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Where are we? Where are we going?

• Whatwe’ve beenup to: estimating parameters of populationdistributions. Gen-
erally we’ve been learning about a single variable.

• This week and for the rest of the term, we’ll be interested in the relationships be-
tween variables. How does one variable change we change the values of another
variable? These will be the bread and butter of the class moving forward.

relationships between two variables
What is a relationship and why do we care?

Most of what we want to do in the social science is learn about how two variables
are related. For example, we might have the following questions about relationships
between different variables:

• Does turnout vary by types of mailers received?
• Is the quality of political institutions related to average incomes?
• Does conflict mediation help reduce civil conflict?

1

mailto:mblackwell@gov.harvard.edu


2

Notation and conventions

We’ll use the following notational conventions:

• Yi - the dependent variable or outcome or regressand or left-hand-side variable
or response

– Voter turnout
– Log GDP per capita
– Number of battle deaths

• Xi - the independent variable or covariate or explanatory variable or regressor
or right-hand-side variable or treatment or predictor

– Social pressure mailer versus Civic Duty Mailer
– Average Expropriation Risk
– Presence of conflict mediation

Generally our goal with regression is to understand how Yi varies as a function of
Xi:

Yi = f(Xi) + error

Population-first approach

Before we learn too much about how to run a regression, it’s first good to understand
what we are estimating. In the last few weeks, we’ve been focusing on estimating the
true difference in means between two populations (in the case of the social pressure
experiment, this was the treatment effect). We have also thought about estimating the
population mean of some random variable from samples of that random variable.

Regression works generally the same way. There is some population relationship
between two variable and we are going to use sample data to estimate it. Before we can
start building estimators and getting our estimates, though, it’s good to understand the
thing that we are estimating. That’s why we’ll focus on thinking about the population
version of regression to start.

conditional expectation
When we turn to predicting an outcome or estimating the effect of a covariate on an
outcome, one way to describe relationships takes center stage: the conditional expec-
tation function.
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Definition 1. The conditional expectation function (CEF) or the regression function
of Y given X , denoted µ(x) = E[Y |X = x] is the function that gives the mean of Y
at various values of x.

Note that this is a function of the population distributions. Regression at its most
fundamental is about how the mean of Y changes as a function of X .

Discrete covariates

It’s easiest to think about the CEF whenXi is discrete. Let’s pin down a specific exam-
ple. Suppose that you were interested in exploring the relationship between race and
how long a person waits in line to vote. Let Yi be the amount of time, in minutes, that
a person waits in line to vote. And we’ll codeXi as a binary measure of race/ethnicity
with Xi = 1 for a white respondent and Xi = 0 for a non-white respondent. With
this, there only exists two conditional expectations, which we can write with words to
make things more clear:

µ(white) = E[Yi|Xi = white]
µ(non-white) = E[Yi|Xi = non-white]

The first value here is the (population) average wait time for the sub-population of
whites, whereas the second is the (population) averagewait time for the sub-population
of non-whites. We might look at the difference between these values µ(white) −
µ(non-white) as measure of relationship between race and voter wait times. Notice
here that since Xi can only take on two values, 0 and 1, then these two conditional
means completely summarize the CEF.

Imagine now we broke up the race/ethnicity variance into a couple of categories,
such as Xi ∈ {white, black, hispanic, asian, other}. Then we would have a different
CEF:

µ(white) = E[Yi|Xi = white]
µ(black) = E[Yi|Xi = black]

µ(hispanic) = E[Yi|Xi = hispanic]
µ(asian) = E[Yi|Xi = asian]
µ(other) = E[Yi|Xi = other]

Moving away from categoricalXi values, we could also imagine a discrete variable
such asXi = the number of polling booths at respondent i’s polling place. Then, µ(x)
is the average wait times for respondents in polling stations with x polling booths.

Why does the CEF measure the relationship between variables? Imagine that the
CEF was constant in x, so that µ(white) = µ(non-white). This would mean that wait
times are on average the same for whites and non-whites, which seems to indicate a
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lack of a relationship. On the other hand, if there is a big difference, this implies that
race/ethnicity can help explain or predict wait times.

