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Where are we? Where are we going?

• Last week: we learned about how to calculate a simple (bivariate) linear regres-
sion, what the properties of OLS was in this case, and how to do inference for
regression parameters (slopes and intercepts).

• This week: we’re going to think about how to model and estimate relationships
between variables conditional on a third variable.

• Next week: generalize the entire regressionmodel to thematrix framework and
be very general.

why do we want to add variables to the regression?
Berkeley gender bias

In general, we want to add variables to a regression because relationships between
variables in the entire sample might differ from those same relationships within sub-
groups of the sample. Graduate admissions data from Berkeley, 1973 is a famous ex-
ample of this phenomenon. In this year, there were 8442 male applicants with a 44%
admission rate and 4321 female applicants with 35% admission rate. The key sub-
stantive question is whether or not this is evidence of discrimination toward women
in admissions.
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Of course, admission rates vary by department—some departments are “easier” to
get into than others. In this case, it makes sense to look at the difference in admissions
rates within departments. This data is in the following table:

Men Women
Dept Applied Admitted Applied Admitted
A 825 62% 108 82%
B 560 63% 25 68%
C 325 37% 593 34%
D 417 33% 375 35%
E 191 28% 393 24%
D 373 6% 341 7%

Within departments, women do somewhat better than men! It seems that rea-
son that women are admitted at lower rates overall is because women apply to depart-
ments with lower acceptance rates. (Of course, this doesn’t imply no discrimination—
it could be the case that the university restricts the size of departments with high inter-
est from women.) The lesson here is that overall/marginal relationships (admissions
and gender) might be different or the opposite of the same relationship conditional
on a third variable (department).

This admissions data is an example of what we call Simpson’s paradox of theYule-
Simpson effect. Another example is given in the figure below. In this simulated data,
there is a positive relationship between Yi and Xi among all observations. But if we
look within levels of Zi, there is a negative relationship.

## plot example of simpson’s paradox

z <- rbinom(100, 1, 0.5)

x <- z + rnorm(100, 1, 0.2)

y <- 2 * z - x + rnorm(100, 0, 0.2)

plot(x,y, bty = ’n’, xlim = c(0, 4), ylim = c(-3, 1.5), xlab = expression(X), ylab = expression(Y), col = ifelse(z == 1, ’indianred’, ’dodgerblue’), pch = 19)

abline(lm(y~x), lwd = 3)

text(x = 1, y = -2, expression(Z == 0), col = ’dodgerblue’)

text(x = 2.1, y = 0.75, expression(Z == 1), col = ’indianred’)

abline(a=0, b=-1, col = ’dodgerblue’, lwd = 3)

abline(a=2, b=-1, col = ’indianred’, lwd = 3)
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Why might we want to look at the relationship betweenXi and Yi within levels of
Zi? There are three primary reasons:

• Descriptive: Allows us to understand the relationships in the data. For exam-
ple, conditional on the number of steps I’ve taken, does higher activity levels
correlate with less weight?

• Predictive: We can usually make better predictions about the dependent vari-
able with more information on independent variables.

• Causal: Block potential confounding, which is when X doesn’t cause Y , but
only appears to because a third variable Z causally affects both of them.

With these goals inmind, we can start to think about howwrite the CEF as a func-
tion of two r.v.s as opposed to just one. Before our goal was to estimate the mean of Y
(the dependent variable) as a function of some independent variable, X : E[Yi|Xi].
We learned how to do for this for binary and categorical X ’s with simple means.
For continuous X ’s, we saw that our estimators were too noisy, so we modeled the
CEF/regression function with a line:

Yi = β0 + β1Xi + ui

Thisweek, wewant to estimate the relationship of two variables,Yi andXi, conditional
on a third variable, Xi, with the CEF, E[Yi|Xi, Zi]. In general, we often will a linear
and additive relationship:

Yi = β0 + β1Xi + β2Zi + ui

Once again, these β’s are the population parameters we want to estimate. We don’t get
to observe them.

The major points of moving from a single independent variable to two indepen-
dent variables are:
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1. Estimated slopes go from being predicted differences to predicted differences
conditional on the other independent variable/covariate.

2. OLSwith two covariates is still justminimizing the sumof the squared residuals.
3. OLS with two covariates is equivalent to two OLS regressions with 1 covariate

each.

