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Where are we? Where are we going?

• Last week: motivating the idea of regression and deriving an estimator for the
parameters of a linear regression model.

• This week: investigating the properties of the least squares estimator and the
assumptions of the linear regression model.

review
The (population) simple linear regression model can be stated as the following:

µ(x) = E[Yi|Xi = x] = β0 + β1x

This describes the data generating process in the population. We refer to Yi as the de-
pendent variable andXi as the independent variable. Here, β0 and β1 are the popula-
tion intercept and population slope, respectively. These are what we want to estimate.

This week we will take a conceptual turn and interpret this CEF as structural or
causal. That is, we assume that β1 here is the effect of an additional unit of Xi hold-
ing all other factors fixed. This is a departure from last week, when we said that the
linear projection existed in a very general way. It still does and so we can always run
a regression of Yi onXi. But we usually use the linear regression model to investigate
causal relationships, so it is useful to know under what assumptions we can do this.
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This can get confusing because there is little distinction in textbooks or applied work
between the linear model as a projection/CEF/associational and the linear model as
structural/causal.

In a given data set, we can use OLS to obtain the estimated or sample regression
function:

µ̂(Xi) = Ŷi = β̂0 + β̂1Xi

Here, β̂0 and β̂1 are the estimated intercept and slope and Ŷi is the fitted value of the
regression. In a simple regression, the fitted value is just the y-value of the line for a
unit’s particular value of Xi. We also have the residuals, ûi which are the differences
between the true values of Y and the fitted value:

ûi = Yi − Ŷi.

You can think of the residuals as the prediction errors of our estimates.

goals
Overall, the goal of this part of the course is to learn how to run and read regression: *
Mechanics: how to estimate the intercept and slope? * Properties: when are these good
estimates? * Uncertainty: how will the OLS estimator behave in repeated samples? *
Testing: can we assess the plausibility of no relationship (β1 = 0)? * Interpretation:
how do we interpret our estimates?

• A more narrow goal is to understand everything from an R regression output:

ajr <- foreign::read.dta(”../data/ajr.dta”)

out <- lm(logpgp95 ~ logem4, data = ajr)

summary(out)

##

## Call:

## lm(formula = logpgp95 ~ logem4, data = ajr)

##

## Residuals:

## Min 1Q Median 3Q Max

## -2.71304 -0.53326 0.01954 0.47188 1.44673

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 10.66025 0.30528 34.92 < 2e-16 ***
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## logem4 -0.56412 0.06389 -8.83 2.09e-13 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 0.7563 on 79 degrees of freedom

## (82 observations deleted due to missingness)

## Multiple R-squared: 0.4967, Adjusted R-squared: 0.4903

## F-statistic: 77.96 on 1 and 79 DF, p-value: 2.094e-13

mechanics of ols
As we saw last week, ordinary least squares (OLS) is an estimator for the slope and
the intercept of the regression line. We talked last week about ways to derive this
estimator and we settled on deriving it by minimizing the squared prediction errors
of the regression, or in other words, minimizing the sum of the squared residuals:

(β̂0, β̂1) = arg min
b0,b1

n∑
i=1

(Yi − b0 − b1Xi)
2

In words, the OLS estimates are the intercept and slope that minimize the sum of the
squared residuals.

This defines the procedure to find the estimates, but we can also solve for the es-
timated slope and intercept. These formulas provide some intuition. The intercept
equation tells us that the regression line goes through the point (Y ,X):

Y = β̂0 + β̂1X

The slope for the regression line can be written as the following:

β̂1 =

∑n
i=1(Xi −X)(Yi − Y )∑n

i=1(Xi −X)2
=

Sample Covariance between X and Y

Sample Variance of X

Thus, the higher the covariance between X and Y , the higher the slope will be. Fur-
thermore, because the sample variance of Xi will always be non-negative, negative
covariances will imply negative slopes and positive covariances will imply positive
slopes. It is helpful for you to think about what happens when Xi and/or Yi don’t
vary?

