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Where are we? Where are we going?

• Last few weeks: regression estimation and inference with one and two indepen-
dent variables

• This week: the general regression model with arbitrary covariates
• Next few weeks: regression odds and ends and what to do when the regression

assumptions go wrong

Nunn & Wantchekon

Nunn and Wantchekon (2011) ask the following question: are there long-term, per-
sistent effects of slave trade on Africans today? Their basic idea is to compare levels
of interpersonal trust (dependent variable) across different levels of historical slave
exports from a respondent’s ethnic group (main independent variable). The essential
problem with this type of analysis is that ethnic groups and respondents might differ
in their interpersonal trust in ways that correlate with the severity of slavery.

One way they attempt to get around this problem is to try to control for relevant
differences between groups via multiple regression. Here’s their specification of the
regression
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Our goal is to be able to understand what’s we’re saying in this equation. Here is
the actual regression that they ran:

nunn <- foreign::read.dta(”../data/Nunn_Wantchekon_AER_2011.dta”)

mod <- lm(trust_neighbors ~ exports + age + male + urban_dum + malaria_ecology, data = nunn)

summary(mod)

##

## Call:

## lm(formula = trust_neighbors ~ exports + age + male + urban_dum +

## malaria_ecology, data = nunn)

##

## Residuals:

## Min 1Q Median 3Q Max

## -2.5954 -0.7491 0.1440 0.8735 1.9964

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 1.503e+00 2.183e-02 68.844 <2e-16 ***

## exports -1.021e-03 4.094e-05 -24.935 <2e-16 ***

## age 5.045e-03 4.724e-04 10.680 <2e-16 ***

## male 2.784e-02 1.382e-02 2.015 0.0439 *
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## urban_dum -2.739e-01 1.435e-02 -19.079 <2e-16 ***

## malaria_ecology 1.941e-02 8.712e-04 22.279 <2e-16 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 0.9778 on 20319 degrees of freedom

## (1497 observations deleted due to missingness)

## Multiple R-squared: 0.06039, Adjusted R-squared: 0.06016

## F-statistic: 261.2 on 5 and 20319 DF, p-value: < 2.2e-16

It’s pretty easy to extend the two-variable regression to arbitrary independent vari-
ables. We just keep adding them in a linear fashion:

yi = β0 + xi1β1 + xi2β2 + · · ·+ xikβk + ui

Why not just write it this way? First, the notation is going to get needlessly messy
as we add variables. Second, there are a lot of concepts that are easier to define and
discuss once we have matrix notation.

matrix algebra review
Vectors

A vector is a list of numbers arranged, usually represented as a column. Specifically,
a column vector is a list of k numbers arranged as a column:

a =


a1
a2
...
ak


A row vector, on the other hand, is 1× k list of numbers arranged as a row:

α =
[
α1 α2 α3 · · · αK

]
Unless otherwise stated, we’ll assume that a vector is column vector and vectors will
be written with lowercase bold lettering (b). For reasons that will become clear, we’ll
refer to column vector as k × 1 and a row vector as 1× k.

One way that we can already make our notation more compact is by writing the
list of covariate values for unit i as a vector. That is, if we have k covariates, then we’ll
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define the (k + 1)× 1 vector of covariates, xi, as:

xi =


1
xi1
xi2
...

xik

 xi =


1

exportsi
agei
malei


Notice that we can also write all of the coefficients as a (k+ 1)× 1 vector as well:

β =


β0
β1
β2
...
βk


It is useful to be able to switch a column vector to a row vector and vice versa.

This is exactly what the transpose operation does. For instance, if a is a k× 1 column
vector, then its transpose a′ is the same vector in 1 × k row form. For instance, we
can write the vector of independent variables in row form with the transpose:

x′
i =

[
1 xi1 xi2 · · · xik

]
Vector Addition and Multiplication

How can we extend the ideas of addition and multiplication to vectors? To add two
vectors together, it only makes sense if they have the same length. For example, let a
and b be k × 1 vectors. We define their sum as the sum of each entry:

a + b = a =


a1
a2
...
ak

+


b1
b2
...
bk

 =


a1 + b1
a2 + b2

...
ak + bk


The first type of multiplication we can do with vectors is scalar multiplication of

a vector ba, where we just multiply each element of the vector by b:

ba = ab =


ba1
ba2
...

