Gov 2000: 10. Multiple Linear Regression:
Regression in Matrix Form

Matthew Blackwell

Harvard University

mblackwell@gov.harvard.edu

November 7, 2016

Where are we? Where are we going?

o Last few weeks: regression estimation and inference with one and two indepen-
dent variables

o This week: the general regression model with arbitrary covariates

« Next few weeks: regression odds and ends and what to do when the regression
assumptions go wrong

Nunn & Wantchekon

Nunn and Wantchekon (2011) ask the following question: are there long-term, per-
sistent effects of slave trade on Africans today? Their basic idea is to compare levels
of interpersonal trust (dependent variable) across different levels of historical slave
exports from a respondent’s ethnic group (main independent variable). The essential
problem with this type of analysis is that ethnic groups and respondents might differ
in their interpersonal trust in ways that correlate with the severity of slavery.

One way they attempt to get around this problem is to try to control for relevant
differences between groups via multiple regression. Here’s their specification of the
regression
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II1. Estimating Equations and Empirical Results
A. OLS Estimates

We begin by estimating the relationship between the number of slaves that were
taken from an individual’s ethnic group and the individual’s current level of trust.
Our baseline estimating equation is:

(1) trust,, 4. = @, + Bslave exports, + X, .. T +X;. 2+ X.® + €4,

where i indexes individuals, e ethnic groups, d districts, and ¢ countries. The vari-
able trust; , ; . denotes one of our five measures of trust, which vary across individu-
als. o, denotes country fixed effects, which are included to capture country-specific
factors, such as government regulations, that may affect trust (e.g., Philippe Aghion
et al. 2010; Aghion, Algan, and Cahuc 2008). slave exports, is a measure of the
number of slaves taken from ethnic group e during the slave trade. (We discuss this
variable in more detail below.) Our coefficient of interest is 3, the estimated relation-
ship between the slave exports of an individual’s ethnic group and the individual’s
current level of trust.

Our goal is to be able to understand what’s we're saying in this equation. Here is
the actual regression that they ran:

nunn <- foreign::read.dta(”../data/Nunn_Wantchekon_AER_2011.dta”)

mod <- Im(trust_neighbors ~ exports + age + male + urban_dum + malaria_ecology, data = nunn)

summary (mod)

##

## Call:

## Im(formula = trust_neighbors ~ exports + age + male + urban_dum +
## malaria_ecology, data = nunn)

##

## Residuals:

## Min 1Q Median 3Q Max

## -2.5954 -0.7491 0.1440 0.8735 1.9964

it

## Coefficients:

## Estimate Std. Error t value Pr(>|t])

## (Intercept) 1.503e+00 2.183e-02 68.844 <2e-16 #**%
## exports -1.021e-03 4.094e-05 -24.935 <2e-16 #**x%
## age 5.045e-03 4.724e-04 10.680 <2e-16 #**%

## male 2.784e-02 1.382e-02 2.015 0.0439 =



## urban_dum -2.739e-01 1.435e-02 -19.079 <2e-16 #**x

## malaria_ecology 1.941e-02 8.712e-04 22.279 <2e-16 ***
#H#t ---

## Signif. codes: @ ’#xx’ 0.001 ’**x’ 0.01 ’%’ 0.05 ’.’ 0.1 ’ ’ 1
it

## Residual standard error: 0.9778 on 20319 degrees of freedom
## (1497 observations deleted due to missingness)

## Multiple R-squared: ©0.06039, Adjusted R-squared: 0.06016
## F-statistic: 261.2 on 5 and 20319 DF, p-value: < 2.2e-16

It’s pretty easy to extend the two-variable regression to arbitrary independent vari-
ables. We just keep adding them in a linear fashion:

Yi = Bo +xaf1+ xief2 + -+ i fr + u;

Why not just write it this way? First, the notation is going to get needlessly messy
as we add variables. Second, there are a lot of concepts that are easier to define and
discuss once we have matrix notation.

MATRIX ALGEBRA REVIEW
Vectors

A vector is a list of numbers arranged, usually represented as a column. Specifically,
a column vector is a list of k numbers arranged as a column:

ay
ag
Qf
A row vector, on the other hand, is 1 X k list of numbers arranged as a row:
a:[al Qy g - QK]

Unless otherwise stated, we’ll assume that a vector is column vector and vectors will
be written with lowercase bold lettering (b). For reasons that will become clear, we’ll
refer to column vector as £ x 1 and a row vectoras 1 x k.

