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Where are we? Where are we

going?

= Last few weeks = how to produce a best estimate of some
population parameter, drawing on our knowledge of
probability.

= Also learned how to derive an estimated range of plausible
values of the parameter in the confidence interval.

= Now: how to use our estimates to test a particular hypothesis
about the data.

= We'll draw heavily on our probability knowledge from earlier in
the term!
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1/ Hypothesis
Testing Examples



The lady tasting tea

= Remember the setup:
Your advisor asks you to grab a tea with milk for him
before your meeting and he says that he prefers tea
poured before the milk. You stop by Darwin’s and
ask for a tea with milk. When you bring it to your
advisor, he complains that it was prepared milk-first.

= You are skeptical that he can really tell the difference, so you
devise a test:

» Prepare 8 cups of tea, 4 milk-first, 4 tea-first
» Present cups to advisor in a random order
» Ask advisor to pick which 4 of the 8 were milk-first.



Assuming we know the truth

Advisor picks out all 4 milk-first cups correctly!
Statistical thought experiment: how often would she get all 4
correct if she were guessing randomly?

» Only one way to choose all 4 correct cups.

» But 70 ways of choosing 4 cups among 8.

» Choosing at random = picking each of these 70 with equal
probability.

Chances of guessing all 4 correct is 7‘—0 ~ 0.014 or 1.4%.
~> the guessing at random hypothesis might be implausible.

Another testing example
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Social pressure effect

Dear Registered Voter:
WHAT IF YOUR NEIGHBORS KNEW WHETHER YOU VOTED?

Why do so many people fail to vote? We've been talking about the problem for
years, but it only seems to get worse. This year, we're taking a new approach.
We're sending this mailing to you and your neighbors fo publicize who does and
does not vote.

The chart shows the names of some of your neighbors, showing which have voted in
the past. After the August 8 election, we intend to mail an updated chart. You
and your neighbors will all know who voted and who did not.

DO YOUR CIVIC DUTY —VOTE!

MAPLE DR Aug 04 Nov(D4 Aug 08
9995 JOSEPH JAMES SMITH Voted Voted
9095 JENNIFER KAY SMITH Voted
8957 RICHARD B JACKSON Voted
9999 KATHY MARIE JACKSON Voted

TABLE 2. Effects of Four Mail Treatments on Voter Turnout in the August 2006 Primary
Election

Experimental Group

Control Civic Duty Hawthorne Self Neighbors
Percentage Voting 29.7% 31.5% 32.2% 34.5% 37.8%
N of Individuals 191,243 38,218 38,204 38,218 38,201
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Social pressure effect

load("../data/gerber_green_larimer.RData")
social$voted <- 1 * (social$voted == "Yes")
neigh.mean <- mean(social$voted[social$treatment ==

"Neighbors"])

contr.mean <- mean(social$voted[social$treatment ==
"Civic Duty"1)

neigh.mean - contr.mean

#H [1] 0.0634

= Treatment effect of 6.341 percentage points.

= But we know that the estimator varies from sample to sample
due to random chance.

= Could this happen by random chance if there was no
treatment effect at all?



Review of the difference in means

= Treated group Yl,Yz,...,Yny i.i.d. with population mean u,

and population variance a§
= Control group Xi,Xj, ..., X, i.id. with population mean p,

and population variance o2

= Quantity of interest: population differences in average
turnout: E[Y;] — E[X;] = py — py

?n - )_(n

y X

= Estimator: sample difference in means: D,,

= We estimated the standard error of D,, with:

— S2 2
®[D,] = = + S
n, = ny



2/ Hypothesis Test
Nomenclature



What is a hypothesis test?

= A hypothesis test is an evaluation of a particular hypothesis
about the population distribution.

= Statistical thought experiments:

» Assume we know (part of) the true DGP..

» Use tools of probability to see what types of data we should
see under this assumption.

» Compare our observed data to this thought experiment.

= Statistical proof by contradiction:

» We will “reject” the assumed DGP if the data is too unusual
under it.
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What is a hypothesis?

= Definition A hypothesis is just a statement about population
parameters.
= \We might have hypotheses about causal inferences:

» Does social pressure induce higher voter turnout? (mean
turnout higher in social pressure group compared to Civic Duty
group?)

» Do daughters cause politicians to be more liberal on women's
issues? (voting behavior different among members of Congress
with daughters?)

