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Where are we? Where are we going?

• For the last fewweeks we have talked about probability—that is, if we knew how
the world worked, we are describing what kind of data we should expect.

• Now we want to move the other way. If we have a set of data, can we estimate
the various parts of the probability distributions that we have talked about. Can
we estimate the mean, the variance, the covariance, etc?

• Moving forward this is going to be very important. Why? Because we are going
to want to estimate the population conditional expectation in the linear regres-
sion model.

introduction
Motivating example

• Gerber, Green, and Larimer (APSR, 2008) studied an experiment where they
random assigned some households to get the following mailer:

• Theywanted to know if social pressure got people to turn outmore than amailer
that just emphasized a person’s civic duty to vote. Let’s just load up their data
and see what they find:
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Figure 1: Mailer

load(”../data/gerber_green_larimer.RData”)

## turn turnout variable into a numeric

social$voted <- 1 * (social$voted == ”Yes”)

neigh.mean <- mean(social$voted[social$treatment == ”Neighbors”])

neigh.mean

## [1] 0.3779482

contr.mean <- mean(social$voted[social$treatment == ”Civic Duty”])

contr.mean

## [1] 0.3145377

neigh.mean - contr.mean

## [1] 0.06341057

• We’ve estimated a difference of roughly 6.3 percentage points between theNeigh-
bors group and the Civic Duty group. Is this a big effect?

• But this estimate depends on the sample that we took. What if we had taken a
different sample from the population? Would the difference in means be? How
can we tell if there is a “real” effect here or its just due to random chance?



3

Goal 1: Inference

• Inference: given that we observed this difference in means, what is our best
guess about where it will be in other samples.

• In order to think about this, we need to think about the distribution of estimates
across samples will look like. This can get fairly confusing, but we’ll try to be as
clear as possible.

• Last week we did repeated sampling to show how estimates differ from sample
to sample. But obviously then we had access to the population (Fulton County,
remember). Usually we will not have that—we don’t know what the true dif-
ference in means is for this experiment. So why do we still want to know about
how the estimator acts across samples?

• Remember back to the Lady Tasting Tea example in the first lecture. There we
did a statistical though experiment. What would the world look like if the Lady
was guessing at random? Here we are going to do the same thing. What would
the world look like if there was no difference in means? Would our particular
estimate of the difference in means be fairly typical or unusual?

• Basically, the sampling distribution will help us answer the following question:
would an estimate like our observed estimate be unusual in some hypothetical
world?

Goal 2: Compare estimators

• Above we use the simple difference in sample means (Ȳ − X̄) to estimate the
population difference in means. But there are other, alternative estimators for
that difference. One is the post-stratification estimator, where we estimate the
estimate the difference among two subsets of the data (male and female, for
instance) and then take the weighted average of the two:

θ̂ps = (Ȳf − X̄f )Z̄ + (Ȳm − X̄m)(1− Z̄)

• Should we use the simple estimator or the post-stratification estimator? It’s
probably unclear from first glance (it turns out that in this case, the answers
is that it depends on the population distribution). But, in general, we need to
be able to compare different estimators to see which is the most appropriate in
a given situation.

• We have to decide between estimators all the time: what is the best way to es-
timate the conditional expectation function, E[Y |X]? What’s the best way to
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deal with missing data? How best to design an experiment? How to best to
measure some concept like ideal points? For each of these empirical problems,
you’re going to need to understand how well an estimator performs at that task.

populations and samples
• In the last fewweeks, we have talked about distributions and their characteristics—

means, variances, covariances. I said before that we’re going to want to estimate
those properties, but we’ve been vague about what that means.

• Probability was about saying what types of data/outcomes we should expect
given some distribution. Inference is about learning about the distribution
given some data/outcomes.

Populations

• Typically, we want to learn about the distribution of random variable (or set
of random variables) for a population of interest. As an example, we might
want to know the distribution of votes for Hillary Clinton in the population of
registered voters in the United States. This is an example of a finite population.

• Sometimes the population will be more abstract, such as the population of all
possible television ads. This is an example of an infinite population.

• With either a finite or infinite population our main goal in inference is to learn
about the population distribution or particular aspects of that distribution, like
the mean or variance, which we call a population parameter (or just parame-
ter).

