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1/ Why Add
Variables to a
Regression?
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Berkeley gender bias

• Graduate admissions data from Berkeley, 1973
• Acceptance rates:

▶ Men: 8442 applicants, 44% admission rate
▶ Women: 4321 applicants, 35% admission rate

• Evidence of discrimination toward women in admissions?
• This is a marginal relationship.
• What about the conditional relationship within departments?
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Berkeley gender bias, II

• Within departments:
Men Women

Dept Applied Admitted Applied Admitted
A 825 62% 108 82%
B 560 63% 25 68%
C 325 37% 593 34%
D 417 33% 375 35%
E 191 28% 393 24%
F 373 6% 341 7%

• Within departments, women do somewhat better than men!
• Women apply to more challenging departments.
• Marginal relationships (admissions and gender) ≠ conditional

relationship given third variable (department).
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Simpson’s paradox
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• Overall a positive relationship between 𝑌𝑖 and 𝑋𝑖.
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• Overall a positive relationship between 𝑌𝑖 and 𝑋𝑖.
• But within levels of 𝑍𝑖, the opposite.
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Basic idea

• Old goal: estimate the mean of 𝑌 as a function of some
independent variable, 𝑋: 𝔼[𝑌𝑖|𝑋𝑖].

• For continuous 𝑋’s, we modeled the CEF/regression function
with a line:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝑢𝑖

• New goal: estimate the relationship of two variables, 𝑌𝑖 and
𝑋𝑖, conditional on a third variable, 𝑍𝑖:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝛽2𝑍𝑖 + 𝑢𝑖

• 𝛽’s are the population parameters we want to estimate.
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Why control for another variable

• Descriptive
▶ Get a sense for the relationships in the data.
▶ Conditional on the number of steps I’ve taken, does higher

activity levels correlate with less weight?
• Predictive

▶ We can usually make better predictions about the dependent
variable with more information on independent variables.

• Causal
▶ Block potential confounding, which is when 𝑋 doesn’t cause 𝑌 ,

but only appears to because a third variable 𝑍 causally affects
both of them.
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Plan of attack

1. Interpretation with a binary 𝑍𝑖
2. Interpretation with a continuous 𝑍𝑖
3. Mechanics of OLS with 2 covariates
4. OLS assumptions with 2 covariates:

▶ Omitted variable bias
▶ Multicollinearity
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What we won’t cover in lecture

1. The OLS formulas for 2 covariates
2. Proofs
3. The second covariate being a function of the first: 𝑍𝑖 = 𝑋2

𝑖
4. Hypothesis test/confidence intervals (almost exactly the same)
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2/ Adding a Binary
Covariate
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Basics

• Ye olde model:
𝔼[𝑌𝑖|𝑋𝑖] = 𝛼0 + 𝛼1𝑋𝑖

▶ (𝛼0, 𝛼1) are the bivariate intercept/slope, 𝑒𝑖 is the bivariate
error.

• Concern: AJR might be picking up an “African effect”:
▶ African countries might have low incomes and weak property

rights.
• Condition on country being in Africa or not to remove this:

𝔼[𝑌𝑖|𝑋𝑖, 𝑍𝑖] = 𝛽0 + 𝛽1𝑋𝑖 + 𝛽2𝑍𝑖

▶ 𝑍𝑖 = 1 to indicate that 𝑖 is an African country
▶ 𝑍𝑖 = 0 to indicate that 𝑖 is an non-African country
▶ Effects are now within Africa or within non-Africa, not between
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AJR model

ajr.mod <- lm(logpgp95 ~ avexpr + africa, data = ajr)
summary(ajr.mod)

##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.6556 0.3134 18.04 <2e-16 ***
## avexpr 0.4242 0.0397 10.68 <2e-16 ***
## africa -0.8784 0.1471 -5.97 3e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.625 on 108 degrees of freedom
## (52 observations deleted due to missingness)
## Multiple R-squared: 0.708, Adjusted R-squared: 0.702
## F-statistic: 131 on 2 and 108 DF, p-value: <2e-16
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Two lines, one regression