» Do treaties constrain countries? (behavior different among
treaty signers?)

= We might also have hypotheses about other parameters:

» Is the share of Hillary Clinton supporters more than 50%?
> Are traits of treatment and control groups different?
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Null and alternative hypotheses

= Defintion The null hypothesis is a proposed, conservative
value for a population parameter.
» This is usually “no effect/difference/relationship.”

» We denote this hypothesis as H : 0 = 0.
» Hy: Social pressure doesn't affect turnout (Hy : , — 1, = 0)

= Definition The alternative hypothesis for a given null
hypothesis is the research claim we are interested in
supporting.

» Usually, “there is a relationship/difference/effect.”
» We denote this as H,, : 0 # 6.
» H,: Social pressure affects turnout (H, : pt, — pt, # 0)

= Always mutually exclusive
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General framework

= A hypothesis test chooses whether or not to reject the null
hypothesis based on the data we observe.
= Rejection based on a test statistic, T,, = T (Y7, ..., Y,).

» Will help us adjudicate between the null and the alternative.
» Typically: larger values of T, ~~ null less plausible.
» A test statistic is a r.v.

= Definition The null/reference distribution is the distribution of
T under the null.

» We'll write its probabilities as P (7, < 1).
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Test statistic example

= By the CLT, we know that the standardized difference in
means has a standard normal distribution in large samples:

D - (4 —
nzl_ﬂ;lﬂgN@U
se[D]

= Under the null hypothesis of Hy : p,, — p,, = 0, then we have

—~

D
T,=—2— 4 N(©,1)

se[D, ]

= If T, is very far from 0 ~~ large sample diff-in-means ~~ no
population diff-in-means is not plausible.
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Rejection regions

= Definition The rejection region, R, contains the values of T,
for which we reject the null.

» These are the areas that indicate that there is evidence against
the null.

= Two-sided alternative (our focus):

e HO:#y_ﬂxzoandHa:ﬂy_ﬂx:féo

» Implies that 7,, >> 0 or T,, << 0 will be evidence against the
null

> Rejection regions: |T,| > ¢ for some value ¢

= How to determine these regions?
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Type | and Type Il errors

Type | errors

A Type | error is when we reject the null hypothesis when it is in
fact true.

= We say that the Lady is discerning when she is just guessing.
= A false discovery (very bad, thus type I).

Type Il errors

A Type Il error is when we fail to reject the null hypothesis when it
is false.

= We say that the Lady is just guessing when she is truly
discerning.
= An undetected finding (not as bad, thus type II).
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Test level/size

Hy True H, False
Retain Hy | Awesome! Type Il error
Reject Hy | Type | error | Good stuff!

= Defintion The level/size of the test, or a, is the probability of
a Type | error.

» With two-sided alternative, we reject when |T,,| > ¢
» Size of test then is: Py(|T,| >¢) = a

= Choose a level & based on aversion to false discovery:

» Convention in social sciences is a = 0.05, but nothing magical
there
. . . — 1
» Particle physicists at CERN use a = 750,000
» Lower values of a guard against “flukes” but increase barriers
to discovery
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3/ Conducting
Hypothesis Tests



Hypothesis testing procedure

OIS NCERIDEES

Choose null and alternative hypotheses

Choose a test statistic, 7,

Choose a level, «

Determine rejection region

Reject if T,, in rejection region, fail to reject otherwise
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Rejection region

0.5 1

Reject

Retain Reject

0.4

0.3 1

—

=

~

(=]
[a

0.2
0.1

0.0

I T T I 1
-4 =2 0 2 4
T under the null hypothesis

= What's the rejection region |T,| > c if @ = 0.05?
= Under the null hypothesis of no effect, we want T, to be in
the rejection region only 5% of the time.

» ~ false rejection of the null only 5% of the time.
» Can find ¢ based on the null distribution being ~ standard

normal!
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Determining the rejection region

0.5 1

Reject

Retain Reject

0.4
0.3
'_

\602_
° 0.