One way that we can already make our notation more compact is by writing the
list of covariate values for unit 7 as a vector. That is, if we have k covariates, then we’ll



define the (k + 1) x 1 vector of covariates, x;, as:

1
1
T41
exports,
X’i = .’Ei2 X‘_i = p 1
age,
male;
L Tik ]

Notice that we can also write all of the coefficients as a (k 4 1) x 1 vector as well:

_ /BO -
b1
/3: 52

Br |
It is useful to be able to switch a column vector to a row vector and vice versa.
This is exactly what the transpose operation does. For instance, ifaisa k£ x 1 column

vector, then its transpose a’ is the same vector in 1 x k row form. For instance, we
can write the vector of independent variables in row form with the transpose:

;=1 za z2 - x|

Vector Addition and Multiplication

How can we extend the ideas of addition and multiplication to vectors? To add two
vectors together, it only makes sense if they have the same length. For example, let a
and b be £ x 1 vectors. We define their sum as the sum of each entry:

ay by ai + by

az by az + by
atb=a=| _ |+ | . |= :

Qaf bk ak—i-bk

The first type of multiplication we can do with vectors is scalar multiplication of
a vector ba, where we just multiply each element of the vector by b:



There is a special way to multiply two (column) vectors of equal length that will
allow us to write the linear model very compactly. The inner product of a two column
vectors a and b (of equal dimension, £ x 1) is just the transpose of the first multiplied
by the second:

a'b = a1by +asby + - + arby

The intuition here is that this gives the length of the a vector in the “direction” of the
b vector. With this in hand, we can write the linear model in a very compact way:

yi = XiB + u;

For instance, last week, we had the two variables (plus a constant). We could write
things this way:

Bo
x;B=[1 za x| | B1 | =Bo+zafi+ zibs
B2

Here, x3 can be thought of as the “length” vector of independent variable in the
direction of the covariates. More generally, you can also think of this as generalizing
the multiplication of X5, to multiple covariates.

Another important example of where we use the inner product is with the resid-
uals. Let u be the n x 1 vector of residual. Then, the inner product of the residuals
is:

It’s just the sum of the squared residuals!

Matrices

A matrix is just a rectangular array of numbers. We say that a matrix is n x k if it has
n rows and k columns. We write a matrix with uppercase bold letters:

aip aiz2 - Qg
ag1 Q22 - Qg
A=

apl1 QAp2 - Qpg



We will often need to refer to some generic entry (or cell) of a matrix and we can
do this with a;; where this is the entry in row 7 and column j. There is nothing special
about these matrices. They are basically just like spreadsheets in Excel or the like. It’s
a way to group numbers.

One example of a matrix that we’ll use a lot is the design matrix, which has a
column of ones, and then each of the subsequent columns is each independent variable
in the regression.

1 exports; age; male

1 exports, age, maley
X — P' 2 g.z .

1 exports, age, male,

It is often useful to refer to matrices as a group of column or row vectors. For
instance, we can write a 2 X 3 matrix as a two 1 X 3 row vectors:

/
A | @1 o2 a3 || &y
- - /
az; a2 a3 ay
with row vectors

a) = [ ail a2 ai13 ] ay = [ G21 a2 0423 ]

We can define the following 3 x 2 matrix in terms of two 3 x 1 column vectors:

bi1 b2
B=| by by |=[b1 bz]
b31  b32

where by and bg represent the columns of B.

It should be clear what is what: matrices defined by column will be written hori-
zontally, whereas matrices defined by row will be written vertically. Also, we'll use j
and s as subscripts for columns of a matrix: x; or x,, whereas ¢ and ¢ will be used for
TOWS X),.

The transpose of a matrix A is the matrix created by switching the rows and
columns of the data and is denoted A’. That is, the kth column becomes the kth
row:

q11
Q= g ¢ Q’ _ { qi11 421 Q31 }
g31 432 P2 432

If Aisj x k,then A’ will be k x j.