bak
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There is a special way to multiply two (column) vectors of equal length that will
allow us to write the linear model very compactly. The inner product of a two column
vectors a and b (of equal dimension, k×1) is just the transpose of the first multiplied
by the second:

a′b = a1b1 + a2b2 + · · ·+ akbk

The intuition here is that this gives the length of the a vector in the “direction” of the
b vector. With this in hand, we can write the linear model in a very compact way:

yi = x′
iβ + ui

For instance, last week, we had the two variables (plus a constant). We could write
things this way:

x′
iβ =

[
1 xi1 xi2

]  β0
β1
β2

 = β0 + xi1β1 + xi2β2

Here, x′
iβ can be thought of as the “length” vector of independent variable in the

direction of the covariates. More generally, you can also think of this as generalizing
the multiplication of Xiβ1 to multiple covariates.

Another important example of where we use the inner product is with the resid-
uals. Let û be the n × 1 vector of residual. Then, the inner product of the residuals
is:

û′û =
[
û1 û2 · · · ûn

]


û1
û2
...
ûn


û′û = û1û1 + û2û2 + · · ·+ ûnûn =

n∑
i=1

û2i

It’s just the sum of the squared residuals!

Matrices

Amatrix is just a rectangular array of numbers. We say that a matrix is n× k if it has
n rows and k columns. We write a matrix with uppercase bold letters:

A =


a11 a12 · · · a1k
a21 a22 · · · a2k
...

... . . . ...
an1 an2 · · · ank
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We will often need to refer to some generic entry (or cell) of a matrix and we can
do this with aij where this is the entry in row i and column j. There is nothing special
about these matrices. They are basically just like spreadsheets in Excel or the like. It’s
a way to group numbers.

One example of a matrix that we’ll use a lot is the design matrix, which has a
columnof ones, and then each of the subsequent columns is each independent variable
in the regression.

X =


1 exports1 age1 male1
1 exports2 age2 male2
...

...
...

...
1 exportsn agen malen


It is often useful to refer to matrices as a group of column or row vectors. For

instance, we can write a 2× 3 matrix as a two 1× 3 row vectors:

A =

[
a11 a12 a13
a21 a22 a23

]
=

[
a′
1

a′
2

]
with row vectors

a′
1 =

[
a11 a12 a13

]
a′
2 =

[
a21 a22 a23

]
We can define the following 3× 2 matrix in terms of two 3× 1 column vectors:

B =

 b11 b12
b21 b22
b31 b32

 =
[

b1 b2
]

where b1 and b2 represent the columns of B.
It should be clear what is what: matrices defined by column will be written hori-

zontally, whereas matrices defined by row will be written vertically. Also, we’ll use j
and s as subscripts for columns of a matrix: xj or xs, whereas i and t will be used for
rows x′

i.
The transpose of a matrix A is the matrix created by switching the rows and

columns of the data and is denoted A′. That is, the kth column becomes the kth
row:

Q =

 q11 q12
q21 q22
q31 q32

 Q′ =

[
q11 q21 q31
q12 q22 q32

]
If A is j × k, then A′ will be k × j.
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Matrices and Vectors in R

Note, though, that R always prints a vector in row form, even if it is a column in the
original data.

head(nunn$trust_neighbors)

## [1] 3 3 0 0 1 1

One thing to watch out for is that R doesn’t really distinguish between row vectors
and columns vectors by default. In R, a vector is just a list of numbers. For instance,
if you try to use nrow() or ncol() on a vector, R is confused:

ncol(nunn$trust_neighbors)

## NULL

nrow(nunn$trust_neighbors)

## NULL

Vectors in R are special constructs and you have to use length() to see how many
entries there are in the vector:

length(nunn$trust_neighbors)

## [1] 21822

You can convert vectors to have explicit dimensions by using as.matrix(), but be-
ware that R assumes all vectors are column vectors:

nrow(as.matrix(nunn$trust_neighbors))

## [1] 21822

ncol(as.matrix(nunn$trust_neighbors))

## [1] 1

We can transpose in R using the t() function:
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a <- matrix(1:6, ncol = 3, nrow = 2)

a

## [,1] [,2] [,3]

## [1,] 1 3 5

## [2,] 2 4 6

t(a)

## [,1] [,2]

## [1,] 1 2

## [2,] 3 4

## [3,] 5 6

Finally, we can see the design matrix using the model.matrix() function in R. And
the dim() function can help us get the dimensions of the matrix quickly:

head(model.matrix(mod), 5)