Mechanical properties of OLS

Laterwe’ll see that under certain assumptions, OLSwill have nice statistical properties.
But some properties of OLS are mechanical in the sense that they are just a function
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of how we estimated the slope and intercept. Each of these can be derived from the
minimization problem that OLS solves. The residuals will be 0 on average:

1

n

n∑
i=1

ûi = 0

The residuals will be uncorrelated with the predictor (ĉov is the sample covariance):

ĉov(Xi, ûi) = 0

The residuals will be uncorrelated with the fitted values:

ĉov(Ŷi, ûi) = 0

Note that these are properties of the estimated residuals, ûi, not the true errors, ui!

OLS slope as a weighted sum of the outcomes

One useful derivation that we’ll do moving forward is to write the OLS estimator for
the slope as a weighted sum of the outcomes.

β̂1 =

∑n
i=1(Xi −X)(Yi − Y )∑n

i=1(Xi −X)2

=

∑n
i=1(Xi −X)Yi∑n
i=1(Xi −X)2

−
∑n

i=1(Xi −X)Y∑n
i=1(Xi −X)2

=

∑n
i=1(Xi −X)Yi∑n
i=1(Xi −X)2

=

n∑
i=1

WiYi

Where here we have the weights, Wi as:

Wi =
(Xi −X)∑n
i=1(Xi −X)2

This is important for two reasons. First, it’ll make derivations later much easier. And
second, it shows that is just the sumof a random variable. Therefore it is also a random
variable.
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properties of the ols estimator
Sampling distribution of the OLS estimator

• Remember: OLS is an estimator—it’s a machine that we plug data into and we
get out estimates. Just like the sample mean, sample difference in means, or the
sample variance. It’s a more complicated estimator, to be sure, but it still has
the same basic structure as the others. It has a sampling distribution, with a
sampling variance/standard error, etc.

Let’s simulate some data to get a sense for how the sampling distribution of the
OLS estimators works. To do this, we’re going to pretend that the AJR data represents
the population of interest and we are going to take samples from it to see how the
regression line varies from sample to sample. (Note that this is just for demonstration
since we’ll never actually have the whole population). First, let’s plot the population
regression line:

plot(ajr$logem4, ajr$logpgp95, xlab = ”Log Settler Mortality”, ylab = ”Log GDP per capita growth”, pch = 19, bty = ”n”, xlim = c(1,8), ylim = c(6,12))

abline(lm(logpgp95 ~ logem4, data = ajr), col = ”indianred”, lwd = 3)
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Now, let’s take two random samples of size n = 30 from this “population” and the
plot the results, with the true population line overlaid:

set.seed(02143)

par(mfrow = c(1,2))

ajr.samp <- ajr[sample(1:nrow(ajr), size = 30, replace = TRUE),]

plot(ajr.samp$logem4, ajr.samp$logpgp95, xlab = ”Log Settler Mortality”, ylab = ”Log GDP per capita growth”, pch = 19, bty = ”n”, xlim = c(1,8), ylim = c(6,12))

abline(lm(logpgp95 ~ logem4, data = ajr.samp), col = ”dodgerblue”, lwd = 3)

abline(lm(logpgp95 ~ logem4, data = ajr), col = ”indianred”, lwd = 1)

ajr.samp2 <- ajr[sample(1:nrow(ajr), size = 30, replace = TRUE),]

plot(ajr.samp2$logem4, ajr.samp2$logpgp95, xlab = ”Log Settler Mortality”, ylab = ”Log GDP per capita growth”, pch = 19, bty = ”n”, xlim = c(1,8), ylim = c(6,12))

abline(lm(logpgp95 ~ logem4, data = ajr.samp2), col = ”dodgerblue”, lwd = 3)

abline(lm(logpgp95 ~ logem4, data = ajr), col = ”indianred”, lwd = 1)
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Note how in our two samples, the slope and the intercept are not exactly the same
as in the population. In the first, the estimated intercept is lower than the population
intercept, while in the second the estimated intercept is higher. In the first sample,
the estimated slope is closer to 0 than the true slope. In the second sample, it’s more
negative than the true slope. This is just due to random sampling!