Matrices and Vectors in R

Note, though, that R always prints a vector in row form, even if it is a column in the
original data.

head(nunn$trust_neighbors)

# [11 330011

One thing to watch out for is that R doesn't really distinguish between row vectors
and columns vectors by default. In R, a vector is just a list of numbers. For instance,
if you try to use nrow() or ncol() on a vector, R is confused:

ncol (nunn$trust_neighbors)
## NULL
nrow(nunn$trust_neighbors)

## NULL

Vectors in R are special constructs and you have to use length() to see how many
entries there are in the vector:

length(nunn$trust_neighbors)

## [1] 21822

You can convert vectors to have explicit dimensions by using as.matrix(), but be-
ware that R assumes all vectors are column vectors:

nrow(as.matrix(nunn$trust_neighbors))
## [1] 21822
ncol (as.matrix(nunn$trust_neighbors))

# 111

We can transpose in R using the t() function:



a <- matrix(1:6, ncol = 3, nrow = 2)

a

H#it [,11 [,2] [,3]
## [1,] 1 3 5
## [2,] 2 4 6

t(a)

## [,11 [,2]
#[1,] 1 2
# 2,1 3 4
## [3,] 5 6

Finally, we can see the design matrix using the model.matrix() function in R. And
the dim() function can help us get the dimensions of the matrix quickly:

head(model.matrix(mod), 5)

##  (Intercept) exports age male urban_dum malaria_ecology

## 1 1 854.9581 40 4 4 28.14704
## 2 1 854.9581 25 1 4 28.14704
## 3 1 854.9581 38 1 1 28.14704
## 4 1 854.9581 37 4 1 28.14704
## 5 1 854.9581 31 1 0 28.14704

dim(model.matrix(mod))
## [1] 20325 6

Addition and subtraction for matrices

How do we add or subtract matrices? Like vectors, matrices have to have the same
dimensions to be added together. When this is true, we say they are comformable,
meaning that the dimensions have to be the same. Let A and B both be 2 x 2 matrices.
Then, let A + B, where we add each cell together:

ail a2 b1 b2 a1 +b11 aip +bio
{ as  aso ] [ ba1  boo ] [ as) +bo1  aga + bao



Scalar multiplication for matrices is very similar to vectors and we just multiply
each element/cell by that scalar:

bA — b ail  ail2 _ bxa11 b><a12
a1 a2 bxaz bXxax

With these tools in hand, we can develop another matrix-based notation for the
linear model. Remember that we wrote the linear model as the following for all i €
[1,...,nl:

Yyi = Po +xif1 + zif2 + ui
Imagine we had an n of 4. We could write out each formula:
y1 = Po+x151 + 2182 +u1  (unit 1)
y2 = Bo + 2281 + 22082 + uz (unit 2)

ys = Bo + 2301 + 2362 + u3z  (unit 3)
Ya = Po + 241 + 2482 +ug  (unit 4)

We can write this with vectors form like so:

Y1 1 Ty 21 U
y2 | | 1 x2 29 U
v | 1 Bo + 5 B+ - B2 + s
(7 1 T4 24 Uy

Hopefully it’s clear in this notation that the column vector of the outcomes is a
linear combination of the independent variables and the error, with the 3 coeflicients
acting as the weights. Can we write this in a more compact form? Yes, but we need to
develop a notation and idea of matrix multiplication. Let X and 3 be the following:

r 2

1
Bo
1 zo =z
X =| ;] 27 B =| 5
(4x3) r3  Z3 (3x1) s
1 Ty Z4

Matrix multiplication by a vector

We will define multiplication of a matrix by a vector in the following way:

1 1 21
1 i) Z2

=X
| Bot ], [Pt L, | Pe=XB
1 Ty 24
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Thus, multiplication of a matrix by a vector is just the linear combination of the
columns of the matrix with the vector elements as weights/coeflicients. And the left-
hand side here only uses scalars times vectors, which is easy! In general, let’s say that
we have an x k matrix A and a k x 1 column vector b (notice that the number of
columns of the matrix is the same as the number of rows of the vector)

Let a; be the jth column of A. Then we can write:

¢ =Ab="ba; +basy+---+ bra;
(nx1)

Thus, now let X be the n x (k + 1) matrix of independent variables and (3 be the
(k4 1) x 1 column vector of coeflicients. Then:

XB = Bo + fix1 + Boxo + - - - + Brxy

Thus, we can compactly write the linear model as the following:

y =XB+ u
(nx1) (nx1)

An equivalent way to define matrix multiplication is with the inner product. Let
a); be the ith row of the matrix, A. Then, we can write each entry as:

c; = ab
With this definition, it is clear that our statement of the linear model is equivalent to:
Yi = X8+ u;

Matrix multiplication

What if, instead of a column vector b, we have a matrix B with dimensions k& x m.
How do we do multiplication like so C = AB? Each column of the new matrix is
just matrix by vector multiplication:

C= [Cl C2 cee Cm] Cj = Abj
Thus, each column of C is a linear combination of the columns of A.

Special matrices

A square matrix is one with equal numbers of rows and columns. The diagonal of a
square matrix are the values in which the row number is equal to the column number:
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a11 Or asa, etc.
a1p a2 a3
A= | ax ax a3
asy agz ass

To get the diagonal of a matrix in R, use the diag() function:

b <- matrix(1:4, nrow = 2, ncol = 2)
b

i [,11 [,2]
## [1,] 1 3
## [2,] 2 4

diag(b)

# 111 4

The identity matrix, I}, is a square £ x k matrix, with 1s along the diagonal and
os everywhere else.

1 0
Is=1|0 0
0 01
The identity matrix multiplied by any matrix just returns the matrix: AI = A.
Here, as is often the case, the dimension of the identity matrix is left implicit—from
the context of the equation we know it must be equal to the number of columns of A.
To create an identity matrix in R, you can also use the diag() function, but this
time just pass it a number instead of a matrix:

diag(3)

#H# [,11 [,2] [,3]
## [1,] 1 0 )
# [2,] 0 1 0
## [3,] 0 0 1
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OLS IN MATRIX FORM

Multiple linear regression in matrix form

Let 3 be the (k 4+ 1) x 1 vector of estimated regression coeflicients:
Bo

A1

®)
I

B
Given the above derivations, it is clear that we can write the fitted values of the
outcome as:

y=Xp3
It might be helpful to see this again more written out:
Y 150 +$11§1 +$12§2+"'+$1ng
R Y2 -~ 180 + 2181 + z2282 + - + Tak B
y=| . | =XB= .
Yn 180 + @n1B1 + n2Ba + -+ + T B

Residuals
With these fitted values, we can easily write the residuals in vector form:
i=y-Xg

The goal of OLS remains the same: to minimize the sum of the squared residuals.
Earlier, we saw that we can write this compactly with the inner product:

Wi = (y - XB) (y — XB)

Using matrix calculus to minimize this function, we arrive at the following first-order
condition:

0=X'(y - XB)
Rearranging, we have the following formula for the OLS estimator:
X'XB3 = X'y

In order to isolate B, we need to move the X’X term to the other side of the equals
sign. We've learned about matrix multiplication, but what about matrix “division”?



13

Matrix Inversion

What is division in its simplest form? % is the value such that a% = 1. For some
algebraic expression: au = b, let’s solve for u:

QI |

We need a matrix version of this: %

Definition If it exists, the inverse of square matrix A, denoted A1 is the matrix
suchthat A=A = L.

We can use the inverse to solve (systems of) equations:

Au=>b
A7TAu=A"1
Iu=A"1b
u=A"1b

If the inverse exists, we say that A is invertible or nonsingular.
Let’s assume, for now, that the inverse of X’X exists (we’ll come back to this) Then
we can write the OLS estimator as the following:

/6 — (X/X)flxly
Memorize this: “x prime x inverse x prime y” sear it into your soul.

