Gov 2000: 9. Regression with Two Independent Variables

Matthew Blackwell

Fall 2016

- 1. Why Add Variables to a Regression?
- 2. Adding a Binary Covariate
- 3. Adding a Continuous Covariate
- 4. OLS Mechanics with Two Covariates
- 5. OLS Assumptions with Two Covariates
- 6. Omitted Variable Bias
- 7. Goodness of Fit & Multicollinearity

Where are we? Where are we going?

Last Week

Where are we? Where are we going?

Where are we? Where are we going?

1/ Why Add Variables to a Regression?

Berkeley gender bias

- Graduate admissions data from Berkeley, 1973
- Acceptance rates:
 - Men: 8442 applicants, 44% admission rate
 - ▶ Women: 4321 applicants, 35% admission rate
- Evidence of discrimination toward women in admissions?
- This is a marginal relationship.
- What about the conditional relationship within departments?

Berkeley gender bias, II

Within departments:

	Men		Women	
Dept	Applied	Admitted	Applied	Admitted
A	825	62%	108	82%
В	560	63%	25	68%
С	325	37%	593	34%
D	417	33%	375	35%
Е	191	28%	393	24%
F	373	6%	341	7%

- Within departments, women do somewhat better than men!
- Women apply to more challenging departments.
- Marginal relationships (admissions and gender) ≠ conditional relationship given third variable (department).

Simpson's paradox

• Overall a positive relationship between Y_i and X_i .

Simpson's paradox

- Overall a positive relationship between Y_i and X_i .
- But within levels of Z_i , the opposite.

Basic idea

- Old goal: estimate the mean of Y as a function of some independent variable, X: E[Y_i|X_i].
- For continuous X's, we modeled the CEF/regression function with a line:

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

New goal: estimate the relationship of two variables, Y_i and X_i, conditional on a third variable, Z_i:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i$$

• β 's are the population parameters we want to estimate.

Why control for another variable

Descriptive

- Get a sense for the relationships in the data.
- Conditional on the number of steps I've taken, does higher activity levels correlate with less weight?
- Predictive
 - ► We can usually make better predictions about the dependent variable with more information on independent variables.
- Causal
 - Block potential confounding, which is when X doesn't cause Y, but only appears to because a third variable Z causally affects both of them.

Plan of attack

- 1. Interpretation with a binary Z_i
- 2. Interpretation with a continuous Z_i
- 3. Mechanics of OLS with 2 covariates
- 4. OLS assumptions with 2 covariates:
 - Omitted variable bias
 - Multicollinearity

What we won't cover in lecture

- 1. The OLS formulas for 2 covariates
- 2. Proofs
- 3. The second covariate being a function of the first: $Z_i = X_i^2$
- 4. Hypothesis test/confidence intervals (almost exactly the same)

2/ Adding a Binary Covariate

Example

Basics

• Ye olde model:

$$\mathbb{E}[Y_i|X_i] = \alpha_0 + \alpha_1 X_i$$

- (α_0, α_1) are the bivariate intercept/slope, e_i is the bivariate error.
- Concern: AJR might be picking up an "African effect":
 - African countries might have low incomes and weak property rights.
- Condition on country being in Africa or not to remove this:

$$\mathbb{E}[Y_i|X_i, Z_i] = \beta_0 + \beta_1 X_i + \beta_2 Z_i$$

- $Z_i = 1$ to indicate that *i* is an African country
- $Z_i = 0$ to indicate that *i* is an non-African country
- Effects are now within Africa or within non-Africa, not between

AJR model

```
ajr.mod <- lm(logpgp95 ~ avexpr + africa, data = ajr)
summary(ajr.mod)</pre>
```

##							
##	Coefficients:						
##	Estir	nate Std. Er	ror t val	ue Pr(> t)			
##	(Intercept) 5.6	6556 0.3	134 18.	04 <2e-16	***		
##	avexpr 0.4	1242 0.0	397 10.	68 <2e-16	***		
##	africa -0.8	3784 0.1	471 -5.	97 3e-08	***		
##							
##	Signif. codes: 0) '***' 0.00	1 '**' 0.	01 '*' 0.05	'.' 0.1	, , ,	1
##							
##	Residual standard	d error: 0.6	25 on 108	degrees of	freedom		
##	(52 observation	ns deleted d	ue to mis	singness)			
##	Multiple R-square	ed: 0.708,	Adjusted	R-squared:	0.702		
##	F-statistic: 13	on 2 and 1	08 DF, p	-value: <2e	-16		