0.1 +

0.0

T under the null hypothesis

= Find z, 5 such that
Po(T, < =24/2) = Po(T, > 24/2) = /2
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Determining the rejection region

0.5 A

Reject Retain Reject

0.4 +

—C=-2Zu/5 |
I T T T 1

-4 gD o 2 4
T under the null hypothesis

= Find z, 5 such that
Po(T, < —242) = Po(T, > 240) = @/2

= ~ find quantile Py(T,, <z,0) =1-a/2
» if @ =0.05 ~ z,/, = qnorm(1-0.05/2) = 1.96
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Final hypothesis test

1. Hypotheses: Hy : 1y — pt, =0 vs. Hy i iy — pu #0
2. Test statistic: T, = D,,/38[D,,]

3. Use @ = 0.05

4. Rejection region is |T,| > 1.96.
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Social pressure test

= Calculate test statistic for social pressure mailers:

neigh_var <- var(social$voted[social$treatment == "Neigh
neigh_n <- 38201
civic_var <- var(social$voted[social$treatment == "Civic
civic_n <- 38218

se_diff <- sgrt(neigh_var/neigh_n + civic_var/civic_n)

## Calcuate test statistic
(0.378 - 0.315)/se_diff

## [1] 18.3

= |T,| =18.343 > 1.96 ~» REJECT!



Perform the test

—~

Po(T

0.5

0.4

0.3

0.2

0.1

0.0

T=18.3

Rejec Retain ) eject

T under the null hypothesis
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t-test

= These ideas extend to any asymptotically normal estimator, 6
for parameter 6.

= Consider testing Hy: 6 = 0y vs. H,: 6 # 0.

= A size-a t-test (or Wald test) rejects Hy when |T,,| > z,/»

where
0—-6
T, = —=2
se[0]

= Critical value z, /5 calculated in the exact same way as above.

» For standard normal Z, find Za)2 such that
P(Z <zyp)=1-a/2

= Size of the test converges to the nominal size as n gets big
p
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Confidence intervals and
hypothesis tests

= 95% confidence interval: D,, + 1.96 x &&

= Cl/Test duality: A 100(1 — @)% confidence interval represents
all null hypotheses that we would not reject with a a-level
test.

= Example:

» Construct a 95% Cl (a,b) for p, — p,.
» If 0 € (a,b) ~ cannot reject Hy : pt,, — p, = 0 at « = 0.05
» If O & (a,b) ~ reject Hy : py — p, =0 at a = 0.05

= Cls are a range of plausible values in the sense we cannot
reject them as null hypotheses.
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One-sided tests

= Definition A one-sided test is a test of an alternative
hypothesis that only goes in one direction.
» The social pressure effect is positive (H, : py, — 1, > 0)
= Only deviations from the null hypothesis in one direction cast
doubt on the null hypothesis.
> Rejection region is only in one tail: 7,, > ¢, with ¢ adjusted
downward relative to two-sided test with the same level.

= Really only valid when one side is a priori not possible.

. | .
o Retain ! Reject
= 0.3 :
= 02 !
a 0.1 0.05
0.0 :
o014 c =1.64
I 1 1 - 1 1
-4 -2 0 2 4

T under the null hypothesis
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4/ p-values



Why p-values?

= Just rejecting or not rejecting the null hypothesis is not too
informative.

= We rejected null of no population diff-in-means
(Ho : py — p = 0) at @ = 0.05.
= What about all the other levels like ¢ = 0.017

= p-values are a useful way to summarize all possible levels at
once.
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p-values

p-value

The p-value is the smallest value a such that an a-level test would
reject the null hypothesis.

= |f p-value is less than «, then we often say it is statistically
significant at level a.

» Ex: if p-value is 0.03, then we can reject at @ = 0.05.

= Theorem For a two-sided test with observed test statistic
T, = tops, the p-value is the probability (under Hy) of
observing a value of the test statistict at least as extreme as
the one observed:
]P)O(|Tn| > tobs)

= Low p-value ~~ data was unlikely given the null ~~ evidence
against the null.



Calculate the p-value

= Social pressure test statistic, 7., = 18.5.

= How likely would it be to get a test statistic this extreme or
more extreme if there were no treatment effect?

Po(T,| > 18.5) = Py(T, > 18.5) + Py (T, < —18.5)
=2x Po(T, < —18.5)

= Use the pnorm() function:

2 * pnorm(-18.5)

## [1] 2.06e-76
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Be careful with p-values

= p-values are not:

» An indication of a large substantive effect
» The probability that the null hypothesis is false
» The probability that the alternative hypothesis is true

= Using a p-value cutoff (p < 0.05) can be very misleading.

» Clustering of p-values at 0.049.
» False discovery rates actually quite high (p-value fallacy).