CEFs with multiple covariates

In the next few weeks, we’ll often want to explore the CEF conditioning on multiple
variables. For instance, we might want to look at the CEF of wait times conditional on
race, Xi, and gender, Zi:

µ(white,man) = E[Yi|Xi = white, Zi = man]
µ(white,woman) = E[Yi|Xi = white, Zi = woman]

µ(non-white,man) = E[Yi|Xi = non-white, Zi = man]
µ(non-white,woman) = E[Yi|Xi = non-white, Zi = woman]

Now, the CEF is a function of two variables, µ(x, z). With this CEF, we might be
interested in the difference between in average wait times between white and non-
white voters of the same gender, which is what we sometimes call the ceteris paribus
(all else equal) difference:

µ(white,man)− µ(non-white,man)

We also sometimes call this the conditional effect of race, though this use of “effect” is
loose and not yet tied to any notion of causality.

Continuous covariates

Up until now, there have been a discrete number of levels of the covariates so we could
always each possible combination. But imagine now that instead of race and gender,
we want to look at the CEF conditional on income (Xi). Because there are many,
many possible values of income, then there are many, many possible conditional ex-
pectations. So now, µ(x) = E[Yi|Xi = x] is the CEF of wait times for the population
of people with some level of income x. Enumeration of each possible value of the CEF
is no longer possible given the large (essentially infinite) number of values income can
take.

Now that we can’t write out each possible value of the CEF, we have think a little
bit about the CEF as a function, µ(x). What does that function look like? It could be
linear so that µ(x) = α+βx, whichmeans that the conditional expectation increases
as a linear function of income. Or it might be a quadratic function: µ(x) = α +
βx+ γx2. Or it might be some crazy non-linear function µ(x) = α/(β+ x). Again,
remember that these are unknown functions in the population, which we don’t get to
observe. So a key challenge is that when we try to estimate the CEF, µ̂(x), we will have
to estimate a function whose form we don’t know.
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CEF error

We can always decompose Yi into the CEF and an error:

Yi = E[Yi|Xi] + ei,

where, E[ei|Xi] = E[ei] = 0. This statement about the CEF error is definitional, not
an assumption. That is, if we define the error as ei = Yi − E[Yi|Xi], then we can see
that:

E[ei|Xi] = E[Yi − E[Yi|Xi]|Xi] = E[Yi|Xi]− E[Yi|X] = 0,

where we used the fact thatE[E[Y |X]|X] = E[Y |X] here (which follows because the
CEF is a function of X). From this identity, we can also verify that ei is uncorrelated
with any function of Xi.

Intuitively, this says that Yi can be decomposed into the part “explained by Xi”
and a part that is uncorrelated with Xi.

Best predictor

One other reason to focus on the CEF is that it gives the best predictions for Yi using
the information in Xi. Suppose you wanted to make such a prediction. You would
figure out some function of Xi, g(Xi), that generates prediction. How good is that
prediction? Well, we could figure that out by looking at the the mean squared error
(MSE) of the prediction as:

E[(Yi − g(Xi))
2]

What function should you pick? It turns out that the CEF minimizes this predic-
tion error:

E[(Yi − g(Xi))
2] ≥ E[(Yi − µ(Xi))

2]

In this sense, we say the CEF is the best predictor of Yi among functions of Xi at least
in terms of squared error.

estimating the cef
Before moving on, it is helpful to understand the trade-offs involved in different ways
to model the CEF. When we say that we will “model the CEF,” we mean that we will
make some assumptions about the functional form of µ(x). That is, we might assume
it is linear. But why would we do this? Don’t we want to avoid assumptions? Well,
sometimes the form of our covariates will force us to make some assumptions, which
we will see now.
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How do we estimate these discrete CEFs? Well, the easiest way is to simply use the
sample mean within each group. Using Xi = 1 for white, and Xi = 0 for non-white,
then we use the following:

Ê[Yi|Xi = 1] =
1

n1

∑
i:Xi=1

Yi

Ê[Yi|Xi = 0] =
1

n0

∑
i:Xi=0

Yi

Here we have n1 =
∑n

i=1Xi is the number of men in the sample and n0 = n −
n1 is the number of women. The sum here

∑
i:Xi=1 is just summing only over the

observations i such that have Xi = 1, meaning that i is a man.
This is very straightforward: estimate the mean of Y conditional on X by just

estimating the means within each group of X .

