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Where are we? Where are we
going?

• What we’ve been up to: estimating parameters of population
distributions. Generally we’ve been learning about a single
variable.

• This week and for the rest of the term, we’ll be interested in
the relationships between variables. How does one variable
change we change the values of another variable? These will
be the bread and butter of the class moving forward.
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AJR data
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1/ Relationships
between Variables
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What is a relationship and why do
we care?

• Most of what we want to do in the social science is learn
about how two variables are related

• Examples:
▶ Does turnout vary by types of mailers received?
▶ Is the quality of political institutions related to average

incomes?
▶ Does conflict mediation help reduce civil conflict?

6 / 65



Notation and conventions

• 𝑌𝑖 - the dependent variable or outcome or regressand or
left-hand-side variable or response

▶ Voter turnout
▶ Log GDP per capita
▶ Number of battle deaths

• 𝑋𝑖 - the independent variable or explanatory variable or
regressor or right-hand-side variable or treatment or predictor

▶ Social pressure mailer versus Civic Duty Mailer
▶ Average Expropriation Risk
▶ Presence of conflict mediation
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Joint distribution review

• (𝑌𝑖, 𝑋𝑖) are draws from an i.i.d. joint distribution 𝑓𝑌,𝑋
▶ 𝑌𝑖 and 𝑋𝑖 are measured on the same unit 𝑖
▶ WARNING different than our use of 𝑌𝑖 and 𝑋𝑖 as r.v.s for

different groups.
▶ There, 𝑌𝑖 and 𝑋𝑖 corresponded to different units.

• Several ways to summarize the joint population distribution:
▶ Covariance/correlation
▶ Conditional expectation

• Today we’ll spend a lot of time thinking about the relevant
populations parameters for estimating relationships.

▶ Population-first approach.
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2/ Conditional
Expectation
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Conditional expectation function

• Conditional expectation function (CEF): how the mean of 𝑌𝑖
changes as 𝑋𝑖 changes.

𝜇(𝑥) = 𝔼[𝑌𝑖|𝑋𝑖 = 𝑥]

• The CEF is a feature of the joint distribution of 𝑌𝑖 and 𝑋𝑖:

𝔼[𝑌𝑖|𝑋𝑖 = 𝑥] = ∫∞
−∞ 𝑦𝑓𝑌|𝑋(𝑦|𝑥)𝑑𝑦

• Goal of regression is to estimate CEF: 𝜇(𝑥) = 𝔼̂[𝑌𝑖|𝑋𝑖 = 𝑥]
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CEF for binary covariates

• Example:
▶ 𝑌𝑖 is the time respondent 𝑖 waited in line to vote.
▶ 𝑋𝑖 = 1 for whites, 𝑋𝑖 = 0 for non-whites.

• Then the mean in each group is just a conditional expectation:

𝜇(white) = 𝐸[𝑌𝑖|𝑋𝑖 = white]
𝜇(non-white) = 𝐸[𝑌𝑖|𝑋𝑖 = non-white]

• Notice here that since 𝑋𝑖 can only take on two values, 0 and 1,
then these two conditional means completely summarize the
CEF.
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Why is the CEF useful?
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• The CEF encodes relationships between variables.
• If 𝜇(white) < 𝜇(non-white), so that waiting times for whites

are shorter on average than for non-whites.
• Indicates a relationship in the population between race and

wait times.
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CEF for discrete covariates
• New covariate: 𝑋𝑖 is the number of polling booths at citizen

𝑖’s polling station.
• The mean of 𝑌𝑖 changes as 𝑋𝑖 changes:
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CEF with multiple covariates
• We could also be interested in the CEF conditioning on

multiple variables:

𝜇(white, man) = 𝔼[𝑌𝑖|𝑋𝑖 = white, 𝑍𝑖 = man]
𝜇(white, woman) = 𝔼[𝑌𝑖|𝑋𝑖 = white, 𝑍𝑖 = woman]

𝜇(non-white, man) = 𝔼[𝑌𝑖|𝑋𝑖 = non-white, 𝑍𝑖 = man]
𝜇(non-white, woman) = 𝔼[𝑌𝑖|𝑋𝑖 = non-white, 𝑍𝑖 = woman]

• Why? Allows more credible all else equal comparisons (ceteris
paribus).