## (Intercept) exports age male urban_dum malaria_ecology

## 1 1 854.9581 40 0 0 28.14704

## 2 1 854.9581 25 1 0 28.14704

## 3 1 854.9581 38 1 1 28.14704

## 4 1 854.9581 37 0 1 28.14704

## 5 1 854.9581 31 1 0 28.14704

dim(model.matrix(mod))

## [1] 20325 6

Addition and subtraction for matrices

How do we add or subtract matrices? Like vectors, matrices have to have the same
dimensions to be added together. When this is true, we say they are comformable,
meaning that the dimensions have to be the same. Let A and B both be 2×2matrices.
Then, let A + B, where we add each cell together:

A + B =

[
a11 a12
a21 a22

]
+

[
b11 b12
b21 b22

]
=

[
a11 + b11 a12 + b12
a21 + b21 a22 + b22

]
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Scalar multiplication for matrices is very similar to vectors and we just multiply
each element/cell by that scalar:

bA = b

[
a11 a12
a21 a22

]
=

[
b× a11 b× a12
b× a21 b× a22

]
With these tools in hand, we can develop another matrix-based notation for the

linear model. Remember that we wrote the linear model as the following for all i ∈
[1, . . . , n]:

yi = β0 + xiβ1 + ziβ2 + ui

Imagine we had an n of 4. We could write out each formula:

y1 = β0 + x1β1 + z1β2 + u1 (unit 1)
y2 = β0 + x2β1 + z2β2 + u2 (unit 2)
y3 = β0 + x3β1 + z3β2 + u3 (unit 3)
y4 = β0 + x4β1 + z4β2 + u4 (unit 4)

We can write this with vectors form like so:
y1
y2
y3
y4

 =


1
1
1
1

β0 +


x1
x2
x3
x4

β1 +


z1
z2
z3
z4

β2 +


u1
u2
u3
u4


Hopefully it’s clear in this notation that the column vector of the outcomes is a

linear combination of the independent variables and the error, with the β coefficients
acting as the weights. Can we write this in a more compact form? Yes, but we need to
develop a notation and idea of matrix multiplication. Let X and β be the following:

X
(4×3)

=


1 x1 z1
1 x2 z2
1 x3 z3
1 x4 z4

 β
(3×1)

=

 β0
β1
β2


Matrix multiplication by a vector

We will define multiplication of a matrix by a vector in the following way:
1
1
1
1

β0 +


x1
x2
x3
x4

β1 +


z1
z2
z3
z4

β2 = Xβ
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Thus, multiplication of a matrix by a vector is just the linear combination of the
columns of the matrix with the vector elements as weights/coefficients. And the left-
hand side here only uses scalars times vectors, which is easy! In general, let’s say that
we have a n × k matrix A and a k × 1 column vector b (notice that the number of
columns of the matrix is the same as the number of rows of the vector)

Let aj be the jth column of A. Then we can write:

c
(n×1)

= Ab = b1a1 + b2a2 + · · ·+ bkak

Thus, now let X be the n× (k+1)matrix of independent variables and β be the
(k + 1)× 1 column vector of coefficients. Then:

Xβ = β0 + β1x1 + β2x2 + · · ·+ βkxk

Thus, we can compactly write the linear model as the following:

y
(n×1)

= Xβ + u
(n×1)

An equivalent way to define matrix multiplication is with the inner product. Let
a′
i be the ith row of the matrix, A. Then, we can write each entry as:

ci = a′
ib

With this definition, it is clear that our statement of the linear model is equivalent to:

yi = x′
iβ + ui

Matrix multiplication

What if, instead of a column vector b, we have a matrix B with dimensions k × m.
How do we do multiplication like so C = AB? Each column of the new matrix is
just matrix by vector multiplication:

C = [c1 c2 · · · cm] cj = Abj

Thus, each column of C is a linear combination of the columns of A.

Special matrices

A square matrix is one with equal numbers of rows and columns. The diagonal of a
square matrix are the values in which the row number is equal to the column number:
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a11 or a22, etc.

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33


To get the diagonal of a matrix in R, use the diag() function:

b <- matrix(1:4, nrow = 2, ncol = 2)

b

## [,1] [,2]

## [1,] 1 3

## [2,] 2 4

diag(b)

## [1] 1 4

The identity matrix, Ik is a square k × k matrix, with 1s along the diagonal and
0s everywhere else.