Binary covariate example

ajr <- foreign::read.dta(”../data/ajr.dta”)

## mean of log GDP among non-African countries

mean(ajr$logpgp95[ajr$africa == 0], na.rm = TRUE)

## [1] 8.716383

## mean of log GDP among African countries

mean(ajr$logpgp95[ajr$africa == 1], na.rm = TRUE)

## [1] 7.355197

plot(ajr$africa, ajr$logpgp95, xlab = ””, ylab = ”Log GDP per capita growth”, xaxt = ”n”, xlim = c(-0.25, 1.25), bty = ”n”)

axis(side = 1, at = c(0,1), labels = c(”Non-Africa”, ”Africa”))

points(x = 0, y = mean(ajr$logpgp95[ajr$africa == 0], na.rm = TRUE), pch = 19, col = ”red”, cex = 3)

points(x = 1, y = mean(ajr$logpgp95[ajr$africa == 1], na.rm = TRUE), pch = 19, col = ”red”, cex = 3)
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Discrete covariate: sample conditional expectations

What ifXi hasmore than two categories? We can use the same logic to create a similar
estimator. That is, we can still estimate E[Yi|Xi = x] with the sample mean among
those who have Xi = x:

Ê[Yi|Xi = x] =
1

nx

∑
i:Xi=x

Yi

For example, I’ve been collecting data on my own weight for a little under a year.
What if I wanted to know how my weight (Yi) varied by the day of the week (Xi)?
This is a discrete, ordered variable. - Well, we could just calculate the mean weight for
each day of the week:

weight <- read.csv(”../data/weight.csv”, stringsAsFactors = FALSE)

weight$weekday <- as.numeric(format(as.Date(weight$date, format = ”%m/%d/%y%n%H:%M”), ”%w”))+1

weight$date <- as.Date(weight$date, format = ”%m/%d/%y%n%H:%M”)

day.means <- rep(NA, times = 7)

names(day.means) <- c(”1 - Su”, ”2 - Mo”, ”3 - Tu”, ”4 - We”, ”5 - Th”, ”6 - Fr”, ”7 - Sa”)

for (i in 1:7) {

day.means[i] <- mean(weight$weight[weight$weekday == i])

}

day.means

## 1 - Su 2 - Mo 3 - Tu 4 - We 5 - Th 6 - Fr 7 - Sa

## 170.3883 170.2398 169.5532 169.4810 169.6513 169.8014 170.1657
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plot(x = weight$weekday, y = weight$weight, bty = ”n”, xaxt = ”n”, xlab = ”Weekday”, ylab = ”Average Weight”, las = 1, pch = 19, col = ”grey60”)

lines(x = 1:7, y = day.means, pch = 19, col = ”indianred”, lwd = 3)

points(x = 1:7, y = day.means, pch = 21, col = ”white”, cex = 3, bg = ”indianred”)

axis(side = 1, at = 1:7, labels = names(day.means))
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Continuous covariate (I): each unique value gets a mean

What if Xi is continuous? Can we calculate a mean for every value of X? Not really,
because remember the probability that two values will be the same in a continuous
variable is 0. Thus, we’ll end up with a very “jumpy” function, Ê[Yi|Xi = x], since nx

will be at most 1 for any value of x. Let’s look at the relationship between my weight
and my active minutes in the previous day using this approach:

fitbit <- read.csv(”../data/fitbit.csv”, stringsAsFactors = FALSE)

fitbit$date <- as.Date(fitbit$date, format = ”%m/%d/%y”)

## lag fitbit by one day

fitbit$date <- fitbit$date + 1

## merge fitbit and weight data

weight <- merge(weight, fitbit, by = ”date”)

plot(weight$active.mins[order(weight$active.mins)], weight$weight[order(weight$active.mins)], type = ”l”, lwd = 3, pch = 19, col = ”indianred”, las = 1, bty = ”n”, xlab = ”Active Minutes Previous Day”, ylab = ”Weight”, ylim = c(166,175))

points(weight$active.mins, weight$weight, pch = 21, col = ”white”, bg = ”grey60”)
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You can imagine that this will jump around a lot from sample to sample. The
estimates, Ê[Yi|Xi = x], will have high sampling variance. Here are two different
samples of this data fit with this interpolation. While both functions are “bumpy,” the
bumps are coming at different points and it’s very difficult to tell what is going on:
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Continuous covariate (II): stratify and take means