Now let’s repeat this process 1000 times to see how the slopes and intercepts vary
in lots of repeated samples:

set.seed(02143)

true.reg <- lm(logpgp95 ~ logem4, data = ajr)

sims <- 1000
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inters <- rep(NA, times = sims)

slopes <- rep(NA, times = sims)

plot(ajr$logem4, ajr$logpgp95, xlab = ”Log Settler Mortality”, ylab = ”Log GDP per capita growth”, pch = 19, bty = ”n”, xlim = c(1,8), ylim = c(6,12))

for (i in 1:sims) {

ajr.samp <- ajr[sample(1:nrow(ajr), size = 30, replace = TRUE),]

this.reg <- lm(logpgp95 ~ logem4, data = ajr.samp)

abline(this.reg, col = rgb(0.6, 0.6, 1, alpha = 0.5), lwd = 1)

inters[i] <- coef(this.reg)[1]

slopes[i] <- coef(this.reg)[2]

}

abline(true.reg, col = ”indianred”, lwd = 3)
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You can see that the estimated slopes and intercepts vary from sample to sample,
but that the “average” of the lines looks about right. We can look at the sampling
distribution of the parameters separately to see that this is about right:

par(mfrow = c(1,2), las = 1)

hist(inters, xlab = expression(hat(beta)[0]), main = ”Sampling distribution of intercepts”, col = ”grey”, border = ”white”)
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abline(v = coef(true.reg)[1], col = ”indianred”, lwd = 3)

hist(slopes, xlab = expression(hat(beta)[1]), main = ”Sampling distribution of slopes”, col = ”grey”, border = ”white”)

abline(v = coef(true.reg)[2], col = ”indianred”, lwd = 3)
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Thesampling distribution of theOLS estimators are centered roughly around their
true value. Remember that we call this property unbiasedness of the estimators. Here’s
the question: will OLS always be unbiased? Under what assumptions will it be unbi-
ased or consistent?

Unbiasedness

What assumptions did we make to prove that the sample mean was unbiased? Just
one: that we had a random or iid sample from the population. We’ll need more than
this for the regression case, especially since wewould like to interpret these differences
causally.

Generally we’ll need different assumptions to derive different properties of the
OLS estimator. For unbiasedness, we’ll need the following assumptions:

1. Linearity
2. Random (iid) sample
3. Variation in Xi

4. Zero conditional mean of the errors
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Assumption 1: Linearity

Assumption 1 - The population regression function is linear in the parameters:

Y = β0 + β1Xi + u

Here, u is the unobserved error or disturbance term that represents all factors
influencing Y other than X . Note that this error is different than the CEF or lin-
ear projection error from last week because we are now interpreting the coefficients
structurally. Violation of the linearity assumption:

Yi =
1

β0 + β1Xi
+ ui

. This assumption is less stringent becausewe it allow us to transform the independent
variable in arbitrary ways without violating linearity, so that the following is not a
violation of the linearity assumption:

Yi = β0 + β1X
2
i + ui

Assumption 2: Random Sample

Assumption 2 - We have a iid random sample of size n, {(Yi, Xi) : i = 1, 2, . . . , n}
from the population regression model above.

This is random sampling assumption we’ve always maintained. Violations of this
assumption would include time-series and selected samples.



10

0 20 40 60 80 100

-2
-1

0
1

X

Y

Think about the weight example from last week, where Yi was my weight on a
given day and Xi was my number of active minutes the day before:

weighti = β0 + β1activityi + ui

What if I only weighed myself on the weekdays? This would obviously be a selected
sample because I weigh more on the weekends.

Assumption 3: Variation in X

Assumption 3 - The in-sample independent variables, {Xi : i = 1, . . . , n}, are not
all the same value.

Why does this matter? How would you draw the line of best fit through this scat-
terplot, which is a violation of this assumption?
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Also remember the formula for the OLS slope estimator and think about what
happens here when Xi doesn’t vary?