I3 =

 1 0 0
0 1 0
0 0 1


The identity matrix multiplied by any matrix just returns the matrix: AI = A.

Here, as is often the case, the dimension of the identity matrix is left implicit—from
the context of the equation we know it must be equal to the number of columns of A.

To create an identity matrix in R, you can also use the diag() function, but this
time just pass it a number instead of a matrix:

diag(3)

## [,1] [,2] [,3]

## [1,] 1 0 0

## [2,] 0 1 0

## [3,] 0 0 1
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ols in matrix form
Multiple linear regression in matrix form

Let β̂ be the (k + 1)× 1 vector of estimated regression coefficients:

β̂ =


β̂0
β̂1
...
β̂k


Given the above derivations, it is clear that we can write the fitted values of the

outcome as:
ŷ = Xβ̂

It might be helpful to see this again more written out:

ŷ =


ŷ1
ŷ2
...
ŷn

 = Xβ̂ =


1β̂0 + x11β̂1 + x12β̂2 + · · ·+ x1K β̂k

1β̂0 + x21β̂1 + x22β̂2 + · · ·+ x2K β̂k

...
1β̂0 + xn1β̂1 + xn2β̂2 + · · ·+ xnK β̂k



Residuals

With these fitted values, we can easily write the residuals in vector form:

û = y − Xβ̂

The goal of OLS remains the same: to minimize the sum of the squared residuals.
Earlier, we saw that we can write this compactly with the inner product:

û′û = (y − Xβ̂)′(y − Xβ̂)

Using matrix calculus to minimize this function, we arrive at the following first-order
condition:

0 = X′(y − Xβ̂)

Rearranging, we have the following formula for the OLS estimator:

X′Xβ̂ = X′y

In order to isolate β̂, we need tomove the X′X term to the other side of the equals
sign. We’ve learned about matrix multiplication, but what about matrix “division”?
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Matrix Inversion

What is division in its simplest form? 1
a is the value such that a 1

a = 1. For some
algebraic expression: au = b, let’s solve for u:

1

a
au =

1

a
b

u =
b

a

We need a matrix version of this: 1
a .

Definition If it exists, the inverse of square matrix A, denoted A−1, is the matrix
such that A−1A = I.

We can use the inverse to solve (systems of) equations:

Au = b
A−1Au = A−1b

Iu = A−1b
u = A−1b

If the inverse exists, we say that A is invertible or nonsingular.
Let’s assume, for now, that the inverse of X′X exists (we’ll come back to this)Then

we can write the OLS estimator as the following:

β̂ = (X′X)−1X′y

Memorize this: “x prime x inverse x prime y” sear it into your soul.

OLS by hand in R

Let’s skip the lm() function and compute the coefficients directly. First we need to get
the design matrix:

X <- model.matrix(trust_neighbors ~ exports + age + male + urban_dum + malaria_ecology, data = nunn)

dim(X)

## [1] 20325 6

## model.frame always puts the response in the first column

y <- model.frame(trust_neighbors ~ exports + age + male + urban_dum + malaria_ecology, data = nunn)[,1]
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## solve() does inverses

## and %*% is matrix multiplication

solve(t(X) %*% X) %*% t(X) %*% y

## [,1]

## (Intercept) 1.503037046

## exports -0.001020836

## age 0.005044682

## male 0.027836875

## urban_dum -0.273871917

## malaria_ecology 0.019410561

coef(mod)

## (Intercept) exports age male

## 1.503037046 -0.001020836 0.005044682 0.027836875

## urban_dum malaria_ecology

## -0.273871917 0.019410561

Intuition for the OLS in matrix form

What’s the intuition here for this formula? First, note that the “numerator” X′y is
roughly composed of the covariances between the columns of X and y. Next, the
“denominator” X′X is roughly composed of the sample variances and covariances of
variables within X. Thus, we have something like:

β̂−0 ≈ (variance of X)−1(covariance of X & y)

Here, β̂−0 is the vector of coefficientswithout the intercept/constant. We’re sidestep-
ping the exact definitions of the variance and covariance of a matrix here.

ols inference in matrix form
A random vector is a vector of random variables:

xi =

[
xi1
xi2

]
Here, xi is a random vector andxi1 andxi2 are randomvariables. Whenwe talk about
the distribution of xi, we are talking about the joint distribution of xi1 and xi2. The
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expectation of this random vector is just the expectation of each r.v. in the vector:

E[xi] =

[
E[xi1]
E[xi2]

]
Thevariance of random vectors has to tell us both the variance of each r.v., but also the
covariance between them. Thus, we often call this the variance-covariance matrix:

V[xi] = E
[
(xi − E[xi])(xi − E[x])′

]
=

[
V[xi1] Cov[xi1, xi2]

Cov[xi1, xi2] V[xi2]

]
Combined, these describe the joint distribution of xi.