• Ex: average difference in wait times between white and
non-white citizens of the same gender:

𝜇(white, man) − 𝜇(non-white, man)
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CEF for continuous covariates

• What if our independent variable, 𝑋𝑖 is income?
• Many possible values of 𝑋𝑖 ⇝ many possible values of

𝔼[𝑌𝑖|𝑋𝑖 = 𝑥].
▶ Writing out each value of the CEF no longer feasible.

• Now we will think about 𝜇(𝑥) = 𝔼[𝑌𝑖|𝑋𝑖 = 𝑥] as function.
What does this function look like:

▶ Linear: 𝜇(𝑥) = 𝛼 + 𝛽𝑥
▶ Quadratic: 𝜇(𝑥) = 𝛼 + 𝛽𝑥 + 𝛾𝑥2
▶ Crazy, nonlinear: 𝜇(𝑥) = 𝛼/(𝛽 + 𝑥)

• These are unknown functions in the population! This is going
to make producing an estimator 𝜇(𝑥) very difficult!
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The CEF decomposition

• We can always decompose 𝑌𝑖 into the CEF and an error:

𝑌𝑖 = 𝔼[𝑌𝑖|𝑋𝑖] + 𝑢𝑖

• Here, the CEF error has two definitional properties:
▶ The mean of the error doesn’t depend on 𝑋𝑖:

𝔼[𝑢𝑖 |𝑋𝑖] = 𝔼[𝑢𝑖] = 0
▶ The error is uncorrelated with any function of 𝑋𝑖.

• 𝑌𝑖 can be decomposed into the part “explained by 𝑋𝑖” and a
part that is uncorrelated with 𝑋𝑖.
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Best predictor

• Another reason to focus on the CEF: it generates best
predictions about 𝑌𝑖 using 𝑋𝑖.

• Let 𝑔(𝑋𝑖) be some function that generates prediction and
define the mean squared error (MSE) of the prediction as:

𝔼[(𝑌𝑖 − 𝑔(𝑋𝑖))2]

• What function should you pick? The CEF minimizes this
prediction error:

𝔼[(𝑌𝑖 − 𝑔(𝑋𝑖))2] ≥ 𝔼[(𝑌𝑖 − 𝜇(𝑋𝑖))2]

• We say the CEF is the best predictor of 𝑌𝑖 among functions of
𝑋𝑖.

▶ …in terms of squared error.
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3/ Estimating the
CEF
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Estimating the CEF for binary
covariates

• How do we estimate 𝔼̂[𝑌𝑖|𝑋𝑖 = 𝑥]?
• Sample means within each group:

𝔼̂[𝑌𝑖|𝑋𝑖 = 1] = 1
𝑛1

∑
𝑖∶𝑋𝑖=1

𝑌𝑖

𝔼̂[𝑌𝑖|𝑋𝑖 = 0] = 1
𝑛0

∑
𝑖∶𝑋𝑖=0

𝑌𝑖

• 𝑛1 = ∑𝑛
𝑖=1 𝑋𝑖 is the number of women in the sample.