Two lines, one regression

- How can we interpret this model?
- Plug in two possible values for Z_i and rearrange
- When $Z_i = 0$:

$$\begin{aligned} \widehat{Y}_i &= \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i \\ &= \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 \times 0 \\ &= \widehat{\beta}_0 + \widehat{\beta}_1 X_i \end{aligned}$$

• When $Z_i = 1$:

$$\begin{split} \widehat{Y}_i &= \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i \\ &= \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 \times 1 \\ &= (\widehat{\beta}_0 + \widehat{\beta}_2) + \widehat{\beta}_1 X_i \end{split}$$

Two different intercepts, same slope

Interpretation of the coefficients

Intercept for X_i Slope for X_i Non-African country $(Z_i = 0)$ $\widehat{\beta}_0$ $\widehat{\beta}_1$ African country $(Z_i = 1)$ $\widehat{\beta}_0 + \widehat{\beta}_2$ $\widehat{\beta}_1$

In this example, we have:

 $\widehat{Y}_i = 5.656 + 0.424 \times X_i - 0.878 \times Z_i$

- $\hat{\beta}_0$: average log income for non-African country ($Z_i = 0$) with property rights measured at 0 is 5.656
- *β*₁: A one-unit increase in property rights is associated with a 0.424 increase in average log incomes for two African countries (or for two non-African countries)
- $\hat{\beta}_2$: there is a -0.878 average difference in log income per capita between African and non-African counties conditional on property rights

General interpretation of the coefficients

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i$$

- $\widehat{\beta}_0$: average value of Y_i when both X_i and Z_i are equal to 0
- *β*₁: A 1-unit increase in X_i is associated with a *β*₁-unit change in Y_i for units with the same value of Z_i
- β₂: average difference in Y_i between Z_i = 1 group and Z_i = 0 group for units with the same value of X_i

Adding a binary variable, visually

Adding a binary variable, visually

Marginal vs conditional

3/ Adding a Continuous Covariate

Adding a continuous variable

• Ye olde model:

$$\mathbb{E}[Y_i|X_i] = \alpha_0 + \alpha_1 X_i$$

- New concern: geography is confounding the effect
 - geography might affect political institutions
 - geography might affect average incomes (through diseases like malaria)
- Condition on Z_i: mean temperature in country *i* (continuous)

 $\mathbb{E}[Y_i|X_i, Z_i] = \beta_0 + \beta_1 X_i + \beta_2 Z_i$

AJR model, revisited

```
ajr.mod2 <- lm(logpgp95 ~ avexpr + meantemp, data = ajr)
summary(ajr.mod2)</pre>
```

##	
##	Coefficients:
##	Estimate Std. Error t value Pr(> t)
##	(Intercept) 6.8063 0.7518 9.05 1.3e-12 ***
##	avexpr 0.4057 0.0640 6.34 3.9e-08 ***
##	meantemp -0.0602 0.0194 -3.11 0.003 **
##	
##	Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##	
##	Residual standard error: 0.643 on 57 degrees of freedom
##	(103 observations deleted due to missingness)
##	Multiple R-squared: 0.615, Adjusted R-squared: 0.602
##	F-statistic: 45.6 on 2 and 57 DF, p-value: 1.48e-12

Interpretation with a continuous Z

	Intercept for X_i	Slope for X_i
$Z_i = 0 ^{\circ} \mathrm{C}$	$\widehat{\beta}_0$	$\widehat{\beta}_1$
$Z_i = 21 ^{\circ} \text{C}$	$\widehat{\beta}_0 + \widehat{\beta}_2 \times 21$	$\widehat{\beta}_1$
$Z_i = 24 ^{\circ} \text{C}$	$\widehat{\beta}_0 + \widehat{\beta}_2 \times 24$	$\widehat{\beta}_1$
$Z_i = 26 ^{\circ} \text{C}$	$\widehat{\beta}_0 + \widehat{\beta}_2 \times 26$	$\widehat{\beta}_1$

In this example we have:

 $\widehat{Y}_i = 6.806 + 0.406 \times X_i - 0.06 \times Z_i$

- *β*₀: average log income for a country with property rights measured at 0 and a mean temperature of 0 is 6.806
- *β*₁: A one-unit increase in property rights is associated with a 0.406 change in average log incomes conditional on a country's mean temperature
- $\hat{\beta}_2$: A one-degree increase in mean temperature is associated with a -0.06 change in average log incomes conditional on strength of property rights

General interpretation

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i$$

- The coefficient β₁ measures how the predicted outcome varies in X_i for units with the same value of Z_i.
- The coefficient β₂ measures how the predicted outcome varies in Z_i for units with the same value of X_i.