4. Small adjustments to OLS assumptions and inference when adding a covariate.
5. Adding or omitting variables in a regression can affect the bias and the variance

of OLS.

adding a binary variable

ajr <- foreign::read.dta(’../data/ajr.dta’)

plot(ajr$avexpr, ajr$logpgp95, xlab = ”Strength of Property Rights”,

ylab = ”Log GDP per capita”, pch = 19, bty = ”n”,

col = ifelse(ajr$africa == 1, ’indianred’, ’dodgerblue’))
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Let Zi be Bernoulli/binary (Zi = 1 or Zi = 0). Here we’ll use Zi = 1 to indicate
that country i is anAfrican country. Suppose wewere to run a simple linear regression
of log GDP per captia (Yi) on just expropriation risk (Xi). What might be wrong with
this analysis? One concern might be that this model i picking up an “African effect” if
African countries have low incomes and weak property rights due to, say, a different
type of colonialism. To avoid this problem, we might includeZi in the model to make
sure that we are comparing differences in property rights withinAfrican countries and
within non-African countries, not between these two groups. This new regressionwill
be:

Ŷi = β̂0 + β̂1Xi + β̂2Zi

How can we interpret this model? One quick way is to notice that this equation
with two covariates is actually just two different lines: one for when Zi = 1 and one
for when Zi = 0. When Zi = 0:

Ŷi = β̂0 + β̂1Xi + β̂2Zi

= β̂0 + β̂1Xi + β̂2 × 0

= β̂0 + β̂1Xi

When Zi = 1:
Ŷi = β̂0 + β̂1Xi + β̂2Zi

= β̂0 + β̂1X1 + β̂2 × 1

= (β̂0 + β̂2) + β̂1X1

This will make the interpretation of these estimates easier.
Let’s see an example with the AJR data:

ajr.mod <- lm(logpgp95 ~ avexpr + africa, data = ajr)

summary(ajr.mod)

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 5.65556 0.31344 18.043 < 2e-16 ***

## avexpr 0.42416 0.03971 10.681 < 2e-16 ***

## africa -0.87844 0.14707 -5.973 3.03e-08 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 0.6253 on 108 degrees of freedom
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## (52 observations deleted due to missingness)

## Multiple R-squared: 0.7078, Adjusted R-squared: 0.7024

## F-statistic: 130.8 on 2 and 108 DF, p-value: < 2.2e-16

Let’s review what we’ve seen so far:

Intercept for Xi Slope for Xi

Non-African country (Zi = 0) β̂0 β̂1
African country (Zi = 1) β̂0 + β̂2 β̂1

In this example, we have:

Ŷi = 5.656 + 0.424×Xi +−0.878× Zi

We can read these as:

• β̂0: average log income for non-African country (Zi = 0) with property rights
measured at 0 is 5.656

• β̂1: A one-unit change in property rights is associated with a 0.424 increase in
average log incomes for two African countries (or between two non-African
countries)

• β̂2: there is a -0.878 average difference in log income per capita betweenAfrican
and non-African counties conditional on property rights

More generally, we can interpret the coefficients with a binary Zi:

• β̂0: average value of Yi when both Xi and Zi are equal to 0
• β̂1: A one-unit change in Xi is associated with a β̂1-unit change in Yi condi-
tional on Zi

• β̂2: average difference in Yi between Zi = 1 group and Zi = 0 group condi-
tional onXi

We can see how this works visually:
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adding a continuous variable
Basics

Now suppose thatZi is continuous, such as themean temperature in that country. We
might want to include this if geographic factors might influence the kinds of political
institutions and average incomes (through health issues like malaria). If we write the
regression adding this Zi it looks the same as the binary Zi:

Ŷi = β̂0 + β̂1Xi + β̂2Zi

Let’s see the output from this regression:
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ajr.mod2 <- lm(logpgp95 ~ avexpr + meantemp, data = ajr)

summary(ajr.mod2)

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 6.80627 0.75184 9.053 1.27e-12 ***

## avexpr 0.40568 0.06397 6.342 3.94e-08 ***

## meantemp -0.06025 0.01940 -3.105 0.00296 **

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 0.6435 on 57 degrees of freedom