β̂1 =

∑n
i=1(Xi −X)(Yi − Y )∑n

i=1(Xi −X)2

Assumption 4: Zero conditional mean of the errors

Assumption 4 - The error, ui, has expected value of 0 given any value of the indepen-
dent variable:

E[ui|Xi = x] = 0 ∀x.

This is the key assumption about causality in the model. It says that the average of
all the other stuff that affects Yi except Xi is the same at every level of Xi. How does
this assumption get violated? Let’s generate data from the following model:

Yi = 1 + 0.5Xi + ui

But let’s compare two situations. One whereXi and ui are correlated so that the mean
of ui depends onXi (a violation of Assumption 4) and one where there is no correla-
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tion (not a violation). Let’s plot this data along with the true regression line (β0 = 1
and β1 = 0.5):
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For the violation, you can see that for low values of Xi most of the errors are
negative and for high values of Xi, most of the errors are positive. You can also see
that the sample of data points doesn’t really fit the regression line at all. Compare this
to a situation with no correlation between Xi and ui, where the errors are roughly 0
on average, no matter the value of Xi.

Think about the weight example from last week, where Yi was my weight on a
given day and Xi was my number of active minutes the day before:

weighti = β0 + β1activityi + ui

What might in ui here? Amount of food eaten, workload, etc etc. We have to assume
that all of these factors have the same mean, no matter what my level of activity was.
Plausible? Probably not.

When is this assumption most plausible? When Xi is randomly assigned in ex-
perimental data. In an experiment, we assignXi, so we can ensure that it is unrelated
to the ui by design. When we have observational data where we observe Xi instead
of assigning it, it will be very difficult to justify this assumption. This is because we
will have to trust that whoever did assign/choose/set the level ofXi did so in a process
unrelated to all the other factors that affect ui.

With Assumptions 1-4, we can show that the OLS estimator for the slope is unbi-
ased, that isE[β̂1] = β1. There are two ways that we use the above assumptions. First,
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we can establish that the conditional expectation function (CEF)

E[Yi|X1, . . . , Xn] = E[Yi|Xi] (A2: iid)
= E[β0 + β1Xi + u|Xi] (A1: linearity)
= β0 + β1Xi + E[ui|Xi]

= β0 + β1Xi (A4: zero mean error)

Second, note that we can only calculate β̂1 when Assumption 3 (variation in X)
holds.

With these two facts, we can show show thatE[β̂1|X1, . . . , Xn] = β1. Remember
that we showed that β̂1 =

∑n
i=1WiYi. We’re going to use this fact. Also remember

that Wi is a function of all observations of the independent variable since it contains
the mean, so conditional on X = (X1, . . . , Xn), it is constant.

β̂1 =

n∑
i=1

WiYi

=

n∑
i=1

Wi(β0 + β1Xi + ui) (linearity)

= β0

n∑
i=1

Wi + β1

n∑
i=1

WiXi +
n∑

i=1

Wiui

Arewe stuck? No! Because we can show that
∑n

i=1Wi = 0 and
∑n

i=1WiXi = 1:

n∑
i=1

Wi =
n∑

i=1

(Xi −X)∑n
i=1(Xi −X)2

=
1∑n

i=1(Xi −X)2

n∑
i=1

(Xi −X)

=
1∑n

i=1(Xi −X)2
· 0 = 0

- This works because the sum of deviations from the mean are 0! Now, the second
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fact:
n∑

i=1

WiXi =
n∑

i=1

Xi(Xi −X)∑n
i=1(Xi −X)2

=
1∑n

i=1(Xi −X)2

n∑
i=1

Xi(Xi −X)

=
1∑n

i=1(Xi −X)2

[
n∑

i=1

Xi(Xi −X)−
n∑

i=1

X(Xi −X)

]

=
1∑n

i=1(Xi −X)2

n∑
i=1

(Xi −X)(Xi −X)

= 1

Plugging this back into our original derivation, we get the following:

β̂1 = β0 · 0 + β1 · 1 +
∑
i

Wiui = β1 +
n∑

i=1

Wiui

To show unbiasedness, we just need to take conditional expectations:

E[β̂1|X1, . . . , Xn] = E[β1 +
n∑

i=1

Wiui|X1, . . . , Xn]

= β1 +
n∑

i=1

E[Wiui|X1, . . . , Xn]

= β1 +

n∑
i=1

WiE[ui|X1, . . . , Xn] (Wi is a function of Xi)

= β1 +

n∑
i=1

Wi · 0 (iid + zero conditional mean error)

= β1

Now, noticed that we conditioned on X1, . . . , Xn. But we need to show that
E[β̂1] = β1. Let’s use the law of iterated expectations!

E[β̂1] = E[E[β̂1|X1, . . . , Xn]]

= E[β1]
= β1
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The basic intuition here that the condition mean given the independent variable
is the same, no matter the value of the independent variables. Therefore, the overall
mean must just be equal to that constant.

So to recap: if we assume linearity, random sampling, variation in X , and zero
conditional mean for the error, then the OLS estimator will be unbiased.

Consistency

Under the same set of assumptions, we can show that the OLS estimator is consistent,
so that β̂1

p→ β1. In fact, this is true under a weakening of Assumption 4.

Assumption 4(b) - The error has following two properties: E[ui] = 0 and E[uiXi] =
0.

The first part of this assumption, that the errors have unconditional mean 0, is
not really an assumption if we include an intercept in our model. The second part is
more restrictive since it essentially says that the errors are uncorrelated with the in-
dependent variable. This is weaker than the earlier zero conditional mean error, since
it only rules out linear relationships between the errors andXi. Assumption 4’ allows
for nonlinearities in that relationship. This assumption is problematic in the since that
it means that population regression function we have modeled does not capture the
CEF, but rather the best linear approximation to the CEF. Thus, this assumptions says
that even if we don’t get the linearmodel quite right—there are unmeasured nonlinear
relationships—we can still get consistent estimates of the population line of best fit.

Consistency is actually very easy to prove once we note the following property of
β̂1:

β̂1 = β1 +
n∑

i=1

Wiui

It can be shown that the estimation error will converge in probability to the following:

n∑
i=1

Wiui
p→ Cov(Xi, ui)

V[Xi]

Consistency follows from the fact that under Assumption 4(b), the covariance of the
error and Xi will be 0 and so β̂1

p→ β1. Note that assumes that the variance of Xi is
non-zero.
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Where are we?

Now we know that, under Assumptions 1-4, we know that β̂1 ∼?(β1, ?). That is we
know that the sampling distribution is centered on the true population slope, but we
don’t know the population variance. In order to derive the sampling variance of the
OLS estimator, it is typical to make one additional assumption. This assumption isn’t
strictly need to derive the sampling variance of the OLS estimator, but it makes the
derivation much easier and almost all statistical software packages report standard
errors based on this assumption. So it’s useful to understand it.

Assumption 5: Homoskedasticity

Assumption 5 - The conditional variance of Yi given Xi is constant:

V(Yi|Xi = x) = V(ui|Xi = x) = σ2
u.

The conditional variance of Y given X is sometimes called the skedastic function,

thus the name homoskedasticity.
Violations of this assumption will be when the variance of the ui is difference at

different levels of Xi. For example, in the follow two example, the left plot show a
heteroskedastic situation. As Xi increases, so does the variance of Yi. In the right
plot, the variance is constant.
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Let’s derive the sampling variance under the homoskedasticity assumption. First,
remember that β̂1 = β1 +

∑n
i=1Wiui and that the variance of the estimator will
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only be a function of the second part of this sum since β1 is constant. So we have the
following:

V[β̂1|X1, . . . , Xn] = V

[
n∑

i=1

Wiui

∣∣∣X1, . . . , Xn

]

=
n∑

i=1

W 2
i V [ui|X1, . . . , Xn] (A2: iid)

=

n∑
i=1

W 2
i V [ui|Xi] (A2: iid)

= σ2
u

n∑
i=1

W 2
i (A5: homoskedastic)

=
σ2
u

∑n
i=1(Xi −X)2(∑n

i=1(Xi −X)2
)2

=
σ2
u∑n

i=1(Xi −X)2

So what drives the sampling variability of the OLS estimator?

