that the intercept
is the same for the two groups, but the slopes differ. Distorts slope estimates. This is
very rarely justified for a regression model.

We have interpreted the coefficient on the interaction term as the difference in the
slopes between the Zi = 1 and Zi = 0. But we could also think of the interaction
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term as showing how much the effect of Zi changes given a one-unit change in Xi.
That is, how much bigger or smaller does the effect of being a Muslim country change
as we change log GDP per capita by one unit. We can think of the effect of muslim to
be the difference between the two regression lines at any value ofXi. Here I’ve drawn
the differences at Xi = 3 and Xi = 4. If you take the difference between these two
values, you’ll see that it is exactly equal to the coefficient on the interaction term.

plot(FishData$income, FishData$fhrev, ylab = ”Democracy”, xlab = ”Log GDP per capita”, pch = 19, bty = ”n”, col = adjustcolor(ifelse(FishData$muslim == 1, ’indianred’, ’dodgerblue’), alpha = 0.25))

abline(a = coef(mod.int)[1], b = coef(mod.int)[2], col = ”dodgerblue”, lwd = 3)

abline(a = coef(mod.int)[1] + coef(mod.int)[3], b = coef(mod.int)[2] + coef(mod.int)[4], col = ”indianred”, lwd = 3)

p30 <- predict(mod.int, newdata = data.frame(income = 3, muslim = 0))

p31 <- predict(mod.int, newdata = data.frame(income = 3, muslim = 1))

p40 <- predict(mod.int, newdata = data.frame(income = 4, muslim = 0))

p41 <- predict(mod.int, newdata = data.frame(income = 4, muslim = 1))

segments(x0 = 3, y0 = p30, y1 = p31, lwd = 3, col = ”grey50”)

segments(x0 = 4, y0 = p40, y1 = p41, lwd = 3, col = ”grey50”)

text(x = 3, y = 3.5, paste(round(p31-p30, digits = 3)), pos = 4)

text(x = 4, y = 3.5, paste(round(p41-p40, digits = 3)), pos = 4)
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-1.539 -3.965

More generally, we can think of the conditional effect of Zi given a value ofXi as:

E[Yi|Zi = 1, Xi]− E[Yi|Zi = 0, Xi] = β2 + β3Xi
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From this it is clear that effect of Zi is changing as Xi changes.

Interaction between two continuous variables

Nowwemove to a situationwherewe have two continuous variables interacted, so that
Zi is continuous. For example,Zi could be the percent growth inGDPper capita from
1975 to 1998. With this variable, we might ask: Is the effect of economic development
for rapidly developing countries higher or lower than for stagnant economies? We can
still define the interaction:

incomei × growthi

And include it in the regression:

Ŷi = β̂0 + β̂1Xi + β̂2Zi + β̂3XiZi

mod.cont <- lm(fhrev ~ income*growth, data = FishData)

summary(mod.cont)

##

## Call:

## lm(formula = fhrev ~ income * growth, data = FishData)

##

## Residuals:

## Min 1Q Median 3Q Max

## -5.0018 -0.9356 0.2241 0.9604 2.8338

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -0.1066 0.6225 -0.171 0.8643

## income 1.2922 0.1941 6.659 5.33e-10 ***

## growth -0.6172 0.2383 -2.590 0.0106 *

## income:growth 0.2395 0.0753 3.180 0.0018 **

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 1.4 on 145 degrees of freedom

## Multiple R-squared: 0.4332, Adjusted R-squared: 0.4215

## F-statistic: 36.95 on 3 and 145 DF, p-value: < 2.2e-16
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head(model.matrix(mod.cont))

## (Intercept) income growth income:growth

## 1 1 2.925312 -0.8 -2.3402497

## 2 1 3.214314 0.2 0.6428628

## 3 1 2.824126 -1.6 -4.5186013

## 4 1 3.762078 0.6 2.2572469

## 5 1 3.187803 -6.6 -21.0394974

## 6 1 4.435542 2.2 9.7581919

With a continuousZi, we can havemore than two values that it can take on. Thus,
we have a set of regression lines for Xi based on the level of Zi:

