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Where are we? Where are we
going?

• Last week:
▶ Using the CEF to explore relationships
▶ Practical estimation concerns led us to OLS/lines of best fit.

• This week:
▶ Inference for OLS: sampling distribution.
▶ Is there really a relationship? Hypothesis tests
▶ Can we get a range of plausible slope values? Confidence

intervals
▶ ⇝ how to read regression output.
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More narrow goal

##
## Call:
## lm(formula = logpgp95 ~ logem4, data = ajr)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.7130 -0.5333 0.0195 0.4719 1.4467
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.6602 0.3053 34.92 < 2e-16 ***
## logem4 -0.5641 0.0639 -8.83 2.1e-13 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.756 on 79 degrees of freedom
## (82 observations deleted due to missingness)
## Multiple R-squared: 0.497, Adjusted R-squared: 0.49
## F-statistic: 78 on 1 and 79 DF, p-value: 2.09e-13
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1/ Assumptions of
the Linear
Regression Model
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Simple linear regression model

• We are going to assume a linear model:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝑢𝑖

• Data:
▶ Dependent variable: 𝑌𝑖
▶ Independent variable: 𝑋𝑖

• Population parameters:
▶ Population intercept: 𝛽0
▶ Population slope: 𝛽1

• Error/disturbance: 𝑢𝑖
▶ Represents all unobserved error factors influencing 𝑌𝑖 other

than 𝑋𝑖.
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Causality and regression

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝑢𝑖

• Last week we showed there is always a population linear
regression we called the linear projection.

▶ No notion of causality and may not even be the CEF.
• Traditional regression approach: assume slope parameters are

causal or structural.
▶ 𝛽1 is the effect of a one-unit change in 𝑥 holding all other

factors (𝑢𝑖) constant.
• Regression will always consistently estimate a linear

association between 𝑌𝑖 and 𝑋𝑖.
• Today: When will regression say something causal?

▶ GOV 2001/2002 has more on a formal language of causality.

7 / 84



Linear regression model

• In order to investigate the statistical properties of OLS, we
need to make some statistical assumptions:

Linear Regression Model
The observations, (𝑌𝑖, 𝑋𝑖) come from a random (i.i.d.) sample and
satisfy the linear regression equation,

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝑢𝑖
𝔼[𝑢𝑖|𝑋𝑖] = 0.

The independent variable is assumed to have non-zero variance,
𝕍[𝑋𝑖] > 0.
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Linearity
Assumption 1: Linearity
The population regression function is linear in the parameters:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝑢𝑖

• Violation of the linearity assumption:

𝑌𝑖 =
1

𝛽0 + 𝛽1𝑋𝑖
+ 𝑢𝑖

• Not a violation of the linearity assumption:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋2
𝑖 + 𝑢𝑖

• In future weeks, we’ll talk about how to allow for
non-linearities in 𝑋𝑖.
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Random sample

Assumption 2: Random Sample
We have a iid random sample of size 𝑛, {(𝑌𝑖, 𝑋𝑖) ∶ 𝑖 = 1, 2,… , 𝑛}
from the population regression model above.

• Violations: time-series, selected samples.
• Think about the weight example from last week, where 𝑌𝑖 was

my weight on a given day and 𝑋𝑖 was my number of active
minutes the day before:

weight𝑖 = 𝛽0 + 𝛽1activity𝑖 + 𝑢𝑖

• What if I only weighed myself on the weekdays?
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A non-iid sample
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Variation in X

Assumption 3: Variation in 𝑋
There is in-sample variation in 𝑋𝑖, so that,

𝑛
∑
𝑖=1

(𝑋𝑖 − 𝑋)2 > 0.