So, that seems like each value of X won’t work, but maybe we can take the continu-
ous variable and turn it into a discrete variable. We call this stratification. Once it’s
discrete, we can just calculate the means within each strata. For instance, we could
break up the “Active Minutes” variable into 3 categories: lazy (< 30mins), active (30-
60mins), and very active (>60min).

lowactivity.mean <- mean(weight$weight[weight$active.mins < 30])

medactivity.mean <- mean(weight$weight[weight$active.mins >= 30 & weight$active.mins < 60])

hiactivity.mean <- mean(weight$weight[weight$active.mins >= 60])
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plot(weight$active.mins, weight$weight, pch = 19, las = 1, bty = ”n”,

xlab = ”Active Minutes Previous Day”, ylab = ”Weight”, ylim = c(166, 175),

col = ”grey60”)

abline(v = c(30,60), col = ”indianred”, lwd = 3)

text(x = c(15, 45, 90), y = c(175, 175, 175), c(”Lazy”, ”Active”, ”Very Active”),

col =”indianred”)

segments(x0=c(0,30,60), x1 = c(30,60,120),

y0 = c(lowactivity.mean, medactivity.mean, hiactivity.mean),

col =”indianred”, lwd = 3)
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Now we’re starting to see that there seems to be a negative relationship. But can
we make this even more simple?

Continuous covariate (III): model relationship as a line

The stratification approach was fairly crude: it assumed that means were constant
within strata, but that seemswrong. Canwe get amore globalmodel for the regression
function? Well, maybe we could assume that it is linear:

µ(x) = E[Yi|Xi = x] = β0 + β1x

Whymight we do this? Parsimony, first and foremost: 2 numbers to predict any value.
The parameters of this linear model also have a nice interpretation:

1. Intercept: the average outcome (weight) among units with X = 0 is β0:

E[Y |X = 0] = β0 + β10 = β0
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2. Slope: a one-unit change in X (active minutes) is associated with a β1 change
in Y (weight):

E[Y |X = x+ 1]− E[Y |X = x] = (β0 + β1(x+ 1))− (β0 + β1x)

= β0 + β1x+ β1 − β0 − β1x

= β1

Here is the linear regression function for the weight-active minutes relationships:

plot(weight$active.mins, weight$weight, pch = 19, las = 1, bty = ”n”,

xlab = ”Active Minutes Previous Day”, ylab = ”Weight”, ylim = c(166, 175),

col = ”grey60”)

abline(lm(weight ~ active.mins, data = weight), col = ”indianred”, lwd = 3)
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We’ll see soonhowwe estimate this line. It’s a bitmore complicated that the stratify
and calculate means.

Parametric vs. nonparametric models

The estimation of the CEF for discrete independent variables we presented was non-
parametric because they make no assumptions about the functional form of µ(x) =
E[Yi|Xi = x]. We just estimate the mean among each value of x. With continuous
independent variables, this approach breaks down because of the number of values
at which we want to evaluate µ(x), so we make parametric assumptions about the
functional form of E[Yi|Xi = x] in order to make progress.
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linear cef
Given the discussion about estimation, we are going to have to make some assump-
tions about the functional form of the CEF to make progress on estimation. We say
that a CEF (conditional on one independent variable) is linear when:

µ(x) = β0 + β1x1.

In this case, we can interpret β1 as the average change in the mean of Yi given a one-
unit change in Xi and β0 (called the intercept) is the conditional mean of Yi when
Xi = 0. For illustration, imagine that Yi is annual income, measured in dollars, and
Xi is years of education. Then, β1 the expected difference in Yi between two adults
that differ by 1 year of education. And β0 would be the expected income for someone
with 0 years of education.

To see why linearity is an assumption, think about the income-education example.
If we assume that the CEF is linear, µ(x) = β0 + β1x, then we are assuming the
difference in average income between x = 11 and x = 12 is the same as the difference
in average incomes betweenx = 15 andx = 16. Inwords, this says that the difference
between no high school degree and having a high school degree is the same as the
difference between some college and having a 4-year college degree. Of course, this
might not be true in the population! But our linearity assumption imposes that.