Intercept for Xi Slope for Xi

Zi = 0 β̂0 β̂1
Zi = 0.5 β̂0 + β̂2 × 0.5 β̂1 + β̂3 × 0.5

Zi = 1 β̂0 + β̂2 × 1 β̂1 + β̂3 × 1

Zi = 5 β̂0 + β̂2 × 5 β̂1 + β̂3 × 5

Thus, when we have our regression model like so:

Ŷi = β̂0 + β̂1Xi + β̂2Zi + β̂3XiZi

We can interpret each of the coefficients as:

• The coefficient β̂1 measures how the predicted outcome varies inXi whenZi =
0.

• The coefficient β̂2 measures how the predicted outcome varies inZi whenXi =
0

• The coefficient β̂3 is the change in the effect of Xi given a one-unit change in
Zi:

∂E[Yi|Xi, Zi]

∂Xi
= β1 + β3Zi

• The coefficient β̂3 is the change in the effect of Zi given a one-unit change in
Xi:

∂E[Yi|Xi, Zi]

∂Zi
= β2 + β3Xi
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Hypothesis tests

Due to sampling variation, the two groups will never have the exact same slope. But
how do we asses if the differences in the slopes are “big enough” for us to say that the
effect varies by group? We can test whether or not the effects for the two groups are
different by testing the null hypothesis H0 : β3 = 0

β̂3

ŝe[β̂3]

Standard errors for marginal effects

What if we want to get a standard error for the effect of Xi at some level of Zi? We
already saw that β̂1 is the effect when Zi = 0. What about other values of Zi? To
calculate the sampling variances (and thus the SEs), we need to use the properties of
variances. Here is the expression:

V
(
∂E[Yi|Xi, Zi]

∂Xi

)
= V(β̂1 + Ziβ̂3)

= V[β̂1] + Z2
i V[β̂3] + 2ZiCov[β̂1, β̂3]

The variances here are the usual variances and the Cov[β̂1, β̂3] is the covariance be-
tween the estimator of the two coefficients. Each of these can come from the variance-
covariance matrix we learned about that week:

V[β̂] = σ̂2
u(X′X)−1

Here, X is the matrix with four columns: a column of 1’s, a column for Xi, a column
for Zi, and a columns for the interaction Xi × Zi.

Let’s calculate the SE for the effect of income for a Muslim country. We can use
the vcov() function to get the variances and covariances (more on this in the next few
weeks):

## SE of effect of income at muslime = 1

var.inter <- vcov(mod.int)[”income”,”income”] + 1^2 * vcov(mod.int)[”income:muslim”,”income:muslim”] + 2 * 1 * vcov(mod.int)[”income”,”income:muslim”]

sqrt(var.inter)

## [1] 0.3277283
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## SE when muslim = 0

sqrt(vcov(mod.cont)[”income”, ”income”])

## [1] 0.1940696

A trick for getting R to calculate the standard errors for you is to recenter the
variable so that 0 corresponds to the value you want to estimate. So if we wanted to
estimate the effect of being a Muslim country with the associated SEs, we could use
1− Zi in place of Zi:

Yi = β0 + β1Xi + β2(1− Zi) + β3Xi(1− Zi) + ui

Now, β̂1 is the slope on Xi when 1 − Zi = 0, or, rearranging, when Zi = 1. We
“tricked” R into calculating the standard errors for us:

summary(lm(fhrev ~ income*I(1-muslim), data = FishData))

##

## Call:

## lm(formula = fhrev ~ income * I(1 - muslim), data = FishData)

##

## Residuals:

## Min 1Q Median 3Q Max

## -3.8460 -0.5705 0.0940 0.8517 2.6307

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 4.3924 0.9969 4.406 2.03e-05 ***

## income -0.5675 0.3277 -1.732 0.0855 .

## I(1 - muslim) -5.7413 1.1338 -5.064 1.23e-06 ***

## income:I(1 - muslim) 2.4267 0.3642 6.662 5.23e-10 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 1.125 on 145 degrees of freedom

## Multiple R-squared: 0.6337, Adjusted R-squared: 0.6261

## F-statistic: 83.61 on 3 and 145 DF, p-value: < 2.2e-16

Notice that the SE is the same as we calculated before.
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nonlinear functional forms
What if we suspect or know that the relationship between Xi and Yi is non-linear?
Canwe handle that in the linearmodel? Yes, it justmeans transforming these variables
or including additional covariates.