• How can we interpret this model?
• Plug in two possible values for 𝑍𝑖 and rearrange
• When 𝑍𝑖 = 0:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝛽2𝑍𝑖
= 𝛽0 + 𝛽1𝑋𝑖 + 𝛽2 × 0
= 𝛽0 + 𝛽1𝑋𝑖

• When 𝑍𝑖 = 1:
𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝛽2𝑍𝑖

= 𝛽0 + 𝛽1𝑋𝑖 + 𝛽2 × 1
= (𝛽0 + 𝛽2) + 𝛽1𝑋𝑖

• Two different intercepts, same slope
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Interpretation of the coefficients
Intercept for 𝑋𝑖 Slope for 𝑋𝑖

Non-African country (𝑍𝑖 = 0) 𝛽0 𝛽1
African country (𝑍𝑖 = 1) 𝛽0 + 𝛽2 𝛽1

• In this example, we have:

𝑌𝑖 = 5.656 + 0.424 × 𝑋𝑖 − 0.878 × 𝑍𝑖

• 𝛽0: average log income for non-African country (𝑍𝑖 = 0) with
property rights measured at 0 is 5.656

• 𝛽1: A one-unit increase in property rights is associated with a
0.424 increase in average log incomes for two African
countries (or for two non-African countries)

• 𝛽2: there is a − 0.878 average difference in log income per
capita between African and non-African counties conditional
on property rights
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General interpretation of the
coefficients

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝛽2𝑍𝑖

• 𝛽0: average value of 𝑌𝑖 when both 𝑋𝑖 and 𝑍𝑖 are equal to 0
• 𝛽1: A 1-unit increase in 𝑋𝑖 is associated with a 𝛽1-unit

change in 𝑌𝑖 for units with the same value of 𝑍𝑖
• 𝛽2: average difference in 𝑌𝑖 between 𝑍𝑖 = 1 group and 𝑍𝑖 = 0

group for units with the same value of 𝑋𝑖
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Adding a binary variable, visually
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Adding a binary variable, visually
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Marginal vs conditional
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3/ Adding a
Continuous
Covariate
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Adding a continuous variable

• Ye olde model:
𝔼[𝑌𝑖|𝑋𝑖] = 𝛼0 + 𝛼1𝑋𝑖

• New concern: geography is confounding the effect
▶ geography might affect political institutions
▶ geography might affect average incomes (through diseases like

malaria)
• Condition on 𝑍𝑖: mean temperature in country 𝑖 (continuous)

𝔼[𝑌𝑖|𝑋𝑖, 𝑍𝑖] = 𝛽0 + 𝛽1𝑋𝑖 + 𝛽2𝑍𝑖
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AJR model, revisited

ajr.mod2 <- lm(logpgp95 ~ avexpr + meantemp, data = ajr)
summary(ajr.mod2)

##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.8063 0.7518 9.05 1.3e-12 ***
## avexpr 0.4057 0.0640 6.34 3.9e-08 ***
## meantemp -0.0602 0.0194 -3.11 0.003 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.643 on 57 degrees of freedom
## (103 observations deleted due to missingness)
## Multiple R-squared: 0.615, Adjusted R-squared: 0.602
## F-statistic: 45.6 on 2 and 57 DF, p-value: 1.48e-12
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Interpretation with a continuous Z
Intercept for 𝑋𝑖 Slope for 𝑋𝑖

𝑍𝑖 = 0 ∘C 𝛽0 𝛽1
𝑍𝑖 = 21 ∘C 𝛽0 + 𝛽2 × 21 𝛽1
𝑍𝑖 = 24 ∘C 𝛽0 + 𝛽2 × 24 𝛽1
𝑍𝑖 = 26 ∘C 𝛽0 + 𝛽2 × 26 𝛽1

• In this example we have:
𝑌𝑖 = 6.806 + 0.406 × 𝑋𝑖 − 0.06 × 𝑍𝑖

• 𝛽0: average log income for a country with property rights
measured at 0 and a mean temperature of 0 is 6.806

• 𝛽1: A one-unit increase in property rights is associated with a
0.406 change in average log incomes conditional on a
country’s mean temperature

• 𝛽2: A one-degree increase in mean temperature is associated
with a − 0.06 change in average log incomes conditional on
strength of property rights
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General interpretation

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝛽2𝑍𝑖

• The coefficient 𝛽1 measures how the predicted outcome varies
in 𝑋𝑖 for units with the same value of 𝑍𝑖.