Most general OLS assumptions

1. Linearity: yi = x′
iβ + ui

2. Random/iid sample: (yi,x′
i) are a iid sample from the population.

3. No perfect collinearity: X is an n× (k + 1) matrix with rank k + 1
4. Zero conditional mean: E[ui|xi] = 0
5. Homoskedasticity: V[ui|xi] = σ2

u

6. Normality: ui|xi ∼ N(0, σ2
u)

No perfect collinearity

Inmatrix form: X is an n×(k+1)matrix with rank k+1. The rank of amatrix is the
maximum number of linearly independent columns. If X has rank k + 1, then all of
its columns are linearly independent and none of its columns are linearly dependent
implies no perfect collinearity between any of the columns.

Why do we care about this? If A is a square k × k matrix and has rank k, then
there exists a unique inverse, A′. Furthermore, if X has rank k + 1, then (X′X) has
rank k+ 1. Thus, in order for the OLS coefficients to even be computed, we need full
rank of X. This is very similar to needing variation in X to be able to divide by the
variance in simple OLS.

Bias and Variance of OLS

It is useful to write the OLS estimator in the following way:

β̂ =
(
X′X

)−1 X′y
=

(
X′X

)−1 X′(Xβ + u)
=

(
X′X

)−1 X′Xβ +
(
X′X

)−1 X′u
= β +

(
X′X

)−1 X′u
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With this in hand, under matrix assumptions 1-4, OLS is conditionally unbiased
for β:

E[β̂|X] = β +
(
X′X

)−1 X′E[u|X]

= β +
(
X′X

)−1 X′0
= β

This also implies that OLS is unconditionally unbiased: E[β̂] = β

What about the sampling variance of the OLS estimator, V[β̂|X]? First, note that
if we have a vector of constants, b, a matrix of constants, A and a random vector x,
then V[b + Ax] = AV[x]A′. This is the matrix version of “squaring” a constant in
the variance of a single random variable.

Plugging in the expression for the OLS estimator and using this fact, we find:

V[β̂|X] = V[β +
(
X′X

)−1 X′u|X]

= V[
(
X′X

)−1 X′u|X]

=
(
X′X

)−1 X′V[u|X](
(
X′X

)−1 X′)′

Can we make progress here? Yes, if use the property that if A is symmetric, then(
A−1

)′
= A−1. Thus, ((X′X)−1 X′)′ = X (X′X)−1 and plugging back into the

variance:
V[β̂|X] =

(
X′X

)−1 X′V[u|X]X
(
X′X

)−1

Can we make more progress? Yes! What the covariance matrix of the errors,
V[u|X]?

V[u|X] =


V[u1|X] cov[u1, u2|X] . . . cov[u1, un|X]

cov[u2, u1|X] V[u2|X] . . . cov[u2, un|X]
... . . .

cov[un, u1|X] cov[un, u2|X] . . . V[un|X]


Note that thismatrix is symmetric since cov(ui, uj) = cov(ui, uj). By homoskedas-

ticity and iid, , we have constant varianceV[ui|X] = V[ui|xi] = σ2
u and uncorrelated

errors, cov[us, ut|X] = 0. Then, the covariance matrix of the errors is simply:

V[u|X] = σ2
uIn =


σ2
u 0 0 . . . 0
0 σ2

u 0 . . . 0
...