Logs of random variables

One way to account for non-linearity is to transform Xi or Yi using the natural log-
arithm. This approach is useful when Xi or Yi are positive and right-skewed. We
can see how transforming the variables from levels to logs changes the nature of the
relationship and how the log-log relationship is clearly the one closest to linear:
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Note that this changes the interpretation of β1. If we regress log(Yi) on Xi, then
100 × β1 can roughly be interpretted as the percent increase in Yi associated with
a one-unit increase in Xi. When we regress log(Yi) on log(Xi), then β1 is roughly
the percentage increase in Yi associated with a one percent increase in Xi. These
interpretations are only useful for small increments, so you wouldn’t want to use them
with discrete r.v.s for instance. All of the different interpretations are summarized in
this table:

Model Equation β1 Interpretation
Level-Level Y = β0 + β1X 1-unit ∆X ⇝ β1∆Y
Log-Level log(Y ) = β0 + β1X 1-unit ∆X ⇝ 100× β1%∆Y
Level-Log Y = β0 + β1 log(X) 1% ∆X ⇝ (β1/100)∆Y
Log-Log log(Y ) = β0 + β1 log(X) 1% ∆X ⇝ β1%∆Y

Adding a squared term

Another approach to modeling nonlinearity is to model the relationship as a polyno-
mial instead of a line. To do this, we can add a polynomial of Xi to account for the
non-linearity:

Ŷi = β̂0 + β̂1Xi + β̂2X
2
i

This is similar to an “interaction” with itself: marginal effect ofXi varies as a function
of Xi:

∂E[Yi|Xi]

∂Xi
= β1 + β2Xi

quad.mod <- lm(logpgp95 ~ raw.mort + I(raw.mort^2), data = ajr)

summary(quad.mod)

##

## Call:

## lm(formula = logpgp95 ~ raw.mort + I(raw.mort^2), data = ajr)

##

## Residuals:

## Min 1Q Median 3Q Max

## -2.43698 -0.66321 0.00788 0.65436 1.63024

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 8.639e+00 1.378e-01 62.687 < 2e-16 ***

## raw.mort -3.616e-03 6.638e-04 -5.447 5.77e-07 ***

## I(raw.mort^2) 1.091e-06 2.623e-07 4.157 8.19e-05 ***
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## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 0.884 on 78 degrees of freedom

## (82 observations deleted due to missingness)

## Multiple R-squared: 0.3211, Adjusted R-squared: 0.3037

## F-statistic: 18.45 on 2 and 78 DF, p-value: 2.755e-07

We can plot the results using a function:
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tests of multiple hypotheses
Review of t-tests

• Null hypothesis:
H0 : βk = 0

• Alternative hypothesis:
HA : βk ̸= 0

• Test statistic (t-statistic):

t =
β̂k

ŜE[β̂k]

• Has a N(0, 1) distribution in large samples (under Assumptions 1-5) and a
tn−(k+1) distribution under Assumptions 1-6 (when errors are conditionally
Normal)
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Joint null hypotheses

Yi = β0 + β1Xi + β2Zi + β3XiZi

H0 : β1 = 0 and β3 = 0

HA : β1 ̸= 0 or β3 ̸= 0

• How can we test this null hypothesis?
• We will compare the predictive power of the model under the null and the

model under the alternative

Restricted versus unrestricted models

• Unrestricted model (alternative is true):

Yi = β0 + β1Xi + β2Zi + β3XiZi

• Estimates:
Ŷi = β̂0 + β̂1Xi + β̂2Zi + β̂3XiZi

• SSR from unrestricted model:

SSRu =

n∑
i=1

(Yi − Ŷi)
2

• Restricted model (null is true):
Yi = β0 + β1Xi + β2Zi + β3XiZi

= β0 + 0×Xi + β2Zi + 0×XiZi

Yi = β0 + β2Zi

• Estimates:
Ỹi = β̃0 + β̃1Zi

• SSR from restricted model model:

SSRr =

n∑
i=1

(Yi − Ỹi)
2

• If the null is true, then SSRr and SSRu should only be different due to sam-
pling variation.