• The coefficient 𝛽2 measures how the predicted outcome varies
in 𝑍𝑖 for units with the same value of 𝑋𝑖.
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4/ OLS Mechanics
with Two
Covariates
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Fitted values and residuals

• Where do we get our hats? 𝛽0, 𝛽1, 𝛽2
• Fitted values for 𝑖 = 1, … , 𝑛:

𝑌𝑖 = 𝔼̂[𝑌𝑖|𝑋𝑖, 𝑍𝑖] = 𝛽0 + 𝛽1𝑋𝑖 + 𝛽2𝑍𝑖

• Residuals for 𝑖 = 1, … , 𝑛:

̂𝑢𝑖 = 𝑌𝑖 − 𝑌𝑖

• Minimize the sum of the squared residuals, just like before:

(𝛽0, 𝛽1, 𝛽2) = arg min
𝑏0,𝑏1,𝑏2

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑏0 − 𝑏1𝑋𝑖 − 𝑏2𝑍𝑖)2

• We’ll derive closed-form estimators with arbitrary covariates
next week.
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OLS estimator recipe using two
steps

• No explicit OLS formulas this week, but a recipe instead
• “Partialling out” OLS recipe:

1. Run regression of 𝑋𝑖 on 𝑍𝑖:
𝑋𝑖 = 𝔼̂[𝑋𝑖 |𝑍𝑖] = 𝛿0 + 𝛿1𝑍𝑖

2. Calculate residuals from this regression:
̂𝑟𝑥𝑧,𝑖 = 𝑋𝑖 − 𝑋𝑖

3. Run a simple regression of 𝑌𝑖 on residuals, ̂𝑟𝑥𝑧,𝑖:

𝑌𝑖 = 𝛼0 + 𝛼1 ̂𝑟𝑥𝑧,𝑖

• Estimate of 𝛼1 will be equivalent to 𝛽1 from the “big”
regression:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝛽2𝑍𝑖
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First regression
• Regress 𝑋𝑖 on 𝑍𝑖:

## when missing data exists, need the na.actionin order
## to place residuals or fitted values back into the data
ajr.first <- lm(avexpr ~ meantemp, data = ajr,

na.action = na.exclude)
summary(ajr.first)

##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.9568 0.8202 12.1 < 2e-16 ***
## meantemp -0.1490 0.0347 -4.3 0.000067 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.32 on 58 degrees of freedom
## (103 observations deleted due to missingness)
## Multiple R-squared: 0.241, Adjusted R-squared: 0.228
## F-statistic: 18.4 on 1 and 58 DF, p-value: 0.0000673
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Regression of log income on the
residuals

• Save residuals:

## store the residuals
ajr$avexpr.res <- residuals(ajr.first)

• Now we compare the estimated slopes:

coef(lm(logpgp95 ~ avexpr.res, data = ajr))

## (Intercept) avexpr.res
## 8.0543 0.4057

coef(lm(logpgp95 ~ avexpr + meantemp, data = ajr))

## (Intercept) avexpr meantemp
## 6.80627 0.40568 -0.06025
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Residual/partial regression plot
• Can plot the conditional relationship between property rights

and income given temperature:
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5/ OLS
Assumptions with
Two Covariates
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OLS assumptions for unbiasedness
• Simple regression assumptions unbiasedness/consistency of

OLS:
1. Linearity
2. Random/iid sample
3. Variation in 𝑋𝑖
4. Zero conditional mean error: 𝔼[𝑢𝑖 |𝑋𝑖] = 0

• Small modification to these with 2 covariates:
1. Linearity

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝛽2𝑍𝑖 + 𝑢𝑖

2. Random/iid sample
3. No perfect collinearity
4. Zero conditional mean error (both 𝑋𝑖 and 𝑍𝑖 unrelated to 𝑢𝑖)

𝔼[𝑢𝑖 |𝑋𝑖, 𝑍𝑖] = 0
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New assumption

Assumption 3: No perfect collinearity
(1) No independent variable is constant in the sample and (2) there
are no exactly linear relationships among the independent variables.