• 𝑛0 = 𝑛 − 𝑛1 is the number of men.
• ∑𝑖∶𝑋𝑖=1 sum only over the 𝑖 that have 𝑋𝑖 = 1, meaning that 𝑖

is a woman.
• ⇝ estimate the mean of 𝑌𝑖 conditional on 𝑋𝑖 by just

estimating the means within each group of 𝑋𝑖.
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Binary covariate example

## mean of log GDP among non-African countries
mean(ajr$logpgp95[ajr$africa == 0], na.rm = TRUE)

## [1] 8.716

## mean of log GDP among African countries
mean(ajr$logpgp95[ajr$africa == 1], na.rm = TRUE)

## [1] 7.355
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Binary covariate CEF plot
plot(ajr$africa, ajr$logpgp95, ylab = "Log GDP per capita", xlab = "Africa",

bty = "n")
points(x = 0, y = mean(ajr$logpgp95[ajr$africa == 0], na.rm = TRUE),

pch = 19, col = "red", cex = 3)
points(x = 1, y = mean(ajr$logpgp95[ajr$africa == 1], na.rm = TRUE),

pch = 19, col = "red", cex = 3)
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Discrete covariate: estimating the
CEF

• What if 𝑋𝑖 isn’t binary, but takes on > 2 discrete values?
• The same logic applies, we can still estimate 𝔼[𝑌𝑖|𝑋𝑖 = 𝑥]

with the sample mean among those who have 𝑋𝑖 = 𝑥:

𝔼̂[𝑌𝑖|𝑋𝑖 = 𝑥] = 1
𝑛𝑥

∑
𝑖∶𝑋𝑖=𝑥

𝑌𝑖
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Discrete covariate example

• I’ve been collecting data on my own weight for a while.
• How does my weight (𝑌𝑖) varied by the day of the week (𝑋𝑖)?
• Calculate the mean weight for each day of the week:

weight <- read.csv("../data/weight.csv", stringsAsFactors = FALSE)
weight$weekday <- as.numeric(format(as.Date(weight$date, format = "%m/%d/%y%n%H:%M"),

"%w")) + 1
weight$date <- as.Date(weight$date, format = "%m/%d/%y%n%H:%M")
day.means <- rep(NA, times = 7)
names(day.means) <- c("1 - Su", "2 - Mo", "3 - Tu", "4 - We", "5 - Th",

"6 - Fr", "7 - Sa")
for (i in 1:7) {

day.means[i] <- mean(weight$weight[weight$weekday == i])
}
day.means

## 1 - Su 2 - Mo 3 - Tu 4 - We 5 - Th 6 - Fr 7 - Sa
## 170.4 170.2 169.6 169.5 169.7 169.8 170.2
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Discrete covariate CEF plot
plot(x = weight$weekday, y = weight$weight, xaxt = "n", xlab = "Weekday",

ylab = "Average Weight", pch = 19, col = "grey60")
lines(x = 1:7, y = day.means, pch = 19, col = "indianred", lwd = 3)
points(x = 1:7, y = day.means, pch = 21, col = "white", cex = 3, bg = "indianred")
axis(side = 1, at = 1:7, labels = names(day.means))
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Continuous covariate (I): each
unique value gets a mean

• What if 𝑋𝑖 is continuous? Can we calculate a mean for every
value of 𝑋𝑖?

• Not really, because remember the probability that two values
will be the same in a continuous variable is 0.

• Thus, we’ll end up with a very “jumpy” function,
𝔼̂[𝑌𝑖|𝑋𝑖 = 𝑥], since 𝑛𝑥 will be at most 1 for any value of 𝑥.
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Continuous covariate (I) example

• I also wear an activity tracker and that collects how active I
am during the day

• Let’s look at the relationship between my weight and my
active minutes in the previous day using this approach.

fitbit <- read.csv("../data/fitbit.csv", stringsAsFactors = FALSE)
fitbit$date <- as.Date(fitbit$date, format = "%m/%d/%y")
## lag fitbit by one day
fitbit$date <- fitbit$date + 1
## merge fitbit and weight data
weight <- merge(weight, fitbit, by = "date")
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Continuous covariate (I) CEF plot
plot(weight$active.mins[order(weight$active.mins)],

weight$weight[order(weight$active.mins)], type = "l", lwd = 3, pch = 19,
col = "indianred",xlab = "Active Minutes Previous Day", ylab = "Weight")

points(weight$active.mins, weight$weight, pch = 19, cex = 0.5)
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• Not a useful summary of the relationship between 𝑋𝑖 and 𝑌𝑖.
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Continuous covariate (II): stratify
and take means

• So, that seems like each value of 𝑋𝑖 won’t work, but maybe
we can take the continuous variable and turn it into a discrete
variable. We call this stratification.