0 0 0 . . . σ2
u
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Puttting this back into our expression for the OLS sampling variance, we get:

V[β̂|X] =
(
X′X

)−1 X′V[u|X]X
(
X′X

)−1

=
(
X′X

)−1 X′(σ2
uIn)X

(
X′X

)−1

= σ2
u

(
X′X

)−1 X′X
(
X′X

)−1

= σ2
(
X′X

)−1

Inference in the general setting

Under assumptions 1-5, the sampling variance of the OLS estimator can be written in
matrix form as the following:

V
[
β̂|X

]
= σ2

u(X′X)−1

This variance matrix of the OLS estimator looks like this:

V
[
β̂0|X

]
Cov

[
β̂0, β̂1|X

]
Cov

[
β̂0, β̂2|X

]
· · · Cov

[
β̂0, β̂k|X

]
Cov

[
β̂0, β̂1|X

]
V
[
β̂1|X

]
Cov

[
β̂1, β̂2|X

]
· · · Cov

[
β̂1, β̂k|X

]
Cov

[
β̂0, β̂2|X

]
Cov

[
β̂1, β̂2|X

]
V
[
β̂2|X

]
· · · Cov

[
β̂2, β̂k|X

]
...

...
... . . . ...

Cov
[
β̂0, β̂k|X

]
Cov

[
β̂k, β̂1|X

]
Cov

[
β̂k, β̂2|X

]
· · · V

[
β̂k|X

]


With this sampling variance in hand, we can appeal to the usual results to do in-

ference, get confidence intervals, and perform hypothesis tests. For instance, under
assumption 1-5, by the central limit theorem, in large samples:

β̂j − βj

ŝe[β̂j ]
∼ N(0, 1)

In small samples, under assumptions 1-6,

β̂j − βj

ŝe[β̂j ]
∼ tn−(k+1)

Thus, under the null of H0 : βj = 0, we know that β̂j/ŝe[β̂j ] ∼ tn−(k+1). Here,
the estimated SEs come from: V̂[β̂] = σ̂2

u(X′X)−1, where

σ̂2
u =

û′û
n− (k + 1)

=

∑n
i=1 u

2
i

n− (k + 1)
.
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We can access this estimated covariance matrix in R:

vcov(mod)

## (Intercept) exports age male

## (Intercept) 4.766593e-04 1.163698e-07 -7.956151e-06 -6.675717e-05

## exports 1.163698e-07 1.676040e-09 -3.658689e-10 7.282947e-09

## age -7.956151e-06 -3.658689e-10 2.231299e-07 -7.764680e-07

## male -6.675717e-05 7.282947e-09 -7.764680e-07 1.908894e-04

## urban_dum -9.658428e-05 -4.861159e-08 7.107867e-07 -1.711373e-06

## malaria_ecology -6.909410e-06 -2.124140e-08 2.324132e-10 -1.017404e-07

## urban_dum malaria_ecology

## (Intercept) -9.658428e-05 -6.909410e-06

## exports -4.861159e-08 -2.124140e-08

## age 7.107867e-07 2.324132e-10

## male -1.711373e-06 -1.017404e-07

## urban_dum 2.060633e-04 2.723938e-09

## malaria_ecology 2.723938e-09 7.590439e-07

Note that the diagonal are the variances. So the square root of the diagonal is are
the standard errors:

sqrt(diag(vcov(mod)))

## (Intercept) exports age male

## 2.183253e-02 4.093947e-05 4.723663e-04 1.381627e-02

## urban_dum malaria_ecology

## 1.435491e-02 8.712313e-04

coef(summary(mod))[, ”Std. Error”]

## (Intercept) exports age male

## 2.183253e-02 4.093947e-05 4.723663e-04 1.381627e-02

## urban_dum malaria_ecology

## 1.435491e-02 8.712313e-04
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appendix
Covariance/variance interpretation of matrix OLS

X′y =

n∑
i=1


yi

yixi1
yixi2

...
yixiK

 ≈


ny

Ĉov[yi, xi1]
Ĉov[yi, xi2]

...
Ĉov[yi, xik]



X′X =
n∑

i=1


1 xi1 xi2 · · · xik

xi1 x2
i1 xi2xi1 · · · xi1xik

xi2 xi1xi2 x2
i2 · · · xi2xik

...
...

...
. . .

...
xik xi1xik xi2xik · · · xikxik



≈


n nx1 nx2 · · · nxk

nx1 V̂[xi1] Ĉov[xi1, xi2] · · · Ĉov[xi1, xik]

nx2 Ĉov[xi2, xi1] V̂[xi2] · · · Ĉov[xi2, xik]
...

...
...

. . .
...

nxk Ĉov[xik, xi1] Ĉov[xik, xi2] · · · V̂[xik]
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