• OLS not well-defined if no in-sample variation in 𝑋𝑖
• Remember the formula for the OLS slope estimator:

𝛽1 = ∑𝑛
𝑖=1(𝑋𝑖 − 𝑋)(𝑌𝑖 − 𝑌)
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋)2

• What happens here when 𝑋𝑖 doesn’t vary?
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Stuck in a moment
• Why does this matter? How would you draw the line of best

fit through this scatterplot, which is a violation of this
assumption?
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Zero conditional mean

Assumption 4: Zero conditional mean of the errors
The error, 𝑢𝑖, has expected value of 0 given any value of the
independent variable:

𝔼[𝑢𝑖|𝑋𝑖 = 𝑥] = 0 ∀𝑥.

• ⇝ weaker condition that 𝑢𝑖 and 𝑋𝑖 uncorrelated:
Cov[𝑢𝑖, 𝑋𝑖] = 𝔼[𝑢𝑖𝑋𝑖] = 0

• ⇝ 𝔼[𝑌𝑖|𝑋𝑖] = 𝛽0 + 𝛽1𝑋𝑖 is the CEF
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Violating the zero conditional
mean assumption

• How does this assumption get violated? Let’s generate data
from the following model:

𝑌𝑖 = 1 + 0.5𝑋𝑖 + 𝑢𝑖
• But let’s compare two situations:

1. Where the mean of 𝑢𝑖 depends on 𝑋𝑖 (they are correlated)
2. No relationship between them (satisfies the assumption)
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More examples of zero conditional
mean in the error

• Think about the weight example from last week, where 𝑌𝑖 was
my weight on a given day and 𝑋𝑖 was my number of active
minutes the day before:

weight𝑖 = 𝛽0 + 𝛽1activity𝑖 + 𝑢𝑖

• What might in 𝑢𝑖 here? Amount of food eaten, workload, etc
etc.

• We have to assume that all of these factors have the same
mean, no matter what my level of activity was. Plausible?

• When is this assumption most plausible? When 𝑋𝑖 is randomly
assigned.
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2/ Sampling
Distribution of the
OLS Estimator
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What is OLS?

• Ordinary least squares (OLS) is an estimator for the slope and
the intercept of the regression line.

• Where does it come from? Minimizing the sum of the squared
residuals:

(𝛽0, 𝛽1) = argmin
𝑏0,𝑏1

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑏0 − 𝑏1𝑋𝑖)2

• Leads to:
𝛽0 = 𝑌 − 𝛽1𝑋

𝛽1 = ∑𝑛
𝑖=1(𝑋𝑖 − 𝑋)(𝑌𝑖 − 𝑌)
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋)2
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Intuition of the OLS estimator

• Regression line goes through the sample means (𝑌, 𝑋):

𝑌 = 𝛽0 + 𝛽1𝑋

• Slope is the ratio of the covariance to the variance of 𝑋𝑖:

𝛽1 = ∑𝑛
𝑖=1(𝑋𝑖 − 𝑋)(𝑌𝑖 − 𝑌)
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋)2
= Ĉov(𝑋𝑖, 𝑌𝑖)

�̂�[𝑋𝑖]

= Sample Covariance between 𝑋 and 𝑌
Sample Variance of 𝑋
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The sample linear regression
function

• The estimated or sample regression function is:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖

• Estimated intercept: 𝛽0
• Estimated slope: 𝛽1
• Predicted/fitted values: 𝑌𝑖
• Residuals: ̂𝑢𝑖 = 𝑌𝑖 − 𝑌𝑖
• You can think of the residuals as the prediction errors of our

estimates.
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OLS slope as a weighted sum of
the outcomes

• One useful derivation that we’ll do moving forward is to write
the OLS estimator for the slope as a weighted sum of the
outcomes.

𝛽1 =
𝑛
∑
𝑖=1

𝑊𝑖𝑌𝑖

• Where here we have the weights, 𝑊𝑖 as:

𝑊𝑖 =
(𝑋𝑖 − 𝑋)

∑𝑛
𝑖=1(𝑋𝑖 − 𝑋)2

• Estimation error: proof

𝛽1 − 𝛽1 =
𝑛
∑
𝑖=1

𝑊𝑖𝑢𝑖

• ⇝ 𝛽1 is a sum of random variables.
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Sampling distribution of the OLS
estimator

• Remember: OLS is an estimator—it’s a machine that we plug
data into and we get out estimates.