• Once it’s discrete, we can just calculate the means within
each strata.

• For instance, we could break up the “Active Minutes” variable
into 3 categories: lazy (< 30mins), active (30-60mins), and
very active (>60min).

lowactivity.mean <- mean(weight$weight[weight$active.mins < 30])
medactivity.mean <- mean(weight$weight[weight$active.mins >= 30 & weight$active.mins <

60])
hiactivity.mean <- mean(weight$weight[weight$active.mins >= 60])
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Continuous covariate (II) stratified
CEF
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Continuous covariate (II) stratified
CEF
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Continuous covariate (II) stratified
CEF

0 20 40 60 80 100 120

166

168

170

172

174

Active Minutes Previous Day

W
ei

gh
t

Lazy Active Very Active

36 / 65



4/ Linear CEFs
and Linear
Projections
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Linear CEFs

• Obviously, estimation is going to be difficult with continuous
covariates.

▶ Even stratification had many hidden assumptions: number of
categories, cutoffs for the categories, constant means within
strata, etc.

• We can side-step some of these issues by assuming that the
CEF is linear:

𝜇(𝑥) = 𝔼[𝑌𝑖|𝑋𝑖 = 𝑥] = 𝛽0 + 𝛽1𝑥

• Intercept, 𝛽0: the condition expectation of 𝑌𝑖 when 𝑋𝑖 = 0
• Slope, 𝛽1: average change in the mean of 𝑌𝑖 given a one-unit

change in 𝑋𝑖

38 / 65



Why is linearity an assumption?

• Example: 𝑌𝑖 is income, 𝑋𝑖 is years of education.
▶ 𝛽0: average income among people with 0 years of education.
▶ 𝛽1: expected difference in income between two adults that

differ by 1 year of education.

• Why is linearity an assumption?

𝔼[𝑌𝑖|𝑋𝑖 = 12]−𝔼[𝑌𝑖|𝑋𝑖 = 11] = 𝔼[𝑌𝑖|𝑋𝑖 = 16]−𝔼[𝑌𝑖|𝑋𝑖 = 15] = 𝛽1

• Effect of getting HS degree is the same as the effect of
getting college degree.
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Linear CEF with a binary covariate
• Return to wait-times and race example, with 𝑋𝑖 = 1 being

white and 𝑋𝑖 = 0 being non-white.
▶ Two possible values of the CEF: 𝜇(1) for whites and 𝜇(0) for

non-whites.

• Can write the CEF as follows:

𝔼[𝑌𝑖|𝑋𝑖 = 𝑥] = 𝜇(𝑥) = 𝜇(0) + (𝜇(1) − 𝜇(0)) 𝑥

• Rewriting with 𝛽0 = 𝜇(0) and 𝛽1 = 𝜇(1) − 𝜇(0):

𝜇(𝑥) = 𝛽0 + 𝛽1𝑥

• No assumptions, just rewriting!
▶ 𝛽0: expected wait-time for non-whites
▶ 𝛽1: difference in expected wait times between whites and

non-whites.
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Linear approximation

• Ugh, what if the CEF isn’t linear but we assume it is?
• Better to think of there being a population line of best fit that

is the best linear approximation to 𝑌𝑖.
• Mathematically, find the linear function of 𝑋𝑖 that minimizes

the squared prediction errors:

(𝛽0, 𝛽1) = arg min
(𝑏0,𝑏1)

𝔼[(𝑌𝑖 − (𝑏0 + 𝑏1𝑋𝑖))2]

• Resulting function 𝛽0 + 𝛽1𝑋𝑖 is called the linear projection or
the population linear regression of 𝑌𝑖 onto 𝑋𝑖.