• The bigger the reduction in the prediction errors between SSRr and SSRu,
the less plausible is the null hypothesis.
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F statistic

F =
(SSRr − SSRu)/q

SSRu/(n− k − 1)

• (SSRr−SSRu): the increase in the variation in the residuals whenwe remove
those βs

• q = number of restrictions (numerator degrees of freedom)
• n− k − 1: denominator/unrestricted degrees of freedom
• Intuition:

increase in prediction error
original prediction error

• Each of these is scaled by the degrees of freedom

F statistic in R

ur.mod <- lm(fhrev ~ income*growth, data = FishData)

r.mod <- lm(fhrev ~ growth, data = FishData)

anova(r.mod, ur.mod)

## Analysis of Variance Table

##

## Model 1: fhrev ~ growth

## Model 2: fhrev ~ income * growth

## Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 147 452.13

## 2 145 284.09 2 168.04 42.885 2.337e-15 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

F distribution

curve(df(x, 2, 100), xlim = c(0,4), lwd = 3, col = ”grey50”, bty = ”n”, las = 1, ylab = ”f(x)”, xlab = ”x”)

curve(df(x, 4, 100), xlim = c(0,4), lwd = 3, col = ”dodgerblue”, add = TRUE)

curve(df(x, 8, 100), xlim = c(0,4), lwd = 3, col = ”indianred”, add = TRUE)

legend(”topright”, legend = c(”q = 2, n - k - 1 = 100”, ”q = 4, n - k - 1 = 100”, ”q = 8, n - k - 1 = 100”), lwd = 3, col = c(”grey50”, ”dodgerblue”, ”indianred”), bty = ”n”)
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• Ratio of two χ2 (Chi-squared) distributions

The F test

• The F test will test this null hypothesis, but what is the sampling distribution of
this F statistic?

• Very similar to the t-test. We will assume either assumptions 1-5 and in large
samples, or under 1-6 (including Normality).

• With these assumptions, when the null is true, then we have:

(SSRr − SSRu)/q

SSRu/(n− k − 1)
∼ Fq,n−(k+1)

• Under the null hypothesis, we know that the F statistic follows an F distribution
with degrees of freedom q and n− (k + 1).

• Thus, we can perform a test of the null hypothesis by comparing our observed
test statistic to the distribution of the statistic under the null.

• The F distribution tells us how much of a relative increase in the SSR we should
expect if we were to add irrelevant variables to the model.

• If our calculated F statistic is large relative to the null distribution, then this
means that there is more predictive power (bigger reductions in the SSR) than
we would expect by random chance.

• To conduct the test, we simply choose an α, which has the same interpretation
as always: the proportion of false positives you are willing to accept.
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• Then we calculate the rejection region for the test. All F-tests are one-sided
tests. Why? Because we only want to reject when the added covariates increase
our predictive power (when the SSR goes up) and this is when the F statistic is
big.

• So the rejection region is going to be the regionF > c, such thatP(F > c) = α
• We can get this from R using the qf() function:

qf(0.05, 2, 100, lower.tail = FALSE)

## [1] 3.087296

• We might also want to calculate p-values. These would be the probability of
observing an F-statistic this large or larger given the null hypothesis is true.
This is just the proportion of the distribution above the observed F-statistic.