OLS

Sample 1: {(𝑌1, 𝑋1),… , (𝑌𝑛, 𝑋𝑛)} (𝛽0, 𝛽1)1
Sample 2: {(𝑌1, 𝑋1),… , (𝑌𝑛, 𝑋𝑛)} (𝛽0, 𝛽1)2

⋮ ⋮
Sample 𝑘 − 1: {(𝑌1, 𝑋1),… , (𝑌𝑛, 𝑋𝑛)} (𝛽0, 𝛽1)𝑘−1

Sample 𝑘: {(𝑌1, 𝑋1),… , (𝑌𝑛, 𝑋𝑛)} (𝛽0, 𝛽1)𝑘

• Just like the sample mean, sample difference in means, or the
sample variance

• It has a sampling distribution, with a sampling
variance/standard error, etc.
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Simulation procedure

• Let’s take a simulation approach to demonstrate:
▶ Pretend that the AJR data represents the population of

interest
▶ See how the line varies from sample to sample

1. Draw a random sample of size 𝑛 = 30 with replacement using
sample()

2. Use lm() to calculate the OLS estimates of the slope and
intercept

3. Plot the estimated regression line
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Population Regression
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Randomly sample from AJR
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Randomly sample from AJR
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Randomly sample from AJR
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Randomly sample from AJR
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Randomly sample from AJR

1 2 3 4 5 6 7 8

6

7

8

9

10

11

12

Log Settler Mortality

Lo
g 

G
D

P 
pe

r 
ca

pi
ta

30 / 84



Randomly sample from AJR
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Randomly sample from AJR
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Sampling distribution of OLS

• You can see that the estimated slopes and intercepts vary
from sample to sample, but that the “average” of the lines
looks about right.

Sampling distribution of intercepts
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Sample mean properties review

• Last couple of weeks we derived the properties of 𝑋𝑛 under
one assumption: i.i.d. random samples.

• In large samples, we derived the sampling distribution:

𝑋𝑛 ∼ 𝑁 (𝜇, 𝜎
2

𝑛 )

• Unbiasedness: 𝔼[𝑋𝑛] = 𝜇
• Sampling variance: 𝜎2/𝑛
• Standard error: 𝜎/√𝑛
• ⇝ allows us to do hypothesis tests, calculate confidence

intervals.
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Our goal

• What is the sampling distribution of the OLS slope?

𝛽1 ∼ ?(?, ?)

• Mean of the sampling distribution: ??
• Sampling variance: ??
• Standard error: ??
• Distribution: ??
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Mean of the OLS sampling
distribution

• Remember the 4 assumptions:

1. Linearity: 𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝑢𝑖
2. Random (iid) sample
3. Variation in 𝑋𝑖
4. Zero conditional mean of the errors: 𝔼[𝑢𝑖|𝑋𝑖 = 𝑥] = 0

• Letting 𝑋 = (𝑋1,… , 𝑋𝑛)

Unbiasedness of OLS
Under assumptions 1-4, the OLS estimator is conditionally and
unconditionally unbiased,

𝔼[𝛽1|𝑋] = 𝔼[𝛽1] = 𝛽1
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Unbiasedness proof
• Remember the estimation error:

𝛽1 − 𝛽1 =
𝑛
∑
𝑖=1

𝑊𝑖𝑢𝑖

• 𝑊𝑖 = (𝑋𝑖 − 𝑋)/(∑𝑖=1(𝑋𝑖 − 𝑋)2).
• Use this to prove conditional unbiasedness:

𝔼[𝛽1 − 𝛽1|𝑋] = 𝔼⎡⎢
⎣

𝑛
∑
𝑖=1

𝑊𝑖𝑢𝑖∣𝑋⎤⎥
⎦

=
𝑛
∑
𝑖=1

𝔼[𝑊𝑖𝑢𝑖 |𝑋]

=
𝑛
∑
𝑖=1

𝑊𝑖𝔼[𝑢𝑖 |𝑋]

=
𝑛
∑
𝑖=1

𝑊𝑖 × 0 = 0

• True for any realization of the independent variables.
• Use iterated expectations to get unconditionally unbiased:

𝔼[𝛽1] = 𝔼[𝔼[𝛽1|𝑋]] = 𝔼[𝛽1] = 𝛽1
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3/ Sampling
Variance of the
OLS Estimator
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Where are we?

• Now we know that, under Assumptions 1-4, we know that

𝛽1 ∼ ?(𝛽1, ?)

• That is we know that the sampling distribution is centered on
the true population slope, but we don’t know the population
sampling variance.

𝕍[𝛽1] = ??

39 / 84



Sampling variance of estimated
slope

• It is easiest to derive the sampling variance under one
additional assumption:

1. Linearity
2. Random (iid) sample
3. Variation in 𝑋𝑖
4. Zero conditional mean of the errors
5. Homoskedasticity
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Homoskedasticity
Assumption 5
The conditional variance of 𝑌𝑖 given 𝑋𝑖 is constant:

𝕍(𝑌𝑖|𝑋𝑖 = 𝑥) = 𝕍(𝑢𝑖|𝑋𝑖 = 𝑥) = 𝜎2𝑢.

• 𝕍[𝑌𝑖|𝑋𝑖 = 𝑥] sometimes called the skedastic function, thus the
name homoskedasticity.

• Under homoskedasticity proof :

𝕍[𝛽1|𝑋] = 𝜎2𝑢
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋)2

• Standard error:

se[𝛽1|𝑋] = √𝕍[𝛽1|𝑋] = 𝜎𝑢
√∑𝑛

𝑖=1(𝑋𝑖 − 𝑋)2
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Violations of homoskedasticity

• Violations: magnitude of 𝑢𝑖 differ at different levels of 𝑋𝑖.
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Derive the sampling variance

𝕍[𝛽1|𝑋] = 𝜎2𝑢
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋)2
= 𝜎2𝑢

(𝑛 − 1)𝑆2
𝑋

• What drives the sampling variability of the OLS estimator?
▶ The higher the variance of 𝑌𝑖, the higher the sampling variance
▶ The lower the variance of 𝑋𝑖, the higher the sampling variance
▶ As we increase 𝑛, the denominator gets large, while the

numerator is fixed and so the sampling variance shrinks to 0.
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Variance in X -> SEs
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Variation in X -> SEs
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Estimating the sampling
variance/standard error

• But we don’t observe 𝜎2𝑢—it is the variance of the errors.
• Estimate with the residuals:

�̂�2𝑢 = 1
𝑛 − 2

𝑛
∑
𝑖=1

̂𝑢2𝑖

• Why 𝑛 − 2 instead of 𝑛 or 𝑛 − 1? To correct for OLS slightly
underestimating the variance.

▶ We already used the data twice to estimate 𝛽0 and 𝛽1

• Estimated standard error of the OLS slope:

ŝe[𝛽1|𝑋] =
√�̂�2𝑢

√∑𝑛
𝑖=1(𝑋𝑖 − 𝑋)2

= �̂�𝑢
√∑𝑛

𝑖=1(𝑋𝑖 − 𝑋)2
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Where are we?

• Under Assumptions 1-5, we know that

𝛽1 ∼ ?⎛⎜
⎝
𝛽1,

𝜎2𝑢
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋)2
⎞⎟
⎠

• Now we know the mean and sampling variance of the
sampling distribution.