• In general, distinct from the CEF:
▶ CEF, 𝜇(𝑥) is the best predictor of 𝑌𝑖 among all functions.
▶ Linear projection is best predictor among linear functions.
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Linear approximation

Income

W
ai

t 
Ti

m
es

0

20

40

60

80

$25k $50k 100k 150k 200k

CEF

43 / 65



Linear approximation
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Population linear projection

• Can we relate the intercept and slope of the population line of
best fit to the joint distribution of 𝑌𝑖 and 𝑋𝑖?

• Yes, using some multivariate calculus, can show:

𝛽0 = 𝔼[𝑌𝑖] − 𝛽1𝔼[𝑋𝑖]

𝛽1 = Cov[𝑌𝑖, 𝑋𝑖]
𝕍[𝑋𝑖]

• What’s awesome about the linear projection is that it exists
and is well-defined even if the CEF is nonlinear.
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Why the linear projection?

• Two handy results about the linear projection:

CEF is linear
If the CEF is a linear function, 𝔼[𝑌𝑖|𝑋𝑖] = 𝑏0 + 𝑏1𝑋𝑖, then it will be
equal to the linear projection: 𝔼[𝑌𝑖|𝑋𝑖] = 𝛽0 + 𝛽1𝑋𝑖.

Linear projection approximates CEF
The linear projection is the best linear approximation to the CEF,
so that:

(𝛽0, 𝛽1) = arg min
(𝑏0,𝑏1)

𝔼[(𝜇(𝑋𝑖) − (𝑏0 + 𝑏1𝑋𝑖))2]
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5/ Least Squares
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Back up and review

• To review our approach:
▶ Defined a population line of best fit, 𝛽0 + 𝛽1𝑋𝑖.
▶ If CEF is linear, it is equal to this line.

• Either way, 𝛽0 and 𝛽1 are valid population parameters just
like 𝜇 or 𝜎2!

• Sample: {(𝑌1, 𝑋1), … , (𝑌𝑛, 𝑋𝑛)} are i.i.d. draws from a
population joint distribution, 𝑓(𝑌,𝑋)(𝑦, 𝑥)

• How can we use this sample to estimate 𝛽0, 𝛽1?
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Sample line of best fit

• To get the linear projection, we found the population line of
best fit:

(𝛽0, 𝛽1) = arg min
(𝑏0,𝑏1)

𝔼[(𝑌𝑖 − 𝑏0 − 𝑏1𝑋𝑖)2]

• To get the sample line of best fit, we replace the population
expectation with a sample mean:

(𝛽0, 𝛽1) = arg min
𝑏0,𝑏1

1
𝑛

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑏0 − 𝑏1𝑋𝑖)2

• This estimator is called least squares (LS) or ordinary least
squares (OLS).
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Fitted OLS lines
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Fitted OLS line

2 4 6 8 10

6

7

8

9

10

Average Protection Against Expropriation Risk

Lo
g 

G
D

P 
pe

r 
ca

pi
ta

β0 + β1Xi
(OLS Line)

β0 + β1Xi
(Alt. Line)

51 / 65



Fitted values and residuals

• Definition A fitted value is the estimated conditional mean of
𝑌𝑖 for a particular observation with independent variable 𝑋𝑖:

𝑌𝑖 = 𝔼̂[𝑌𝑖|𝑋𝑖] = 𝛽0 + 𝛽1𝑋𝑖

• Definition The residual is the difference between the actual
value of 𝑌𝑖 and the fitted value, 𝑌𝑖:

̂𝑢𝑖 = 𝑌𝑖 − 𝑌𝑖 = 𝑌𝑖 − 𝛽0 − 𝛽1𝑋𝑖
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Fitted OLS line
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Fitted OLS line
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Fitted OLS line
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Why not this line?
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Minimize the residuals

• The residuals, ̂𝑢𝑖 = 𝑌𝑖 − 𝛽0 − 𝛽1𝑋𝑖, tell us how well the line
fits the data.