• Two components
1. Both 𝑋𝑖 and 𝑍𝑖 have to vary.
2. 𝑍𝑖 cannot be a deterministic, linear function of 𝑋𝑖.

• Part 2 rules out anything of the form:

𝑍𝑖 = 𝑎 + 𝑏𝑋𝑖

• What’s the correlation between 𝑍𝑖 and 𝑋𝑖? 1!
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Perfect collinearity example

• Simple example:
▶ 𝑋𝑖 = 1 if a country is not in Africa and 0 otherwise.
▶ 𝑍𝑖 = 1 if a country is in Africa and 0 otherwise.

• But, clearly we have the following:

𝑍𝑖 = 1 − 𝑋𝑖

• These two variables are perfectly collinear.
• What about the following:

▶ 𝑋𝑖 = property rights
▶ 𝑍𝑖 = 𝑋2

𝑖

• Do we have to worry about collinearity here?
• No! Because while 𝑍𝑖 is a deterministic function of 𝑋𝑖, it is a

nonlinear function of 𝑋𝑖.
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R and perfect collinearity
• R, Stata, et al will drop one of the variables if there is perfect

collinearity:

ajr$nonafrica <- 1 - ajr$africa
summary(lm(logpgp95 ~ africa + nonafrica, data = ajr))

##
## Coefficients: (1 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.7164 0.0899 96.94 < 2e-16 ***
## africa -1.3612 0.1631 -8.35 4.9e-14 ***
## nonafrica NA NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.913 on 146 degrees of freedom
## (15 observations deleted due to missingness)
## Multiple R-squared: 0.323, Adjusted R-squared: 0.318
## F-statistic: 69.7 on 1 and 146 DF, p-value: 4.87e-14
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6/ Omitted
Variable Bias
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Unbiasedness revisited

• Long regression:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝛽2𝑍𝑖 + 𝑢𝑖

• Assumptions 1-4 ⇒ OLS is unbiased for 𝛽0, 𝛽1, 𝛽2
• What happens if we ignore the 𝑍𝑖 and just run the simple

linear regression with just 𝑋𝑖?
• Short regression:

𝑌𝑖 = 𝛼0 + 𝛼1𝑋𝑖 + 𝑢∗
𝑖

• OLS estimates from the short regression: (𝛼0, 𝛼1)
• Question: will 𝔼[𝛼1] = 𝛽1? If not, what will be the

difference?
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Deriving the short regression

• How can we relate 𝛼1 to 𝛽1?
▶ Short regression will be unbiased for CEF of 𝑌𝑖 just given 𝑋𝑖.

• Write “short CEF” in terms of the “long” regression model:

𝔼[𝑌𝑖|𝑋𝑖] = 𝔼[𝛽0 + 𝛽1𝑋𝑖 + 𝛽2𝑍𝑖 + 𝑢𝑖|𝑋𝑖]
= 𝛽0 + 𝛽1𝑋𝑖 + 𝛽2𝔼[𝑍𝑖|𝑋𝑖] + 𝔼[𝑢𝑖|𝑋𝑖]

• By assumption 4, 𝑋𝑖 is unrelated to the long-regression error,
so 𝔼[𝑢𝑖|𝑋𝑖] = 0.