• How does this compare to other estimators for the population
slope?
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OLS is BLUE :(

Gauss-Markov Theorem
Under assumptions 1-5, the OLS estimator is BLUE, or the Best
Linear Unbiased Estimator, in the sense that if 𝛽1 is another
unbiased estimator of the population slope, it has variance at least
as big as OLS:

𝕍[𝛽1|𝑋] ≤ 𝕍[𝛽1|𝑋].

• Assumptions 1-5: the “Gauss Markov Assumptions”
• Fails to hold when the assumptions are violated!

48 / 84



4/ Large Sample
Properties of OLS
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Where are we?

• Under Assumptions 1-5, we know that

𝛽1 ∼ ?⎛⎜
⎝
𝛽1,

𝜎2𝑢
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋)2
⎞⎟
⎠

• And we know that 𝜎2𝑢
∑𝑛

𝑖=1(𝑋𝑖−𝑋)2
is the lowest variance of any

linear estimator of 𝛽1
• What about the last question mark? What’s the form of the

distribution? Uniform? 𝑡? Normal? Exponential?
Hypergeometric?
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Consistency
• To see consistency of OLS, first remember:

𝛽1 = 𝛽1 +
𝑛
∑
𝑖=1

𝑊𝑖𝑢𝑖

• Under i.i.d., we have:

𝑛
∑
𝑖=1

𝑊𝑖𝑢𝑖 =
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋)𝑢𝑖
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋)2
𝑝→ Cov(𝑋𝑖, 𝑢𝑖)

𝕍[𝑋𝑖]

• Under zero conditional mean error, Cov[𝑋𝑖, 𝑢𝑖] = 0 so as long
as 𝕍[𝑋𝑖] > 0, then we’ll have

𝛽1
𝑝→ 𝛽1
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Large-sample distribution of OLS
estimators

• OLS estimator is the sum of independent r.v.’s:

𝛽1 =
𝑛
∑
𝑖=1

𝑊𝑖𝑌𝑖

• Weighted sum of r.v.s ⇝ central limit theorem (notice we
replace sample variance of 𝑋𝑖 with population variance):

𝛽1
𝑑→ 𝑁 (𝛽1,

𝜎2𝑢
(𝑛 − 1)𝕍[𝑋𝑖]

)

• True here as well, so we know that in large samples:
𝛽1 − 𝛽1
se[𝛽1]

∼ 𝑁(0, 1)

• Can also replace se with an estimate:
𝛽1 − 𝛽1
ŝe[𝛽1]

∼ 𝑁(0, 1)
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Where are we?
Under Assumptions 1-5 and in large samples, we know that

𝛽1 ∼ 𝑁 ⎛⎜
⎝
𝛽1,

�̂�2𝑢
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋)2
⎞⎟
⎠
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5/ Exact Inference
for OLS
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Sampling distribution in small
samples

• What if we have a small sample? What can we do then? Back
here:

𝛽1 ∼ ?⎛⎜
⎝
𝛽1,

𝜎2𝑢
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋)2
⎞⎟
⎠

• Can’t get something for nothing, but we can make progress if
we make another assumption:

1. Linearity
2. Random (iid) sample
3. Variation in 𝑋𝑖
4. Zero conditional mean of the errors
5. Homoskedasticity
6. Errors are conditionally normal

55 / 84



Normal errors

Assumption 6: Conditionally Normal Errors
The conditional distribution of 𝑢𝑖 given 𝑋𝑖 is normal with mean 0
and variance 𝜎2𝑢.