▶ Larger magnitude residuals means that points are very far from
the line

▶ Residuals close to 0 mean points very close to the line
• The smaller the magnitude of the residuals, the better we are

doing at predicting 𝑌𝑖
• Choose the line that minimizes the residuals

57 / 65



Which is better at minimizing
residuals?
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OLS estimator

• OLS estimator defined by minimized squared residuals:

(𝛽0, 𝛽1) = arg min
𝑏0,𝑏1

1
𝑛

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑏0 − 𝑏1𝑋𝑖)2

• Can we write the OLS intercept (𝛽0) and slope (𝛽1) in terms
of quantities that we know? Yes!

𝛽0 = 𝑌 − 𝛽1𝑋

𝛽1 = ∑𝑛
𝑖=1(𝑌𝑖 − 𝑌)(𝑋𝑖 − 𝑋)
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋)2
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Sample (co)variance

• Sample covariance:

Ĉov[𝑋, 𝑌] = 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑋𝑖 − 𝑋𝑛)(𝑌𝑖 − 𝑌𝑛)

• Sample variance:

𝕍̂[𝑋𝑖] = 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑋𝑖 − 𝑋)2

• Thus, we can rewrite the OLS slope as:

𝛽1 = ∑𝑛
𝑖=1(𝑌𝑖 − 𝑌)(𝑋𝑖 − 𝑋)
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋)2 = Ĉov(𝑋, 𝑌)
𝕍̂[𝑋𝑖]
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Linear projection vs OLS

• Compare the linear projection intercept/slope in the
population:

𝛽0 = 𝔼[𝑌𝑖] − 𝛽1𝔼[𝑋𝑖]

𝛽1 = Cov[𝑌𝑖, 𝑋𝑖]
𝕍[𝑋𝑖]

• With the OLS intercept/slope in the sample:

𝛽0 = 𝑌 − 𝛽1𝑋

𝛽1 = Ĉov(𝑋, 𝑌)
𝕍̂[𝑋𝑖]

• OLS is just replaces all the population expectations with
sample versions!
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AJR Example in R
• Let’s use those simple formulas we just learned:

ajr <- na.omit(ajr[, c("avexpr", "logpgp95")])
cov.xy <- cov(ajr$avexpr, ajr$logpgp95)
var.x <- var(ajr$avexpr)
cov.xy/var.x

## [1] 0.5319

mean(ajr$logpgp95) - cov.xy/var.x * mean(ajr$avexpr)

## [1] 4.626

• Compare it to what lm(), the OLS function in R produces:

coef(lm(logpgp95 ~ avexpr, data = ajr))

## (Intercept) avexpr
## 4.6261 0.5319
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Mechanical properties of least
squares

• The residuals will be 0 on average:
𝑛

∑
𝑖=1

̂𝑢𝑖 = 0

• The residuals will be uncorrelated with the predictor:
𝑛

∑
𝑖=1

𝑋𝑖 ̂𝑢𝑖 = 0⇝ Ĉov(𝑋𝑖, ̂𝑢𝑖) = 0

• The residuals will be uncorrelated with the fitted values:
𝑛

∑
𝑖=1

𝑌𝑖 ̂𝑢𝑖 = 0⇝ Ĉov(𝑌𝑖, ̂𝑢𝑖) = 0
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Mechanical properties of least
squares in R

mod <- lm(logpgp95 ~ avexpr, data = ajr)
mean(residuals(mod))

## [1] -2.006e-17

cor(ajr$logem4, residuals(mod))

## [1] -3.185e-17

cor(fitted(mod), residuals(mod))

## [1] -1.16e-16
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Wrap up

• What is regression: estimating the CEF of 𝑌𝑖 given 𝑋𝑖
• Easy to do with sample means with discrete 𝑋𝑖
• Need parametric assumptions when 𝑋𝑖 is continuous
• Derived an estimator for linear projection of 𝑌𝑖 on 𝑋𝑖
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