## (103 observations deleted due to missingness)

## Multiple R-squared: 0.6155, Adjusted R-squared: 0.602

## F-statistic: 45.62 on 2 and 57 DF, p-value: 1.481e-12

How do we interpret the coefficients from this regression? With a continuous Zi,
we can have more than two values that it can take on:

Intercept for Xi Slope for Xi

Zi = 0 ◦C β̂0 β̂1
Zi = 21 ◦C β̂0 + β̂2 × 21 β̂1
Zi = 24 ◦C β̂0 + β̂2 × 24 β̂1
Zi = 26 ◦C β̂0 + β̂2 × 26 β̂1

Ŷi = 6.806 + 0.406×Xi +−0.06× Zi

Specifically, we can interpret the coefficients from this regression:

• β̂0: average log income for a country with property rights measured at 0 and a
mean temperature of 0 is 6.806

• β̂1: A one-unit change in property rights is associated with a 0.406 change in
average log incomes conditional on a country’s mean temperature

• β̂2: A one-degree increase inmean temperature is associatedwith a -0.06 change
in average log incomes conditional on strength of property rights

More generally, with a regression ofYi on a continuousXi andZi, we can interpret
the coefficients as:
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• The coefficient β̂1 measures how the predicted outcome varies inXi for a fixed
value of Zi.

• The coefficient β̂2 measures how the predicted outcome varies in Zi for a fixed
value of Xi.

mechanics and partialing out regression
Up to this point, we have just run our regressions without discussing how to calcu-
late the estimators. Where do they come from? To answer this, we first need to re-
define some terms from simple linear regression. We’ll define the fitted values for
i = 1, . . . , n:

Ŷi = β̂0 + β̂1Xi + β̂2Zi

In a similar way to simple regression, we’ll also define the residuals for i = 1, . . . , n:

ûi = Yi − Ŷi.

How do we estimate β̂0, β̂1, and β̂2? We’ll simply generalize the method from
simple regression. That is, we’ll minimize the sum of the squared residuals:

(β̂0, β̂1, β̂2) = arg min
b0,b1,b2

n∑
i=1

(Yi − b0 − b1Xi − b2Zi)
2

It’s possible to derive explicit formulas for these estimators, but we’ll hold off on these
until we can derive OLS for any number of independent variables.

Even thought we’re not going to explicitly write out the OLS formulas for the two-
covariate case, but there is a simple, intuitive way to do this using only simple/bivariate
linear regression. Suppose we have the following model:

Yi = β0 + β1Xi + β2Zi + ui

We can write the OLS estimator for β1 as:

β̂1 =

∑n
i=1 r̂xz,iYi∑n
i=1 r̂

2
xz,i

This is just the equation for a estimated slope in a bivariate regression where r̂xz,i is
the only covariate. Here, r̂xz,i are the residuals of a regression of Xi on Zi:

Xi = δ0 + δ1Zi + rxz,i

r̂xz,i = Xi − δ̂0 + δ̂1Zi



10

That is, we treat Xi as the dependent variable and Zi as the independent variable
and calculate the residuals from that regression. Then if we stick those residuals into
a regression with Yi as the outcome:

Ŷi = β̂0 + β̂1r̂xz,i

This will give us identical estimates for β̂1 to when we run the full regression:

Ŷi = β̂0 + β̂1Xi + β̂2Zi

Let’s show this with the AJR data. First we are going to regress the property rights
variable,Xi, on the mean temperature variable, Zi. Here we have to add an argument
to the lm() function that tells R to exclude the missing values from the regression, but
keep them in the residuals and fitted values. This is useful because we are going to
create a new variable for the residuals and if R were to drop the missing values from
the residuals, the columns wouldn’t align properly.

## when missing data exists, need the na.action in order to place

## residuals or fitted values back into the data

ajr.first <- lm(avexpr ~ meantemp, data = ajr, na.action = na.exclude)

summary(ajr.first)

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 9.95678 0.82015 12.140 < 2e-16 ***

## meantemp -0.14900 0.03469 -4.295 6.73e-05 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 1.321 on 58 degrees of freedom

## (103 observations deleted due to missingness)

## Multiple R-squared: 0.2413, Adjusted R-squared: 0.2282

## F-statistic: 18.45 on 1 and 58 DF, p-value: 6.733e-05

Next, we store the residuals from this regression using the residuals() function in
R. Again, the na.exclude option in the lm() call allows us to do this without errors.