• This implies that the distribution of 𝑌𝑖 given 𝑋𝑖 is:
𝑁(𝛽0 + 𝛽1𝑋𝑖, 𝜎2𝑢).
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Conditional normal errors
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Conditional normal errors
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Conditional normal errors
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Conditional normal errors
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Conditional not marginal!
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Non-normal errors
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Non-normal errors
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Non-normal errors
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Non-normal errors
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Non-normal errors
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Marginals are deceiving!
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Sampling distribution of OLS slope
• If we have 𝑌𝑖 given 𝑋𝑖 is distributed 𝑁(𝛽0 + 𝛽1𝑋𝑖, 𝜎2𝑢), then

we have the following at any sample size:

𝛽1 − 𝛽1
se[𝛽1]

∼ 𝑁(0, 1)

• Furthermore, if we replace the true standard error with the
estimated standard error, then we get the following:

𝛽1 − 𝛽1
ŝe[𝛽1]

∼ 𝑡𝑛−2

• The standardized coefficient follows a 𝑡 distribution 𝑛 − 2
degrees of freedom. We take off an extra degree of freedom
because we had to one more parameter than just the sample
mean.

• All of this depends on normal errors! We can check to see if
the residuals do look normal.
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Where are we?

• Under Assumptions 1-5 and in large samples, we know that

𝛽1 − 𝛽1
ŝe[𝛽1]

∼ 𝑁(0, 1)

• Under Assumptions 1-6 and in any sample, we know that

𝛽1 − 𝛽1
ŝe[𝛽1]

∼ 𝑡𝑛−2
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6/ Hypothesis
Tests and
Confidence
Intervals
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Null and alternative hypotheses
review

• Null: 𝐻0 ∶ 𝛽1 = 0
▶ The null is the straw man we want to knock down.
▶ With regression, almost always null of no relationship

• Alternative: 𝐻𝑎 ∶ 𝛽1 ≠ 0
▶ Claim we want to test
▶ Almost always “some effect”
▶ Could do one-sided test, but you shouldn’t, for reasons we’ve

already discussed
• Notice these are statements about the population parameters,

not the OLS estimates.
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Test statistic

• Under the null of 𝐻0 ∶ 𝛽1 = 𝑏, we can use the following
familiar test statistic:

𝑇 = 𝛽1 − 𝑏
ŝe[𝛽1]

• Under then null hypothesis:
▶ Large samples: 𝑇 ∼ 𝑁(0, 1).
▶ Any sample size, plus conditionally normal errors: 𝑇 ∼ 𝑡𝑛−2
▶ Conservative to use 𝑡𝑛−2 in either case since 𝑡𝑛−2 ⇝ 𝑁(0, 1)

• Thus, under the null, we know the distribution of 𝑇 and can
use that to formulate a critical value and calculate p-values as
usual.
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R output

• By default, R shows you the 𝑇𝑜𝑏𝑠 for the test statistic with the
null of 𝛽1 = 0, which is just the estimate divided by the
standard error:

𝑇𝑜𝑏𝑠 = 𝛽1 − 0
ŝe[𝛽1]

= 𝛽1
ŝe[𝛽1]

• R also calculates the p-values for you.
• In the AJR data:

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.6602 0.30528 34.92 8.759e-50
## logem4 -0.5641 0.06389 -8.83 2.094e-13
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Confidence intervals

• Large-sample CIs relying on asymptotic normality:

𝛽1 ± 𝑧𝛼/2 ⋅ ŝe[𝛽1]

• Exact CIs relying on normality of the errors:

𝛽1 ± 𝑡𝛼/2,𝑛−2ŝe[𝛽1]

• “In 95% of repeated samples, the confidence interval for 𝛽1
will cover the true value.”
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7/ Goodness of Fit
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Prediction error

• How do we judge how well a line fits the data? Is there some
way to judge?

• One way is to find out how much better we do at predicting
𝑌𝑖 once we include 𝑋𝑖 into the regression model.

• Prediction errors without 𝑋𝑖: best prediction is the mean, so
our squared errors, or the total sum of squares (𝑆𝑆𝑡𝑜𝑡) would
be:

𝑆𝑆𝑡𝑜𝑡 =
𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑌)2

• Prediction errors with 𝑋𝑖: the sum of the squared residuals or
𝑆𝑆𝑟𝑒𝑠:

𝑆𝑆𝑟𝑒𝑠 =
𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑌𝑖)2
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Total SS vs SSR
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R-square

• By definition, the residuals have to be smaller than the
deviations from the mean, so we might ask the following: how
much lower is the 𝑆𝑆𝑟𝑒𝑠 compared to the 𝑆𝑆𝑡𝑜𝑡?