4/ OLS Mechanics with Two Covariates

Fitted values and residuals

- Where do we get our hats? $\widehat{\beta}_0, \widehat{\beta}_1, \widehat{\beta}_2$
- Fitted values for i = 1, ..., n:

$$\widehat{Y}_i = \widehat{\mathbb{E}}[Y_i|X_i, Z_i] = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i$$

• Residuals for
$$i = 1, ..., n$$
:

$$\hat{u}_i = Y_i - \hat{Y}_i$$

Minimize the sum of the squared residuals, just like before:

$$(\widehat{\beta}_0, \widehat{\beta}_1, \widehat{\beta}_2) = \underset{b_0, b_1, b_2}{\operatorname{arg\,min}} \sum_{i=1}^n (Y_i - b_0 - b_1 X_i - b_2 Z_i)^2$$

 We'll derive closed-form estimators with arbitrary covariates next week.

OLS estimator recipe using two steps

- No explicit OLS formulas this week, but a recipe instead
- "Partialling out" OLS recipe:
 - 1. Run regression of X_i on Z_i :

$$\widehat{X}_i = \widehat{\mathbb{E}}[X_i | Z_i] = \widehat{\delta}_0 + \widehat{\delta}_1 Z_i$$

2. Calculate residuals from this regression:

$$\hat{r}_{xz,i} = X_i - \widehat{X}_i$$

3. Run a simple regression of Y_i on residuals, $\hat{r}_{xz,i}$:

$$\widehat{Y}_i = \widehat{\alpha}_0 + \widehat{\alpha}_1 \widehat{r}_{xz,i}$$

- Estimate of $\widehat{\alpha}_1$ will be equivalent to $\widehat{\beta}_1$ from the "big" regression:

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i$$

First regression

```
Regress X<sub>i</sub> on Z<sub>i</sub>:
```

```
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.9568 0.8202 12.1 < 2e-16 ***
## meantemp -0.1490 0.0347 -4.3 0.000067 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.32 on 58 degrees of freedom
## (103 observations deleted due to missingness)
## Multiple R-squared: 0.241, Adjusted R-squared: 0.228
## F-statistic: 18.4 on 1 and 58 DF, p-value: 0.0000673</pre>
```

Regression of log income on the residuals

Save residuals:

store the residuals
ajr\$avexpr.res <- residuals(ajr.first)</pre>

Now we compare the estimated slopes:

coef(lm(logpgp95 ~ avexpr.res, data = ajr))

(Intercept) avexpr.res ## 8.0543 0.4057

coef(lm(logpgp95 ~ avexpr + meantemp, data = ajr))

##	(Intercept)	avexpr	meantemp
##	6.80627	0.40568	-0.06025

Residual/partial regression plot

 Can plot the conditional relationship between property rights and income given temperature:

5/ OLS Assumptions with Two Covariates

OLS assumptions for unbiasedness

- Simple regression assumptions unbiasedness/consistency of OLS:
 - 1. Linearity
 - 2. Random/iid sample
 - 3. Variation in X_i
 - 4. Zero conditional mean error: $\mathbb{E}[u_i|X_i] = 0$
- Small modification to these with 2 covariates:
 - 1. Linearity

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i$$

- 2. Random/iid sample
- 3. No perfect collinearity
- 4. Zero conditional mean error (both X_i and Z_i unrelated to u_i)

$$\mathbb{E}[u_i|X_i, Z_i] = 0$$

New assumption

Assumption 3: No perfect collinearity

(1) No independent variable is constant in the sample and (2) there are no exactly linear relationships among the independent variables.

- Two components
 - 1. Both X_i and Z_i have to vary.
 - 2. Z_i cannot be a deterministic, linear function of X_i .
- Part 2 rules out anything of the form:

$$Z_i = a + bX_i$$

• What's the correlation between Z_i and X_i ? 1!

Perfect collinearity example

- Simple example:
 - $X_i = 1$ if a country is **not** in Africa and 0 otherwise.
 - $Z_i = 1$ if a country **is** in Africa and 0 otherwise.
- But, clearly we have the following:

$$Z_i = 1 - X_i$$

- These two variables are perfectly collinear.
- What about the following:
 - X_i = property rights

$$\blacktriangleright Z_i = X_i^2$$

- Do we have to worry about collinearity here?
- No! Because while Z_i is a deterministic function of X_i, it is a nonlinear function of X_i.