## store the residuals

ajr$avexpr.res <- residuals(ajr.first)
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Now we compare the estimated slope for property rights from the regression on
the residuals to the Regression on the original variables:

coef(lm(logpgp95 ~ avexpr.res, data = ajr))

## (Intercept) avexpr.res

## 8.0542783 0.4056757

coef(lm(logpgp95 ~ avexpr + meantemp, data = ajr))

## (Intercept) avexpr meantemp

## 6.80627375 0.40567575 -0.06024937

Notice how the estimated coefficient for property rights is the same in both. But
also notice how the intercept is off. This won’t be the main way we calculate OLS
coefficients, but it’s sometimes useful for intuition. It’s especially useful for producing
scatterplots, since this is more difficult when you have more than one explanatory
variable.

We can plot the relationship between property rights and income conditional on
temperature by plotting income against the same residuals.

plot(x = ajr$avexpr.res, y = ajr$logpgp95, pch = 19, col = ”grey60”, bty = ”n”,

xlab = ”Residuals(Property Right ~ Mean Temperature)”,

ylab = ”Log GDP per capita”, las = 1)

abline(lm(logpgp95 ~ avexpr.res, data = ajr), col = ”indianred”, lwd = 3)
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ols assumptions & inference with 2 variables
OLS assumptions for unbiasedness

When we have more than one independent variable, we need the following assump-
tions in order for OLS to be unbiased:

1. Linearity: Yi = β0 + β1Xi + β2Zi + ui
2. Random/iid sample
3. No perfect collinearity
4. Zero conditional mean error: E[ui|Xi, Zi] = 0

The “no perfect collinearity” is only truly new-sounding assumption. Notice that
it replaces “variation in Xi.”

Assumption 3 - (a) No independent variable is constant in the sample and (b) there
are no exactly linear relationships among the independent variables.
The first part here, (a), is just the same as in the bivariate regression. BothXi and

Zi have to vary. The second part is new. It says that Zi cannot be a deterministic,
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linear function of Xi. This rules out any function like this:

Zi = a+ bXi

Notice how this is linear (equation of a line) and there is no error, so it is deterministic.
What’s the correlation between Zi and Xi? 1!

A simple example, if trivial example of a perfect collinearity is if we have the
following two variables: Xi = 1 if a country is not in Africa and 0 otherwise, and
Zi = 1 if a country is in Africa and 0 otherwise. But, clearly we have the following:
Zi = 1−Xi. These two variables are perfectly collinear.

A situation that may appear to be perfect collinearity is whenXi is property rights
and Zi = X2

i . Do we have to worry about collinearity here? No! Because while Zi is
a deterministic function of Xi, it is not a linear function of Xi.

Note that R, Stata, et al will drop one of the variables if there is perfect collinearity:

ajr$nonafrica <- 1 - ajr$africa

summary(lm(logpgp95 ~ africa + nonafrica, data = ajr))

##

## Coefficients: (1 not defined because of singularities)

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 8.71638 0.08991 96.941 < 2e-16 ***

## africa -1.36119 0.16306 -8.348 4.87e-14 ***

## nonafrica NA NA NA NA

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 0.9125 on 146 degrees of freedom

## (15 observations deleted due to missingness)

## Multiple R-squared: 0.3231, Adjusted R-squared: 0.3184

## F-statistic: 69.68 on 1 and 146 DF, p-value: 4.87e-14

Another example of collinearity is when we rescale and recenter a variable. For
example, letXi be mean temperature in Celsius and letZi = 1.8Xi+32 be the mean
temperature in Fahrenheit. Obviously, this is a deterministic function, so R will act
accordingly:

ajr$meantemp.f <- 1.8 * ajr$meantemp + 32

coef(lm(logpgp95 ~ meantemp + meantemp.f, data = ajr))

## (Intercept) meantemp meantemp.f

## 10.8454999 -0.1206948 NA
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OLS assumptions for large-sample inference

To arrive at a simple formula for the variance and standard error of the OLS coeffi-
cients, it is common to assume homoskedasticity. Again, this isn’t strictly necessary
to derive the sampling variance, but it does make the expression more simple and it is
what almost all statistical software packages assume when they present SEs.