= As difficult as they are to interpret, confidence intervals
actually make more sense.

» Cls allow easy assessment substantive and statistical
significance.
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5/ Power Analyses



Effect sizes

TABLE 2. Effects of Four Mail Treatments on Voter Turnout in the August 2006 Primary
Election

Experimental Group

Control Civic Duty Hawthorne Self Neighbors
Percentage Voting 29.7% 31.5% 32.2% 34.5% 37.8%
N of Individuals 191,243 38,218 38,204 38,218 38,201

= Why did Gerber, Green, and Larimer use sample sizes of
38,000 for each treatment condition?

= Choose the sample size to ensure that you can detect what
you think might be the true treatment effect:

» Small effect sizes (half percentage point) will require huge n
» Large effect sizes (10 percentage points) will require smaller n

= Detect here means “reject the null of no effect”

36
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Power of a test

= Definition The power of a test is the probability that a test
rejects the null.

» Probability that we reject given some specific value of the
parameter P, (|T| > ¢)

> Power = 1 — P(Type Il error)

> Better tests = higher power.

= |f we fail to reject a null hypothesis, two possible states of the
world:

» Null is true (no treatment effect)
» Null is false (there is a treatment effect), but test had low

power.
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Why care about power?

= |magine you are a company being sued for racial
discrimination in hiring.
= Judge forces you to conduct hypothesis test:
» Null hypothesis is that hiring rates for white and black people
are equal, Hy : p,, — pp =0
» You sample 10 hiring records of each race, conduct hypothesis
test and fail to reject null.

= Say to judge, “look we don't have any racial discrimination”!
What's the problem?
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Power analysis procedure

= Power can help guide the choice of sample size through a
power analysis.

» Calculate how likely we are to reject different possible
treatment effects at different sample sizes.
» Can be done before the experiment: which effects will | be able

to detect with high probability at my n?

= Steps to a power analysis:

» Pick some hypothetical effect size, py, — p, = 0.05

» Calculate the distribution of 7" under that effect size.

» Calculate the probability of rejecting the null under that
distribution.

» Repeat for different effect sizes.
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Power analysis

= You want to run another turnout experiment want to make
sure you have a high probability of rejecting the null if the
true effect is p, — p, = 0.05.

= Unfortunately, your grant $$ are minimal so you can only send
500 mailers (250 for each type).

= Need to assume values for unknown variances:

» Assume we know that 05 =02=02
» Implies V[D,] = 0.2/250 + 0.2/250 = 0.0016.

= Using these assumptions, we can derived the sampling
distribution of the estimator under the proposed effect size:

D, = N(0.05,0.0016)

40 /55



Power analysis

= What is the probability of rejecting the null if pu, — pu, = 0.057
= We reject when

D, -0

2[D,]

IT| = 196 < [D,| > 1.96 x5&[D,,]

= Since we assumed that V[D, ] = 0.0016 then we reject when:

{D,, < -1.96 x /0.0016} U {D,, > 1.96 x y0.0016}

= Can figure out the probability of this from the sampling
distribution we just derived!

P (ﬁ,, < ~1.96 x Jo.0016) +P (Bn > 1.96 x \/0.0016>
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Power in R

= Power of the test against p, — p, = 0.05, using the fact that
D, =~ N(0.05,0.0016):

se <- sqrt(0.2/250 + 0.2/250)

pnorm(-1.96 * se, mean = 0.05, sd = se) + pnorm(1.96 *
se, mean = 0.05, sd = se, lower.tail = FALSE)

## [1] 0.24

= Interpretation: if the true effect was a 5 percentage point
increase in voter turnout, then we would be able to reject the
null of no effect about a quarter of the time.



Power graph

-0.2 -0.1 0.0 0.1 0.2 0.3

-0.3
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Power graph

Reject Retain Reject

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

Assumed treatment effect = 0.05 and power = 0.24.
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Power graph

I I
Reject | Retain | Reject
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
[} I
{ I
| |
. T : T T 1
-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
T

Assumed treatment effect = -0.2 and power = 0.999.
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Power graph

I
Reject | Retain Reject
I

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

Assumed treatment effect = -0.1 and power = 0.705.
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Power graph

I
Reject | Retain Reject
|
|

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

Assumed treatment effect = -0.05 and power = 0.24.
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Power graph

Reject Retain Reject

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

Assumed treatment effect = 0 and power = 0.05.
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Power graph

Reject Retain Reject

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

Assumed treatment effect = 0.05 and power = 0.24.