𝔼[𝑌𝑖|𝑋𝑖] = 𝛽0 + 𝛽1𝑋𝑖 + 𝛽2𝔼[𝑍𝑖|𝑋𝑖]
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Deriving the short regression

𝔼[𝑌𝑖|𝑋𝑖] = 𝛽0 + 𝛽1𝑋𝑖 + 𝛽2𝔼[𝑍𝑖|𝑋𝑖]

• Let 𝔼[𝑍𝑖|𝑋𝑖] = 𝛾0 + 𝛾1𝑋𝑖 be the (population) CEF from a
regression of 𝑍𝑖 on 𝑋𝑖.

• Then, we can write the short CEF as:

𝔼[𝑌𝑖|𝑋𝑖] = 𝛽0 + 𝛽1𝑋𝑖 + 𝛽2(𝛾0 + 𝛾1𝑋𝑖)
= (𝛽0 + 𝛾0) + (𝛽1 + 𝛽2𝛾1)𝑋𝑖
= 𝛼0 + 𝛼1𝑋𝑖

• Under these assumptions, short regression OLS unbiased for
𝛼1:

𝔼[𝛼1] = 𝛼1 = 𝛽1 + 𝛽2𝛾1
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Omitted variable bias

• Omitted variable bias: bias for long regression coefficient from
omitting 𝑍𝑖:

Bias(𝛼1) = 𝔼[𝛼1] − 𝛽1 = 𝛽2𝛿1

• In other words omitted variable bias is:

(“effect” of 𝑍𝑖 on 𝑌𝑖) × (“effect” of 𝑋𝑖 on 𝑍𝑖)
(omitted → outcome) × (included → omitted)
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Omitted variable bias, summary

• Remember that by OLS, the effect of 𝑋𝑖 on 𝑍𝑖 is:

𝛿1 = cov(𝑍𝑖, 𝑋𝑖)
var(𝑋𝑖)

• We can summarize the direction of bias like so:
cov(𝑋𝑖, 𝑍𝑖) > 0 cov(𝑋𝑖, 𝑍𝑖) < 0 cov(𝑋𝑖, 𝑍𝑖) = 0

𝛽2 > 0 Positive bias Negative Bias No bias
𝛽2 < 0 Negative bias Positive Bias No bias
𝛽2 = 0 No bias No bias No bias

• Very relevant if 𝑍𝑖 is unobserved for some reason!
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Including irrelevant variables

• What if we do the opposite and include an irrelevant variable?
• What would it mean for 𝑍𝑖 to be an irrelevant variable?

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 0 × 𝑍𝑖 + 𝑢𝑖

• So in this case, the true value of 𝛽2 = 0. But under
Assumptions 1-4, OLS is unbiased for all the parameters:

𝔼[𝛽0] = 𝛽0
𝔼[𝛽1] = 𝛽1
𝔼[𝛽2] = 0

• Including an irrelevant variable will increase the standard
errors for 𝛽1.
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7/ Goodness of Fit
& Multicollinearity
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Prediction error
• How do we judge how well a regression fits the data?
• How much does 𝑋𝑖 help us predict 𝑌𝑖?
• Prediction errors without 𝑋𝑖:

▶ Best prediction is the mean, 𝑌
▶ Prediction error is called the total sum of squares (𝑆𝑆𝑡𝑜𝑡)

would be:
𝑆𝑆𝑡𝑜𝑡 =

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑌)2

• Prediction errors with 𝑋𝑖:
▶ Best predictions are the fitted values, 𝑌𝑖.
▶ Prediction error is the the sum of the squared residuals or

𝑆𝑆𝑟𝑒𝑠:
𝑆𝑆𝑟𝑒𝑠 =

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑌𝑖)2
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Total SS vs SSR
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R-square

• Regression will always improve in-sample fit: 𝑆𝑆𝑡𝑜𝑡 > 𝑆𝑆𝑟𝑒𝑠
• How much better does using 𝑋𝑖 do? Coefficient of

determination or 𝑅2:

𝑅2 = 𝑆𝑆𝑡𝑜𝑡 − 𝑆𝑆𝑟𝑒𝑠
𝑆𝑆𝑡𝑜𝑡

= 1 − 𝑆𝑆𝑟𝑒𝑠
𝑆𝑆𝑡𝑜𝑡

• 𝑅2 = fraction of the total prediction error eliminated by
conditioning on 𝑋𝑖.