1. Linearity Yi = β0 + β1Xi + β2Zi + ui
2. Random/iid sample
3. No perfect collinearity
4. Zero conditional mean error: E[ui|Xi, Zi] = 0
5. Homoskedasticity: V[ui|Xi, Zi] = σ2

u

Inference with two independent variables in large samples

Let’s say that you have yourOLS estimate β̂1. Furthermore, you have an estimate of the
standard error for that coefficient, ŝe[β̂1]. We haven’t said howwe’re going to calculate
those yet, but R gives them to you and we’ll get to that shortly. Under assumption 1-5,
in large samples, we’ll have the following:

β̂1 − β1

ŝe[β̂1]
∼ N(0, 1)

The same holds for the other coefficient:

β̂2 − β2

ŝe[β̂2]
∼ N(0, 1)

In large samples, nothing changes about inference! Hypothesis test and confidence
intervals are exactly the same as in the bivariate case.

For small-sample exact inference, we need the Gauss-Markov plus Normal errors:

1. Linearity: Yi = β0 + β1Xi + β2Zi + ui
2. Random/iid sample
3. No perfect collinearity
4. Zero conditional mean error: E[ui|Xi, Zi] = 0
5. Homoskedasticity: V[ui|Xi, Zi] = σ2

u

6. Normal conditional errors: ui ∼ N(0, σ2
u)

Under assumptions 1-6, we have the following small change to our small-n sam-
pling distribution:

β̂1 − β1

ŝe[β̂1]
∼ tn−3
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The same is true for the other coefficient:

β̂2 − β2

ŝe[β̂2]
∼ tn−3

Why n−3 degrees of freedomnow instead of the n−2 in the simple linear regres-
sion case? Well, we’ve estimated another parameter, so we need to take off another
degree of freedom. Thus, we need tomake small adjustments to the critical values and
the t-values for our hypothesis tests and confidence intervals.

omitted variable bias
Remember that under assumptions 1-4, we get unbiased estimates of the coefficients.
One question you might ask yourself is the following: what happens if we ignore the
second independent variable and just run the simple linear regression with just Xi?
Which of the four assumptions might we violate? Zero conditional mean error! Last
week we said that for the simple linear regression we assume that:

E[ui|Xi] = 0

In this scenario, the true model would be:

Yi = β0 + β1Xi + β2Zi + ui

Let’smakeAssumptions 1-4 about thismodel. Specifically, we’ll say thatE[ui|Xi, Zi] =
0. Note that this implies that E[ui|Xi] = 0 (the reverse is not true). Then, let’s think
about running a misspecified model that omits Zi:

Yi = β0 + β1Xi + u∗i

Notice here thatu∗i = β2Zi+ui, andwhile we know thatE[ui|Xi] = 0, we havemade
no assumptions aboutE[Zi|Xi], soE[u∗i |Xi] ̸= 0. Intuitively, this is saying that there
is correlation betweenXi and themisspecified erroru∗i due to the correlation between
Xi and Zi.

Let’s write the OLS estimates from the misspecified model as:

Ŷi = β̃0 + β̃1Xi

Our main question is how to relate β̃1 to β̂1 from the true model. In particular, we
want to know if the OLS estimator on the misspecified model will be unbiased, so that
E[β̃1] = β1? If not, what will be the bias?
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In short, we can write the OLS estimator from the misspecified simple linear re-
gression as:

β̃1 = β1 + β2δ̂1

Here the δ̂1 is the coefficient on Xi from a regression of Zi on Xi:

Zi = δ0 + δ1Xi + vi

Remember that by OLS, this is just:

δ̂1 =
ĉov(Zi, Xi)

V̂(Xi)

Will be positive when cov(Xi, Zi) > 0 and negative when cov(Xi, Zi) < 0. Will be
0 when Xi and Zi are independent. Let’s take expectations:

E[β̃1] = E[β1 + β2δ̂1]

= β1 + β2E[δ̂1]
= β1 + β2δ1

Thus, we can calculate the bias here:

Bias(β̃1) = E[β̃1]− β1 = β2δ1

In other words:

omitted variable bias = (effect of Zi on Yi)× (effect of Xi on Zi)