R and perfect collinearity

 R, Stata, et al will drop one of the variables if there is perfect collinearity:

ajr\$nonafrica <- 1 - ajr\$africa
summary(lm(logpgp95 ~ africa + nonafrica, data = ajr))</pre>

```
##
## Coefficients: (1 not defined because of singularities)
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.7164 0.0899 96.94 < 2e-16 ***
## africa -1.3612 0.1631 -8.35 4.9e-14 ***
## nonafrica
                   NA
                             NA
                                     NA
                                             NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.913 on 146 degrees of freedom
##
    (15 observations deleted due to missingness)
## Multiple R-squared: 0.323, Adjusted R-squared: 0.318
## F-statistic: 69.7 on 1 and 146 DF, p-value: 4.87e-14
```

6/ Omitted Variable Bias

Unbiasedness revisited

Long regression:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i$$

- Assumptions 1-4 \Rightarrow OLS is unbiased for $\beta_0, \beta_1, \beta_2$
- What happens if we ignore the Z_i and just run the simple linear regression with just X_i?
- Short regression:

$$Y_i = \alpha_0 + \alpha_1 X_i + u_i^*$$

- OLS estimates from the short regression: $(\widehat{\alpha}_0, \widehat{\alpha}_1)$
- Question: will $\mathbb{E}[\hat{\alpha}_1] = \beta_1$? If not, what will be the difference?

Deriving the short regression

• How can we relate α_1 to β_1 ?

- Short regression will be unbiased for CEF of Y_i just given X_i .
- Write "short CEF" in terms of the "long" regression model:

$$\mathbb{E}[Y_i|X_i] = \mathbb{E}[\beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i|X_i]$$
$$= \beta_0 + \beta_1 X_i + \beta_2 \mathbb{E}[Z_i|X_i] + \mathbb{E}[u_i|X_i]$$

 By assumption 4, X_i is unrelated to the long-regression error, so 𝔼[u_i|X_i] = 0.

$$\mathbb{E}[Y_i|X_i] = \beta_0 + \beta_1 X_i + \beta_2 \mathbb{E}[Z_i|X_i]$$

Deriving the short regression

 $\mathbb{E}[Y_i|X_i] = \beta_0 + \beta_1 X_i + \beta_2 \mathbb{E}[Z_i|X_i]$

- Let 𝔼[Z_i|X_i] = γ₀ + γ₁X_i be the (population) CEF from a regression of Z_i on X_i.
- Then, we can write the short CEF as:

$$\begin{split} \mathbb{E}[Y_i|X_i] &= \beta_0 + \beta_1 X_i + \beta_2 (\gamma_0 + \gamma_1 X_i) \\ &= (\beta_0 + \gamma_0) + (\beta_1 + \beta_2 \gamma_1) X_i \\ &= \alpha_0 + \alpha_1 X_i \end{split}$$

• Under these assumptions, short regression OLS unbiased for α_1 :

$$\mathbb{E}[\widehat{\alpha}_1] = \alpha_1 = \beta_1 + \beta_2 \gamma_1$$

Omitted variable bias

 Omitted variable bias: bias for long regression coefficient from omitting Z_i:

$$\mathsf{Bias}(\widehat{\alpha}_1) = \mathbb{E}[\widehat{\alpha}_1] - \beta_1 = \beta_2 \delta_1$$

In other words omitted variable bias is:

("effect" of Z_i on Y_i) × ("effect" of X_i on Z_i) (omitted \rightarrow outcome) × (included \rightarrow omitted)

Omitted variable bias, summary

Remember that by OLS, the effect of X_i on Z_i is:

$$\delta_1 = \frac{\operatorname{cov}(Z_i, X_i)}{\operatorname{var}(X_i)}$$

• We can summarize the direction of bias like so:

	$\operatorname{cov}(X_i, Z_i) > 0$	$\operatorname{cov}(X_i, Z_i) < 0$	$\operatorname{cov}(X_i, Z_i) = 0$
$\beta_2 > 0$	Positive bias	Negative Bias	No bias
$\beta_2 < 0$	Negative bias	Positive Bias	No bias
$\beta_2 = 0$	No bias	No bias	No bias

Very relevant if Z_i is unobserved for some reason!