Linear CEF with binary covariates

Sometimes, linearity isn’t an assumption at all, but follows from the data itself. Let’s go
back to the wait times example with race as a binary covariate, where Xi = 1 means
that respondent i is white and Xi = 0 means that they are non-white. This means
that the mean wait times for whites is µ(1) and the mean wait times for non-whites is
µ(0). With this, we can write the CEF as:

E[Yi|Xi = x] = µ(x) = µ(0) + (µ(1)− µ(0))x

Doing some simple plugging in reveals that when x = 0, then we have E[Yi|Xi =
x] = µ(0) and when x = 1, we have E[Yi|Xi = x] = µ(1). Given this structure, we
can just rewrite this with different parameters:

µ(x) = β0 + β1x,

where β0 is the mean for non-whites and β1 is difference between the condition mean
for whites and the conditional mean for non-whites. Clearly this is a linear CEF! And
we didn’t have to make any assumptions since there are only two levels of Xi.
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Best linear approximation

We saw that µ(x) is the best approximation to Yi in terms of MSE. But this isn’t very
useful if we don’t know the functional form of the CEF. Instead, we may ask the fol-
lowing: what linear function of x is the best approximation to Yi? This question can
be written mathematically as:

(β0, β1) = arg min
(b0,b1)

E[(Yi − (b0 + b1Xi))
2]

The resulting linear function (β0+β1Xi) is called the linear projection of Yi ontoXi.
All we are doing is finding the line that best approximates Yi and we are doing that by
minimizing the (average of the) squared distance between values of Yi.

Can we solve for the slope and intercept of the this linear projection? Yes, we
can! Using some simple multivariate calculus (see the technical appendix for details),
we can show that the population intercept and slope of the linear projection can be
written as:

β0 = E[Yi]− β1E[Xi]

β1 =
Cov[Yi, Xi]

V[Xi]

Okay, what now? Let’s recap. We wanted to find a linear function of Xi that, in
the population, minimized the MSE. It turns out if this function is β0 + β1Xi, where
β0 and β1 are defined above. Thus, this is the population line of best fit.

It’s important to see that this best linear predictor exists independent of the CEF.
This linear function won’t, in general be equal to the CEF since the CEF might not be
linear! But we can still define this linear projection. There are two ways in which the
linear project relates to the CEF, though.

Theorem 1. If the CEF is a linear function, E[Yi|Xi] = b0+ b1Xi, then it will be equal
to the linear projection: E[Yi|Xi] = β0 + β1Xi.

Theorem 2. The linear projection is the best linear approximation to the CEF, so that:

(β0, β1) = arg min
(b0,b1)

E[(µ(Xi)− (b0 + b1Xi))
2]

So now we know that the linear projection has three awesome properties: (1) its
the best linear predictor of Yi given Xi, (2) it is equal to the CEF if the CEF is linear,
and (3) it is the best linear approximation to the CEF even if the CEF is nonlinear.

Remember that all of these ideas are in the population. We are not trying to es-
timate anything yet. We are just trying to understand what the parameters in the
population are that we are going to estimate with linear regression.
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Linear projection error

Define the error of the linear projection as:

ui = Yi − β0 − β1Xi.

It can be shown that this error has two properties: E[Xiui] = 0 and E[ui] = 0. This
implies that the covariance (and thus the correlation) between ui and Xi is 0, since
Cov[Xi, ui] = E[Xiui]− E[Xi]E[ui] = 0.

Problem 1. Prove that E[Xiui] = 0

So the linear projection error is uncorrelated with Xi, but you should note that
it isn’t mean independent like the CEF error, E[ui|Xi] ̸= 0. Why is this the case?
Remember that correlation/covariance are measures of linear dependence and if the
CEF is nonlinear, then the linear projection errors might be a nonlinear function of
Xi. So even if they are uncorrelated, the projection errors might be a nonlinear func-
tion of Xi.

Summary of the linear projection model

Why did we talk about linear projections? The reason is that we will soon be estimat-
ing ordinary least squares (OLS) and I wanted to make it clear that OLS estimates a
sensible set of population parameters even if the CEF is nonlinear. Moving forward,
we will often assume that the CEF is linear, so that the CEF and the linear projection
are the same.

least squares
To review our approach: we have defined a linear projection model gives us the line
of best fit between Yi and Xi in the population, β0 + β1Xi. We also know that if we
assume that the CEF is linear, then it is equal to the linear projection: E[Yi|Xi = x] =
β0+β1x. Either way, β0 and β1 are valid population parameters just like µ or σ2, and
we will often want to estimate them in real data.