• We quantify this question with the coefficient of
determination or 𝑅2. This is the following:

𝑅2 = 𝑆𝑆𝑡𝑜𝑡 − 𝑆𝑆𝑟𝑒𝑠
𝑆𝑆𝑡𝑜𝑡

= 1 − 𝑆𝑆𝑟𝑒𝑠
𝑆𝑆𝑡𝑜𝑡

• This is the fraction of the total prediction error eliminated by
providing information on 𝑋𝑖.

• Common interpretation: 𝑅2 is the fraction of the variation in
𝑌𝑖 is “explained by” 𝑋𝑖.

▶ 𝑅2 = 0 means no relationship
▶ 𝑅2 = 1 implies perfect linear fit
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Is R-squared useful?
• Can be very misleading. Each of these samples have the same

𝑅2 even though they are vastly different:
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Review of Assumptions

• What assumptions do we need to make what claims with
OLS?

1. Data description: variation in 𝑋𝑖
2. Unbiasedness/Consistency: linearity, iid, variation in 𝑋𝑖, zero

conditional mean error.
3. Large-sample inference: linearity, iid, variation in 𝑋𝑖, zero

conditional mean error, homoskedasticity.
4. Small-sample inference: linearity, iid, variation in 𝑋𝑖, zero

conditional mean error, homoskedasticity, Normal errors.
• Can we weaken these? In some cases, yes.
• Next week: adding another variable to regression.
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Estimation error proof
Return

• Key facts:
▶ ∑𝑛

𝑖=1 𝑊𝑖 = 0 because ∑𝑛
𝑖=1(𝑋𝑖 − 𝑋) = 0

▶ ∑𝑛
𝑖=1 𝑊𝑖𝑋𝑖 = 1 because ∑𝑛

𝑖=1 𝑋𝑖(𝑋𝑖 − 𝑋) = ∑𝑛
𝑖=1(𝑋𝑖 − 𝑋)2

• Proof:

𝛽1 =
𝑛
∑
𝑖=1

𝑊𝑖𝑌𝑖

=
𝑛
∑
𝑖=1

𝑊𝑖(𝛽0 + 𝛽1𝑋𝑖 + 𝑢𝑖)

= 𝛽0 ⎛⎜⎝

𝑛
∑
𝑖=1

𝑊𝑖⎞⎟⎠
+ 𝛽1 ⎛⎜⎝

𝑛
∑
𝑖=1

𝑊𝑖𝑋𝑖⎞⎟⎠
+

𝑛
∑
𝑖=1

𝑊𝑖𝑢𝑖

= 𝛽1 +
𝑛
∑
𝑖=1

𝑊𝑖𝑢𝑖
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Variance proof
Return

• Proof:

𝕍[𝛽1|𝑋] = 𝕍⎡⎢
⎣

𝑛
∑
𝑖=1

𝑊𝑖𝑢𝑖∣𝑋⎤⎥
⎦

=
𝑛
∑
𝑖=1

𝕍[𝑊𝑖𝑢𝑖|𝑋]

=
𝑛
∑
𝑖=1

𝑊2
𝑖 𝕍[𝑢𝑖|𝑋]

=
𝑛
∑
𝑖=1

𝑊2
𝑖 𝜎2𝑢

= 𝜎2𝑢
𝑛
∑
𝑖=1

𝑊2
𝑖

= 𝜎2𝑢
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋)2
(∑𝑛

𝑖=1(𝑋𝑖 − 𝑋)2)2
= 𝜎2𝑢

∑𝑛
𝑖=1(𝑋𝑖 − 𝑋)2
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