With this in hand, we can sign the possible bias if we know the sign of theXi and
Zi relationship and the Yi and Zi relationship.

cov(Xi, Zi) > 0 cov(Xi, Zi) < 0 cov(Xi, Zi) = 0

β2 > 0 Positive bias Negative Bias No bias
β2 < 0 Negative bias Positive Bias No bias
β2 = 0 No bias No bias No bias

Including irrelevant variables

What if we do the opposite? Include an irrelevant variable? Do we have bias in this
case? What would it mean for Zi to be an irrelevant variable? Basically, that we have

Yi = β0 + β1Xi + 0× Zi + ui
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So in this case, the true value of β2 = 0. But under Assumptions 1-4, OLS is unbiased
for all the parameters:

E[β̂0] = β0

E[β̂1] = β1

E[β̂2] = 0

Including an irrelevant variable will increase the standard errors for β̂1.

multicollinearity
Sampling variance for simple linear regression

Under simple linear regression, we found that the distribution of the slope was the
following:

V(β̂1) =
σ2
u∑n

i=1(Xi −X)2

Factors affecting the standard errors (the square root of these sampling variances):

• The error variance (higher conditional variance of Yi leads to bigger SEs)
• The variance of Xi (lower variation in Xi leads to bigger SEs)

Regression with an additional independent variable:

V(β̂1) =
σ2
u

(1−R2
1)
∑n

i=1(Xi −X)2

Here, R2
1 is the R2 from the regression of Xi on Zi:

X̂i = δ̂0 + δ̂1Zi

Factors now affecting the standard errors:

• The error variance (higher conditional variance of Yi leads to bigger SEs)
• The variance of Xi (lower variation in Xi leads to bigger SEs)
• The strength of the relationship betweeXi andZi (stronger relationships mean

higher R2
1 and thus bigger SEs)

What happens with perfect collinearity? R2
1 = 1 and the variances are infinite.

DefinitionMulticollinearity is defined to be high, but not perfect, correlation be-
tween two independent variables in a regression.
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With multicollinearity, we’ll have R2
1 ≈ 1, but not exactly. The stronger the rela-

tionship betweenXi andZi, the closer theR2
1 will be to 1, and the higher the SEs will

be:
V(β̂1) =

σ2
u

(1−R2
1)
∑n

i=1(Xi −X)2

Given the symmetry, it will also increase V(β̂2) as well.
Remember that we can calculate the regression coefficient forXi by first running a

regression ofXi onZi and using the residuals from that regression as the independent
variable:

Ŷi = β̂0 + β̂1r̂xz,i

But whenZi andXi have a strong relationship, then the residuals will be very small—
we explain away a lot of the variation in Xi through Zi. And we know that when the
independent variable (here the residuals, r̂xz,i) has low variance, then the standard
errors of the estimator will increase. Basically, there is less residual variation left inXi

after “partialling out” the effect of Zi

What is the effect ofmulticollinearity? Importantly, there is no effect on the bias of
OLS. It only increases the standard errors. In some sense, it is really just a sample size
problem. If Xi and Zi are extremely highly correlated, you’re going to need a much
bigger sample to accurately differentiate between their effects.
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appendix
Deriving the formula for the misspecified coefficient

Here we’ll use ĉov to mean the sample covariance, and V̂ to be the sample variance.

β̃1 =
ĉov(Yi, Xi)

V̂(Xi)
(OLS formulas)

=
ĉov(β0 + β1Xi + β2Zi + ui, Xi)

V̂(Xi)
(Linearity in correct model)

=
ĉov(β0, Xi)

V̂(Xi)
+

ĉov(β1Xi, Xi)

V̂(Xi)
+

ĉov(β2Zi, Xi)

V̂(Xi)
+

ĉov(ui, Xi)

V̂(Xi)
(covariance properties)

= 0 +
ĉov(β1Xi, Xi)

V̂(Xi)
+

ĉov(β2Zi, Xi)

V̂(Xi)
+ 0 (zero mean error)

= β1
V̂(Xi)

V̂(Xi)
+ β2

ĉov(Zi, Xi)

V̂(Xi)
(properties of covariance)

= β1 + β2
ĉov(Zi, Xi)

V̂(Xi)

= β1 + β2δ̂1 (OLS formulas)
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