To do this, let’s first make an assumption about our data being i.i.d.:

Assumption 1. {(Y1, X1), . . . , (Yn, Xn)} are i.i.d. draws from a population joint dis-
tribution, f(Y,X)(y, x).

How can we develop an estimator for the linear projection? Remember that the
population linear approximation minimized the expected value of the squared pro-
jection errors:

(β0, β1) = arg min
(b0,b1)

E[(Yi − b0 − b1Xi)
2]
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To find a good in-sample version of these quantities, we can try to produce the best
linear approximation to the observed Yi given the observed Xi. This involves replac-
ing the population expectation with a sample expectation:

(β̂0, β̂1) = arg min
b0,b1

1

n

n∑
i=1

(Yi − b0 − b1Xi)
2

The estimator defined by this procedure is usually called least squares (LS) or ordi-
nary least squares (OLS). This estimator works by the plug-in or analogy principle we
mentioned a few weeks ago.

We can solve for the least squares estimator in a similar way to how we solved for
the linear approximation coefficients. When we do that (see the appendix), we find
that:

β̂0 = Y − β̂1X

β̂1 =

∑n
i=1(Yi − Y )(Xi −X)∑n

i=1(Xi −X)2

=
Sample Covariance between X and Y

Sample Variance of X
These should look very familiar! They are exactly the population coefficientswhere

we replace population expectations with their sample versions.

Intuition of the OLS estimator

It is useful to have the following definitions:

• Definition A fitted value or predicted value of Yi for a particular observation
with independent variable Xi:

Ŷi = β̂0 + β̂1Xi

• Definition The residual is the difference between the actual value of Yi and the
predicted value, Ŷi:

ûi = Yi − Ŷi = Yi − β̂0 − β̂1Xi
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Minimize the residuals

The residuals, ûi = Yi− β̂0− β̂1Xi, tell us how well the line fits the data. Larger mag-
nitude residualsmeans that points are very far from the line. Residuals close to 0mean
points very close to the line. The smaller the magnitude of the residuals, the better we
are doing at predicting Yi Thus, it makes sense to choose the line that minimizes the
residuals. One way to think about OLS is that it chooses the line that minimizes the
sum of the squared residuals.

Mechanical properties of least squares

• The residuals will be 0 on average:

n∑
i=1

ûi = 0

• The residuals will be uncorrelated with the predictor:
n∑

i=1

Xiûi = 0
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• The residuals will be uncorrelated with the fitted values:
n∑

i=1

Ŷiûi = 0

Sample covariance

• The sample version of population covariance, σXY = E[(X − E[X])(Y −
E[Y ])].

• Defintion The sample covariance between Yi and Xi is

SXY =
1

n− 1

n∑
i=1

(Xi −Xn)(Yi − Y n)

## cov() gets confused when you give it missing data

cov(ajr$logem4, ajr$logpgp95)

## [1] NA

## tell cov() to use only the pairwise complete observations:

cov(ajr$logem4, ajr$logpgp95, use = ”pair”)

## [1] -0.9881104

Sample correlation

• The sample version of population correlation, ρ = σXY /σXσY .
• Defintion The sample correlation between Yi and Xi is

ρ̂ = r =
SXY

SXSY
=

∑n
i=1(Xi −Xn)(Yi − Y n)√∑n

i=1(Xi −Xn)2
∑n

i=1(Yi − Y n)2

## cor() is very similar to cov()

cor(ajr$logem4, ajr$logpgp95)

## [1] NA

## and has the same solution to NAs:

cor(ajr$logem4, ajr$logpgp95, use = ”pair”)

## [1] -0.7047632
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AJR Example in R

• Let’s use those simple formulas we just learned:

cov.xy <- cov(ajr$logem4, ajr$logpgp95, use = ”pair”)

var.x <- var(ajr$logem4, na.rm = TRUE)

cov.xy/var.x

## [1] -0.5816937

mean(ajr$logpgp95, na.rm = TRUE) - cov.xy/var.x * mean(ajr$logem4, na.rm = TRUE)

## [1] 10.97596

• Compare it to what lm(), the OLS function in R produces:

coef(lm(logpgp95 ~ logem4, data = ajr))

## (Intercept) logem4

## 10.6602465 -0.5641215

• Why aren’t these equal? Hint: think about missing data.