• The higher the variance of Yi, the higher the sampling variance
• The lower the variance of Xi, the higher the sampling variance
• As we increase n, the denominator gets large, while the numerator is fixed and

so the sampling variance shrinks to 0.

But we don’t observe σ2
u—it is the variance of the errors, which we don’t observe.

What can we do? Estimate it using the residuals!

σ̂2
u =

1

n− 2

n∑
i=1

û2i

Here we use n−2 instead of n or n−1. Why is that? Remember that OLS is designed
to minimize the sum of the squared residuals, so it tends to slightly underestimate the
variance. The n− 2 corrects this. With this, we can find the estimated standard error
of our OLS estimator of the slope:

ŜE[β̂1] =

√
σ̂2
u√∑n

i=1(Xi −X)2
=

σ̂u√∑n
i=1(Xi −X)2
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Gauss-Markov Theorem

Theorem Under assumptions 1-5, the OLS estimator is BLUE, or the Best Linear
Unbiased Estimator, where by “best” we mean it lowest sampling variance.

The proof is very detailed, so we’ll skip it. See Wooldridge, Appendix 3A.6 for
details. Fails to hold when the assumptions are violated!

Asymptotic normality of OLS

Remember that we can write β̂1 − β1 =
∑n

i=1Wiui, so that the estimation error for
the OLS estimator is the sum of i.i.d. mean 0 r.v.s. Also remember the mantra of the
central limit theorem: “the sums and means of r.v.’s tend to be Normally distributed
in large samples.” Applying the CLT here, we know that in large samples:

β̂1 − β1

SE[β̂1]

d→ N(0, 1)

Also, in large samples, remember that we can replace the true standard error with our
estimate of the standard error, so that:

β̂1 − β1

ŜE[β̂1]

d→ N(0, 1)

hypothesis tests for regression
• Null: H0 : β1 = 0

– The null is the straw man we want to knock down.
– With regression, almost always null of no relationship

• Alternative: Ha : β1 ̸= 0

– Claim we want to test
– Almost always “some effect”
– Could do one-sided test, but you shouldn’t, for reasons we’ve already dis-

cussed

Under the null of H0 : β1 = c, we can use the following familiar test statistic:

T =
β̂1 − c

ŜE[β̂1]
.

In large samples, we know thatT is approximately (standard)Normal. Thus, under the
null and in large samples, we know the distribution of T and can use that to formulate



19

a rejection region and calculate p-values. We can use the Wald/t-test we developed
a few weeks ago for asymptotically normal estimators. Everything is the same. For
instance, for an α = 0.05 test, we can reject the null when |T | > 1.96.

R output

By default, R shows you the Tobs for the test statistic with the null of β1 = 0, which is
just the estimate divided by the standard error:

Tobs =
β̂1 − 0

ŜE[β̂1]
=

β̂1

ŜE[β̂1]

This is often referred to as the t-statistic. R also calculates the p-values for you. In the
AJR data, for example:

out <- lm(logpgp95 ~ logem4, data = ajr)

coef(summary(out))

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 10.6602465 0.30528441 34.919066 8.758878e-50

## logem4 -0.5641215 0.06389003 -8.829569 2.093611e-13

confidence intervals for regression
Large-sample confidence intervals are almost exactly the same as in the sample means
case. We can find the critical values using the same procedure so that, for instance, a
95% large-sample confidence interval for β1 is just

β̂1 ± 1.96ŝe[β̂1].