• Common interpretation: 𝑅2 is the fraction of the variation in
𝑌𝑖 is “explained by” 𝑋𝑖.

▶ 𝑅2 = 0 means no relationship
▶ 𝑅2 = 1 implies perfect linear fit
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Sampling variance for bivariate
regression

• Under simple linear regression and homoskadasticity, the
sampling variance of the slope was:

𝕍[𝛽1|𝑋] = 𝜎2𝑢
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋)2 = 𝜎2𝑢
(𝑛 − 1)𝑆2

𝑋

• Factors affecting the standard errors:
▶ The error variance 𝜎2𝑢 (higher conditional variance of 𝑌𝑖 leads

to bigger SEs)
▶ The sample variance of 𝑋𝑖: 𝑆2

𝑋 (lower variation in 𝑋𝑖 leads to
bigger SEs)

▶ The sample size 𝑛 (higher sample size leads to lower SEs)

54 / 62



Sampling variation with 2
covariates

• Regression with an additional independent variable:

𝕍[𝛽1|𝑋𝑖, 𝑍𝑖] = 𝜎2𝑢
(1 − 𝑅2

1)(𝑛 − 1)𝑆2
𝑋

• Here, 𝑅2
1 is the 𝑅2 from the regression of 𝑋𝑖 on 𝑍𝑖:

𝑋𝑖 = 𝛿0 + 𝛿1𝑍𝑖

• Factors now affecting the standard errors:
▶ The error variance: 𝜎2𝑢
▶ The sample variance of 𝑋𝑖: 𝑆2

𝑋
▶ The sample size 𝑛
▶ The strength of the (linear) relationship betwee 𝑋𝑖 and 𝑍𝑖

(stronger relationships mean higher 𝑅2
1 and thus bigger SEs)

55 / 62



Multicollinearity

Definition
Multicollinearity is defined to be high, but not perfect, correlation
between two independent variables in a regression.

• With multicollinearity, we’ll have 𝑅2
1 ≈ 1, but not exactly.

• The stronger the relationship between 𝑋𝑖 and 𝑍𝑖, the closer
the 𝑅2

1 will be to 1, and the higher the SEs will be:

𝕍[𝛽1|𝑋𝑖, 𝑍𝑖] = 𝜎2𝑢
(1 − 𝑅2

1)(𝑛 − 1)𝑆2
𝑋

• Given the symmetry, it will also increase var(𝛽2) as well.
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Intuition for multicollinearity

• Remember the OLS recipe:
▶ ̂𝑟𝑥𝑧,𝑖 are the residuals from the regression of 𝑋𝑖 on 𝑍𝑖
▶ 𝛽1 from regression of 𝑌𝑖 on ̂𝑟𝑥𝑧,𝑖

• Estimated coefficient:

𝛽1 = ĉov[ ̂𝑟𝑥𝑧,𝑖𝑌𝑖]
𝕍̂[ ̂𝑟2

𝑥𝑧,𝑖]

• When 𝑍𝑖 and 𝑋𝑖 have a strong relationship, then the residuals
will have low variation

• We explain away a lot of the variation in 𝑋𝑖 through 𝑍𝑖.
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Multicollinearity, visualized
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Multicollinearity, visualized
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Multicollinearity, visualized
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Effects of multicollinearity
• No effect on the bias of OLS.
• Only increases the standard errors.
• Really just a sample size problem:

▶ If 𝑋𝑖 and 𝑍𝑖 are extremely highly correlated, you’re going to
need a much bigger sample to accurately differentiate between
their effects.
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Conclusion

• In this brave new world with 2 independent variables:
1. 𝛽’s have slightly different interpretations
2. OLS still minimizing the sum of the squared residuals
3. Adding or omitting variables in a regression can affect the bias

and the variance of OLS
• Remainder of class:

1. Regression in most general glory (matrices)
2. How to diagnose and fix violations of the OLS assumptions
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