Including irrelevant variables

- What if we do the opposite and include an irrelevant variable?
- What would it mean for Z_i to be an irrelevant variable?

$$Y_i = \beta_0 + \beta_1 X_i + 0 \times Z_i + u_i$$

• So in this case, the true value of $\beta_2 = 0$. But under Assumptions 1-4, OLS is unbiased for all the parameters:

$$\mathbb{E}[\widehat{\beta}_0] = \beta_0$$
$$\mathbb{E}[\widehat{\beta}_1] = \beta_1$$
$$\mathbb{E}[\widehat{\beta}_2] = 0$$

- Including an irrelevant variable will increase the standard errors for $\widehat{\beta}_1.$

7/ Goodness of Fit & Multicollinearity

Prediction error

- How do we judge how well a regression fits the data?
- How much does X_i help us predict Y_i?
- Prediction errors without *X_i*:
 - Best prediction is the mean, \overline{Y}
 - Prediction error is called the total sum of squares (SS_{tot}) would be:

$$SS_{tot} = \sum_{i=1}^{n} (Y_i - \overline{Y})^2$$

- Prediction errors with *X_i*:
 - Best predictions are the fitted values, \widehat{Y}_i .
 - Prediction error is the the sum of the squared residuals or SS_{res} :

$$SS_{res} = \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2$$

Total SS vs SSR

Total Prediction Errors

Total SS vs SSR

Residuals

R-square

- Regression will always improve in-sample fit: SS_{tot} > SS_{res}
- How much better does using X_i do? Coefficient of determination or R²:

$$R^2 = \frac{SS_{tot} - SS_{res}}{SS_{tot}} = 1 - \frac{SS_{res}}{SS_{tot}}$$

- R^2 = fraction of the total prediction error eliminated by conditioning on X_i .
- Common interpretation: R^2 is the fraction of the variation in Y_i is "explained by" X_i .
 - $R^2 = 0$ means no relationship
 - $R^2 = 1$ implies perfect linear fit

Sampling variance for bivariate regression

 Under simple linear regression and homoskadasticity, the sampling variance of the slope was:

$$\mathbb{V}[\widehat{\beta}_1|X] = \frac{\sigma_u^2}{\sum_{i=1}^n (X_i - \overline{X})^2} = \frac{\sigma_u^2}{(n-1)S_X^2}$$

- Factors affecting the standard errors:
 - The error variance σ²_u (higher conditional variance of Y_i leads to bigger SEs)
 - ► The sample variance of X_i: S²_X (lower variation in X_i leads to bigger SEs)
 - The sample size n (higher sample size leads to lower SEs)

Sampling variation with 2 covariates

Regression with an additional independent variable:

$$\mathbb{V}[\widehat{\beta}_1|X_i, Z_i] = \frac{\sigma_u^2}{(1 - R_1^2)(n - 1)S_X^2}$$

• Here, R_1^2 is the R^2 from the regression of X_i on Z_i :

$$\widehat{X}_i = \widehat{\delta}_0 + \widehat{\delta}_1 Z_i$$

- Factors now affecting the standard errors:
 - The error variance: σ_u^2
 - The sample variance of X_i : S_X^2
 - The sample size n
 - The strength of the (linear) relationship betwee X_i and Z_i (stronger relationships mean higher R²₁ and thus bigger SEs)

Multicollinearity

Definition

Multicollinearity is defined to be high, but not perfect, correlation between two independent variables in a regression.

- With multicollinearity, we'll have $R_1^2 \approx 1$, but not exactly.
- The stronger the relationship between X_i and Z_i, the closer the R₁² will be to 1, and the higher the SEs will be:

$$\mathbb{V}[\widehat{\beta}_1|X_i,Z_i] = \frac{\sigma_u^2}{(1-R_1^2)(n-1)S_X^2}$$

• Given the symmetry, it will also increase $var(\widehat{\beta}_2)$ as well.

Intuition for multicollinearity

- Remember the OLS recipe:
 - $\hat{r}_{xz,i}$ are the residuals from the regression of X_i on Z_i
 - $\hat{\beta}_1$ from regression of Y_i on $\hat{r}_{xz,i}$
- Estimated coefficient:

$$\widehat{\beta}_1 = \frac{\widehat{\mathsf{cov}}[\widehat{r}_{xz,i}Y_i]}{\widehat{\mathbb{V}}[\widehat{r}_{xz,i}^2]}$$

- When Z_i and X_i have a strong relationship, then the residuals will have low variation
- We explain away a lot of the variation in X_i through Z_i.

Multicollinearity, visualized

Multicollinearity, visualized

Multicollinearity, visualized

Effects of multicollinearity

- No effect on the bias of OLS.
- Only increases the standard errors.
- Really just a sample size problem:
 - ▶ If *X_i* and *Z_i* are extremely highly correlated, you're going to need a much bigger sample to accurately differentiate between their effects.

Conclusion

- In this brave new world with 2 independent variables:
 - 1. β 's have slightly different interpretations
 - 2. OLS still minimizing the sum of the squared residuals
 - 3. Adding or omitting variables in a regression can affect the bias and the variance of OLS
- Remainder of class:
 - 1. Regression in most general glory (matrices)
 - 2. How to diagnose and fix violations of the OLS assumptions