• We can calculate this in R using the pf() function:

pf(5.2, 2, 100, lower.tail = FALSE)

## [1] 0.00710471

F statistic for all variables

• Often, you’ll an F-statistic reported along with the regression.
• This usually tests the null hypothesis of all the coefficients except the intercept

being 0.
• In that case, the restricted model is just:

Yi = β0 + ui

• And the estimate here would just be sample mean (β̂0 = Y )
• The SSRr then would just be the sampling variation in Y :

SSRf =

n∑
i=1

(Yi − Y )2

Example of F-test for all variables

summary(ur.mod)
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##

## Call:

## lm(formula = fhrev ~ income * growth, data = FishData)

##

## Residuals:

## Min 1Q Median 3Q Max

## -5.0018 -0.9356 0.2241 0.9604 2.8338

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -0.1066 0.6225 -0.171 0.8643

## income 1.2922 0.1941 6.659 5.33e-10 ***

## growth -0.6172 0.2383 -2.590 0.0106 *

## income:growth 0.2395 0.0753 3.180 0.0018 **

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 1.4 on 145 degrees of freedom

## Multiple R-squared: 0.4332, Adjusted R-squared: 0.4215

## F-statistic: 36.95 on 3 and 145 DF, p-value: < 2.2e-16

Connection to t tests

• What about an F-test with just one coefficient equal to zero? H0 : β1 = 0
• We already can do this with an t-test. Is there a connection to the F-test?
• Yes, it turns out that the F-statistic for a single restriction is just the square of

the t-statistic:

F = t2 =

(
β̂1

ŜE[β̂1]

)2

Multiple testing

• If we test all of the coefficients separately with a t-test, then we should expect
that 5% of them will be significant just due to random chance.

• Illustration: randomly draw 21 variables, and run a regression of the first vari-
able on the rest.

• By design, no effect of any variable on any other, butwhenwe run the regression:
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set.seed(02138)

noise <- data.frame(matrix(rnorm(2100), nrow = 100, ncol = 21))

summary(lm(noise))

##

## Call:

## lm(formula = noise)

##

## Residuals:

## Min 1Q Median 3Q Max

## -3.1437 -0.5522 0.0697 0.6096 1.8470

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -0.0280393 0.1138198 -0.246 0.80605

## X2 -0.1503904 0.1121808 -1.341 0.18389

## X3 0.0791578 0.0950278 0.833 0.40736

## X4 -0.0717419 0.1045788 -0.686 0.49472

## X5 0.1720783 0.1140017 1.509 0.13518

## X6 0.0808522 0.1083414 0.746 0.45772

## X7 0.1029129 0.1141562 0.902 0.37006

## X8 -0.3210531 0.1206727 -2.661 0.00945 **

## X9 -0.0531223 0.1079834 -0.492 0.62412

## X10 0.1801045 0.1264427 1.424 0.15827

## X11 0.1663864 0.1109471 1.500 0.13768

## X12 0.0080111 0.1037663 0.077 0.93866

## X13 0.0002117 0.1037845 0.002 0.99838

## X14 -0.0659690 0.1122145 -0.588 0.55829

## X15 -0.1296539 0.1115753 -1.162 0.24872

## X16 -0.0544456 0.1251395 -0.435 0.66469

## X17 0.0043351 0.1120122 0.039 0.96923

## X18 -0.0807963 0.1098525 -0.735 0.46421

## X19 -0.0858057 0.1185529 -0.724 0.47134

## X20 -0.1860057 0.1045602 -1.779 0.07910 .

## X21 0.0021111 0.1081179 0.020 0.98447

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 0.9992 on 79 degrees of freedom



23

## Multiple R-squared: 0.2009, Adjusted R-squared: -0.00142

## F-statistic: 0.993 on 20 and 79 DF, p-value: 0.4797

• Notice that out of 20 variables, one of the variables is significant at the 0.05 level
(in fact, at the 0.01 level).

• But this is exactly what we expect: 1/20 = 0.05 of the tests are false positives at
the 0.05 level

• Also note that 2/20 = 0.1 are significant at the 0.1 level. Totally expected!

• But notice the F-statistic: the variables are not jointly significant
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