Mechanical properties of least squares in R

mod <- lm(logpgp95 ~ logem4, data = ajr)

mean(residuals(mod))

## [1] -2.623502e-18

## mod$model is the data used in the lm() call

cor(mod$model$logem4, residuals(mod))

## [1] -3.184875e-17

cor(fitted(mod), residuals(mod))

## [1] -1.160489e-16
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technical proofs
Proof of the linear projection

First note that we can expand the square and use the linearity of the expectation to get
the following:

E[(Yi−(β0+β1x))
2] = E[Y 2

i ]−2β0E[Yi]−2β1E[YiXi]+2β0β1E[Xi]+β2
0+β2

1E[X2
i ]

To find the values that minimize this function, we need to take partial derivatives
with respect to each parameter, set these equal to zero, and solve for the parameters.
We can write the first-order condition for β1 as follows:

0 = −2E[Yi] + 2β1E[Xi] + 2β0

Reorganizing gives us,
β0 = E[Yi]− β1E[Xi]

The first order condition for the slope β1 is:

0 = −2E[YiXi] + 2β0E[Xi] + 2β1E[X2
i ]

0 = −E[YiXi] + β0E[Xi] + β1E[X2
i ]

0 = −E[YiXi] + (E[Yi]− β1E[Xi])E[Xi] + β1E[X2
i ]

0 = −(E[YiXi]− E[Yi]E[Xi]) + β1(E[X2
i ]− E[Xi]

2)

Rearranging and noting thatV[Xi] = E[X2
i ]−E[Xi]

2 and Cov[Yi, Xi] = E[YiXi]−
E[Yi]E[Xi], we have the following:

β1 =
Cov[Yi, Xi]

V[Xi]

Implicit in these derivations are three assumptions: (1) E[Y 2
i ] < ∞, (2) E[X2

i ] <
∞, and (3) V[Xi] > 0.

Deriving the OLS estimator

• Define the least squares objective function:

S(b0, b1) =
1

n

n∑
i=1

(Yi − b0 −Xib1)
2.

• How do we derive the LS estimators for β0 and β1?
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1. Take partial derivatives of S with respect to b0 and b1.
2. Set each of the partial derivatives to 0
3. Solve for {b0, b1} and replace them with the solutions

• The partial derivatives are:

S(b0, b1) =
1

n

n∑
i=1

(Yi − b0 −Xib1)
2

=
1

n

n∑
i=1

(Y 2
i − 2Yib0 − 2Yib1Xi + b20 + 2b0b1Xi + b21X

2
i )

∂S(b0, b1)

∂b0
=

1

n

n∑
i=1

(−2Yi + 2b0 + 2b1Xi)

∂S(b0, b1)

∂b1
=

1

n

n∑
i=1

(−2YiXi + 2b0Xi + 2b1X
2
i )

• The first order conditions are:

0 =
1

n

n∑
i=1

(−2Yi + 2b0 + 2b1Xi)

0 =
1

n

n∑
i=1

(−2YiXi + 2b0Xi + 2b1X
2
i )

now solving for b0 and b1 yields the normal equations:

β̂0 = Y − β̂1X

β̂1

(
1

n

n∑
i=1

X2
1

)
=

(
1

n

n∑
i=1

XiYi

)
− β̂0X

• Plug the first into the second normal equation:

β̂1

(
1

n

n∑
i=1

X2
1

)
=

(
1

n

n∑
i=1

XiYi

)
− (Y − β̂1X)X

β̂1

(
1

n

n∑
i=1

X2
1 −X

2

)
=

(
1

n

n∑
i=1

XiYi

)
− Y X
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• Use the following fact twice, once for each side of the above equals sign (chal-
lenge question: show this is true):(

1

n

n∑
i=1

YiXi

)
− Y X =

1

n− 1

n∑
i=1

(Yi − Y )(Xi −X)

• This leaves us with:

β̂1

n∑
i=1

(
Xi −X

)2
=

n∑
i=1

(Yi − Y )(Xi −X)

• And rearrange them to get the OLS estimators:

β̂1 =

∑n
i=1(Xi −X)(Yi − Y )∑n

i=1(Xi −X)2
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