OLS by hand in R

Let’s skip the 1m() function and compute the coefficients directly. First we need to get
the design matrix:

X <- model.matrix(trust_neighbors ~ exports + age + male + urban_dum + malaria_ecology, data = nunn)

dim(X)
## [1]1 20325 6

## model.frame always puts the response in the first column

y <- model.frame(trust_neighbors ~ exports + age + male + urban_dum + malaria_ecology, data = nunn)[,1]
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## solve() does inverses
## and %*% is matrix multiplication
solve(t(X) %*x% X) %*% t(X) %*x% y

it [,1]
## (Intercept) 1.503037046
## exports -0.001020836
## age 0.005044682
## male 0.027836875
## urban_dum -0.273871917

## malaria_ecology ©0.019410561

coef (mod)

## (Intercept) exports age male
## 1.503037046 -0.001020836 0.005044682 0.027836875
## urban_dum malaria_ecology

## -0.273871917 0.019410561

Intuition for the OLS in matrix form

What's the intuition here for this formula? First, note that the “numerator” X'y is
roughly composed of the covariances between the columns of X and y. Next, the
“denominator” X’X is roughly composed of the sample variances and covariances of
variables within X. Thus, we have something like:

~

B_o ~ (variance of X) ! (covariance of X & y)

Here, B—o is the vector of coefficients without the intercept/constant. We're sidestep-
ping the exact definitions of the variance and covariance of a matrix here.

OLS INFERENCE IN MATRIX FORM
A random vector is a vector of random variables:
Zi1
X; =
Here, x; is a random vector and ;1 and x;2 are random variables. When we talk about
the distribution of x;, we are talking about the joint distribution of z;; and x;2. The
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expectation of this random vector is just the expectation of each r.v. in the vector:

w0l [ o |

The variance of random vectors has to tell us both the variance of each r.v., but also the
covariance between them. Thus, we often call this the variance-covariance matrix:

V(w;1] Cov[z;1, ;2]

Vix;] =E [(x; — E[x;])(x; — E[x])] = [ Cov]z;1, x] \YE

Combined, these describe the joint distribution of x;.

Most general OLS assumptions

Linearity: y; = x,8 + u;

Random/iid sample: (y;, x}) are a iid sample from the population.
No perfect collinearity: X is an n x (k + 1) matrix with rank k£ + 1
Zero conditional mean: E[u;|x;] = 0

Homoskedasticity: V[u;|x;] = o2

Normality: u;|x; ~ N(0,02)

AN A W DN

No perfect collinearity

In matrix form: X isann x (k+ 1) matrix with rank £ + 1. The rank of a matrix is the
maximum number of linearly independent columns. If X has rank k£ + 1, then all of
its columns are linearly independent and none of its columns are linearly dependent
implies no perfect collinearity between any of the columns.

Why do we care about this? If A is a square £ x k matrix and has rank £, then
there exists a unique inverse, A’. Furthermore, if X has rank k& + 1, then (X'X) has
rank k 4 1. Thus, in order for the OLS coefficients to even be computed, we need full
rank of X. This is very similar to needing variation in X to be able to divide by the
variance in simple OLS.

Bias and Variance of OLS
It is useful to write the OLS estimator in the following way:
B=(X'X)"'X'y
= (X'X) 7' X/(X8 +u)
= (X'X) ' X'XS + (X'X) ' X'u
=B+ (X'X) "' X'u
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With this in hand, under matrix assumptions 1-4, OLS is conditionally unbiased
for (3
E[f|X] = f + (X'X) ™ X'E[u[X]
=8+ (X'X)"' X0
=/
This also implies that OLS is unconditionally unbiased: IE[B] =
What about the sampling variance of the OLS estimator, V[3|X]? First, note that
if we have a vector of constants, b, a matrix of constants, A and a random vector x,
then V[b + Ax] = AV[x]|A’. This is the matrix version of “squaring” a constant in
the variance of a single random variable.
Plugging in the expression for the OLS estimator and using this fact, we find:

VIBIX] = V[3+ (X'X) ™' X'u[X]
= V[(X'X) ™ X'u/X]
— (X'X) " X'VuX](X'X) ' XY
Can we make progress here? Yes, if use the property that if A is symmetric, then

(A_l)/ = A~ Thus, (X’X)"'X’) = X (X’X) ! and plugging back into the
variance: N
V[BIX] = (X'X) ! X'V[u|X]X (X'X)
Can we make more progress? Yes! What the covariance matrix of the errors,
ViulX]?