43 /55



Power graph

Reject Retain Reject

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

Assumed treatment effect = 0.1 and power = 0.705.
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Power graph

Reject Retain Reject

-0.3 -0.2 =0 0.0

Assumed treatment effect = 0.2 and power = 0.999.
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A power analysis

= We can calculate the power for every possible effect size and
plot the resulting power curve:
» n =500 (blue), 1000 (red), 10000 (black)

1.0 7

0.8 1

Power
o
o

1

o
IS
1

0.0 -

-0.2 -0.1 0.0 0.1 0.2
Hypothesized effect size
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6/ Exact
INnference™



Small sample complications

= Asymptotics are approximations. Can we ever get exact
inferences at any sample size?

» Exact means that we know or can figure out the distribution of
a statistic without relying on an approximation.

= Remember: we are using a nonparametric model
» Y;areiid. with E[Y;] = p < oo and V[Y;] = 0% < o
> Relied on large n to get distribution of Y, (CLT)
= Alternative: use a parametric model and assume Y;,..., Y, are
i.i.d. samples from N(u, 0?)

» Stronger assumptions ~ learn more with lower n
» Model dependence: If the model is wrong (¥; are not normal),
inferences will be wrong!
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Exact inference for the normal
distribution

= Remember that the CLT gives us the following approximation:

7 = YnS:” 4 N(0,1)

vn

= If we additionally know that Y; ~ N(y, ¢2), then we know the
following for any sample size:

T :n—ll»v[

n S, n-1

= Here, ,_; is the Student’s t-distribution (usually just called
the t distribution) with n — 1 degrees of freedom (df).

» Family of distributions with parameter df.

= Named after William Sealy Gossett who published under the
pen name, Student.

47 /55



The shape of the t

= The t distribution is completely summarized by its degrees of
freedom, which here is dictated by the sample size.
» As sample sizes increase, tends toward the N (0, 1)
» Similar shape to the Normal, but with fatter tails.
= You can think of this extra variance as coming from the extra
variance of estimating the SE.

0.4 4
0.3 1
= Normal
%02 - t (df = 5)
g
0.1 1 _4/ ¥_
0.0




Using the t for small samples

Use the same test statistic:

S,/vn
= Assuming the null hypothesis, 7,, ~ 1,,_;, so use this
distribution in place of the normal

Use qt () in place of gnorm() for:

» Testing: finding critical values 1,,_; , /> such that
Po(T < tn—l,a/Z) = 1 — a/2
; a .V Sn
» Cls: for t,,_1 42 in place of z-values: Y, +1,_; 42 % —

= Conservative approach relative to using asymptotic normality:

» The ¢ distribution has fatter tails ~ 1,1 ;2 > 242
» ~~ wider Cls, smaller rejection regions
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Rejection region with the t

05
0.4 -
03
e’ |
0.2 0.975
0.1 |
0.0

qt(0.975, df = 6 - 1)

## [1]1 2.57




7/ \Wrap up



Key points

= Hypothesis testing:

» Statistical thought experiments.

» Allow us to test specific hypotheses about parameters.
= p-values:

» Summarize evidence against the null in this data set.

» Can be misleading, better to use confidence intervals.

= Deep connection between confidence intervals and hypothesis
tests.

= Sometimes exact inference is possible, but only under strong
assumptions.

= Power analyses help to guide what sample size we need.

= Next week: beginning to think about regression.
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Election prediction

= Alan Lichtman (History at American U.) has predicted the
winner of every presidential election all 8 elections since 1984.
» Doesn't use any polls, just 13 true/false questions.

» Ex: “Challenger charisma”
» This year he's trolling liberals: predicts Trump win.

= Does he have predictive value? Does he do better than
random guessing?

» If he randomly choosing between the two candidates in each
election, he'd flipping 8 coins with probability 0.5.
» ~~ number of correct predictions is Binomial(8, 0.5)

= What's the probability that he would do this well if he
guessing at random?
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Probability of perfect record

dbinom(x = 8, size = 8, prob = 0.5)

## [1] 0.00391

0.25

0.20 ~

0.10 1

Probability

0.05 ~

0.00 - o l l 0

0 2 4 6 8

# of Correct Predctions
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