More generally, for a particular 100(1−α)% confidence interval, we use the following
formula for the confidence interval:

β̂1 ± zα/2ŝe[β̂1]

Confidence intervals are not outputted by default in R, but you grab them for any
regression using the confint() function:

confint(lm(logpgp95 ~ logem4, data = ajr))

## 2.5 % 97.5 %

## (Intercept) 10.0525931 11.2678999

## logem4 -0.6912914 -0.4369515
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goodness of fit
Prediction error

How do we judge how well a line fits the data? Is there some way to judge? One way
is to find out how much better we do at predicting Y once we include X into the
regression model. Prediction errors without X : best prediction is the mean, so our
squared errors, or the total sum of squares (SStot) would be:

SStot =
n∑

i=1

(Yi − Y )2

Once we have estimated our model, we have new prediction errors, which are just the
sum of the squared residuals or SSres:

SSres =

n∑
i=1

(Yi − Ŷi)
2

By definition, the residuals have to be smaller than the deviations from the mean,
so we might ask the following: how much lower is the SSres compared to the SStot?

We quantify this question with the coefficient of determination orR2. This is the
following:

R2 =
SStot − SSres

SStot
= 1− SSres

SStot

This is the fraction of the total prediction error eliminated by providing information
on X . Alternatively, this is the fraction of the variation in Y is “explained by” X . So,
R2 = 0 means no relationship at all, and R2 = 1 implies perfect linear fit.

Unforutnately, theR2 can be very misleading. Each of the following samples have
the same R2 even though they are vastly different:
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small-sample model-based inference
Thetesting and confidence intervals above dependedon a large-sample approximatino.
What if we have a small sample? What canwe do then? First, we still know that, condi-
tional onXi, β̂ ∼?(β1, SE[β̂]2) since we know that unbiasedness holds and we know
how to calculate the sampling variance. We just don’t know the form of the sampling
distribution. Can’t get something for nothing, but we can make progress if we make
another assumption: 1. Linearity 2. Random (iid) sample 3. Variation in Xi 4. Zero
conditional mean of the errors 5. Homoskedasticity 6. Errors are conditionally Nor-
mal
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Assumption 6: conditionally Normal errors

Assumption 6 - The conditional distribution of u givenX is Normal with mean 0 and
variance σ2

u.
This implies that the distribution of Yi givenXi is: N(β0+β1Xi, σ

2
u). Under this

assumption, we know that for any sample size:

β̂1 − β1

SE[β̂1]
∼ N(0, 1)

Furthermore, if we replace the true standard error with the estimated standard error,
then we get the following:

β̂1 − β1

ŜE[β̂1]
∼ tn−2

The standardized coefficient follows a t distribution n − 2 degrees of freedom. We
take off an extra degree of freedom because we had to one more parameter than just
the sample mean. All of this depends on Normal errors! Of course, we can check to
see if the error do look Normal.

Review of assumptions

• What assumptions do we need to make what claims with OLS?

1. Data description: variation in X
2. Consistency: linearity, iid, variation in X , uncorrelated error.
3. Unbiasedness: linearity, iid, variation in X , zero conditional mean error.
4. Large-sample inference: linearity, iid, variation in X , zero conditional

mean error, homoskedasticity.
5. Small-sample inference: linearity, iid, variation in X , zero conditional

mean error, homoskedasticity, Normal errors.

appendix
Proof of sums and means trick

• In the derivation of the OLS estimator, we relied on a trick with the means and
sums. Here is the proof:
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n∑
i=1

Xi(Yi − Y ) =
n∑

i=1

Xi(Yi − Y )− nXY + nXY

=

n∑
i=1

Xi(Yi − Y )−X

(
n∑

i=1

Yi

)
+X

(
n∑

i=1

Y

)

=

n∑
i=1

Xi(Yi − Y )−X

(
n∑

i=1

Yi −
n∑

i=1

Y

)

=
n∑

i=1

Xi(Yi − Y )−X
n∑

i=1

(
Yi − Y

)
=

n∑
i=1

Xi(Yi − Y )−
n∑

i=1

X
(
Yi − Y

)
=

n∑
i=1

[
Xi(Yi − Y )−X

(
Yi − Y

)]
=

n∑
i=1

(Xi −X)(Yi − Y )

• Replace (Yi − Y ) with (Xi −X) to prove that

n∑
i=1

Xi(Xi −X) =
n∑

i=1

(Xi −X)2
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