Vuq|X] covfuy, us|X] ... coviuy,u,|X]
covlug, up|X] V]ua|X] ... coviug, uy|X]
Vu[X] = : :
covlun, ui|X]  coviup,us|X] ... Vun|X]

Note that this matrix is symmetric since cov(u;, u;) = cov(u;, u;). By homoskedas-
ticity and iid, , we have constant variance V[u;|X] = V[u;|x;] = 02 and uncorrelated
errors, cov|us, ut|X] = 0. Then, the covariance matrix of the errors is simply:

0
0

o2 0 0
0 o2 0
V[ulX] = oI, = “
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Puttting this back into our expression for the OLS sampling variance, we get:

VIBIX] = (X'X) ' X'V[u|X]X (X'X)

— (X'X) "' X/(02L,)X (X'X)
— o2 (X'X) ' X'X (X'X) !
=02 (X'X) 7"

Inference in the general setting

Under assumptions 1-5, the sampling variance of the OLS estimator can be written in
matrix form as the following:

% [B\X] — 02(X'X)"!

This variance matrix of the OLS estimator looks like this:

v {BO‘X} Cov :BO,BHX: Cov [EO,BQIX] -+ Cov [EO,QIJX} ]
Cov :Bo, 31|X: \Y [BHX] Cov [31, BﬂX] -+ Cov [31, Bk|X}
Cov :Bo, §2|X: Cov :31,32|X: v {B2|X} -+ Cov [32731&}(}

| cov o Bix] covlfuiiX] corfhuix] o v]Ex]

With this sampling variance in hand, we can appeal to the usual results to do in-
ference, get confidence intervals, and perform hypothesis tests. For instance, under
assumption 1-5, by the central limit theorem, in large samples:

BB N, 1)
se[;]

In small samples, under assumptions 1-6,
Bj — B
se[3;]
Thus, under the null of Hy : 3; = 0, we know that Ej/sAe[Bj} ~ tn_(kt1)- Here,
the estimated SEs come from: V[8] = 52(X'X) ™!, where

~ b (k+1)

A~

n 2

T (k+1) n—(k+1)




18

We can access this estimated covariance matrix in R:

vcov(mod)

H## (Intercept) exports age male
## (Intercept) 4.766593e-04 1.163698e-07 -7.956151e-06 -6.675717e-05
## exports 1.163698e-07 1.676040e-09 -3.658689e-10 7.282947e-09
## age -7.956151e-06 -3.658689%e-10 2.231299e-07 -7.764680e-07
## male -6.675717e-05 7.282947e-09 -7.764680e-07 1.908894e-04
## urban_dum -9.658428e-05 -4.861159e-08 7.107867e-07 -1.711373e-06
## malaria_ecology -6.909410e-06 -2.124140e-08 2.324132e-10 -1.017404e-07
## urban_dum malaria_ecology

## (Intercept) -9.658428e-05 -6.909410e-06

## exports -4.861159e-08 -2.124140e-08

## age 7.107867e-07 2.324132e-10

## male -1.711373e-06 -1.017404e-07

## urban_dum 2.060633e-04 2.723938e-09

## malaria_ecology 2.723938e-09 7.590439e-07

Note that the diagonal are the variances. So the square root of the diagonal is are
the standard errors:

sqrt(diag(vcov(mod)))

## (Intercept) exports age male
## 2.183253e-02 4.093947e-05 4.723663e-04 1.381627e-02
#i# urban_dum malaria_ecology

#H# 1.435491e-02 8.712313e-04

coef (summary(mod))[, ”Std. Error”]

## (Intercept) exports age male
#it 2.183253e-02 4.093947e-05 4.723663e-04 1.381627e-02
## urban_dum malaria_ecology

#i# 1.435491e-02 8.712313e-04
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APPENDIX

Covariance/variance interpretation of matrix OLS

Yi _ny
n YiTi1 (/:(27[3/13 m’il]
Xy=Y | viz2 | ~ | Covlyi i
=1 .
| YiTik | | Cov[yi, wik] |
1 Ti1 Tig vt Ty
2
n Ti1 o] Ti2Zq1 -« TilTik
2
X'X = E Ti2  Ti1T42 T30 s T2k
— . . . . .
Tik Ti1Tik  Ti2Tik - TikTik
n nTy N9 s NI
nTy V[lel] COV[QZ‘il, .231‘2] e COV[QZ‘il, xik]
~ nfg COV[IEZ'Q, SCU] V[l‘zg] s COV[Z‘Z'Q, xik]

nZy  Coviwir, xi1] Covizi, wi] - V@]
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