• We sometimes call the population distribution the data generating process and
represent it with a pmf or pdf, f(x; θ). Ideally we would place no restrictions
on f and learn everything we can about it from the data. This nonparametric
approach is difficult due to the fact that the space of possible distributions is
vast! Instead, we will often make a parametric assumption and assume that the
formula for f is known up to some unknown parameters.

• Thus, f has two parts: the known part which is the formula for the pmf/pdf
(sometimes called the parametric model and comes from the distributional as-
sumptions) and the unknown part, which are the parameters, θ. For instance,
suppose we have a binary r.v. such as intending to vote for Hillary Clinton
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(X = 1). Then we might assume that the population distribution is Bernoulli
with unknown probability of X = 1, θ. The we would have:

f(x; θ) = θx(1− θ)1−x

Our goal is to learn about the probability of someone voting for Hillary Clinton
from a sample of draws from this distribution.

• Probability tells us what types of samples we should expect for different values
of θ.

• For some problems, such as estimating the mean of a distribution, we actually
won’t need to specify a parametric model for the distribution as we’ll see.

Sampling

• With inference, we have a collection of data that (we assume) come from a com-
mon probability distribution—the population distribution. In this case, we will
say that X1, X2, . . . , Xn are an independent and identically distributed set of
random variables. We often shorten this to say that they are i.i.d. with pmf/pdf
f(x; θ).

• What does this mean, exactly? Well, independent just means that each is inde-
pendent of the other. Identical just means they all come from the same distri-
bution. This could be Bernoulli with p or Normal with mean µ and σ2.

• We call iid samples from a distribution random samples.

point estimation
Parameters

• Trying to estimate parameters of population distributions:

– µ = E[Y ]: the mean
– σ2 = Var[X]: the variance
– σ: the standard deviation
– µ1−µ0 = E[Y |X = 1]−E[Y |X = 0]: the difference in means between

two groups
– E[Y |X] = α+ βX : intercept (α) and slope (β) of the regression line

• We’ll generically refer to the parameter we’re trying to estimate as θ.
• These are the things we want to learn about.
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Estimators

• Remember that we have a random sample Y1, . . . , Yn from some population
distribution f(y; θ).

• Definition: An estimator , θ̂ of some parameter θ, is a function of the sample:
θ̂ = h(Y1, . . . , Yn).

• Question Why is the following statement wrong: “My estimate was the sample
mean and my estimator was 0.377”?

• Remember that these estimators are like machines that take in a sample and
output a number—we call this number the estimate of θ. But the estimator is
the function or the rule for calculating estimates.

• This can get confusing because the names of the estimators are sometimes used
as shorthand for the estimates themselves: “The sample mean was 0.377.” What
this really means is that the sample mean produced an estimate of 0.377 in this
sample. The sample mean would have produced a different estimate with a dif-
ferent sample.

Examples of Estimators

• For the population mean, µ, we have many different possible estimators:

– θ̂ = Ȳ the sample mean
– θ̂ = Y1 just use the first observation
– θ̂ = max(Y1, . . . , Yn)
– θ̂ = 3 always guess 3

# mean

mean(social$voted[social$treatment == ”Neighbors”])

## [1] 0.3779482

# first observation

social$voted[social$treatment == ”Neighbors”][1]

## [1] 1
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# maximum

max(social$voted[social$treatment == ”Neighbors”])

## [1] 1

# always choose 3

3

## [1] 3

The Three Distributions

• There are three important distributions to keep straight. Let’s review themusing
the frame of estimating the mean voter turnout of the “Neighbors” group to be
our goal.

• Population Distribution: the data-generating process (Bernoulli in the case of
the social pressure/voter turnout example)

• Empirical distribution: Y1, . . . , Yn (series of 1s and 0s in the above example)

• Sampling distribution: distribution of the estimator over repeated samples from
the population distribution (the .377 sample mean in the “Neighbors” group is
one draw from this distribution)

• Question: If Y1, . . . , Yn is a random sample from a (population) Bernoulli dis-
tribution with mean/probability µ, will sampling distribution of the sample
mean (Ȳ ) be Bernoulli as well?

Sampling Distributions

## population distribution is Bernoulli

## with probability of success 0.4

barplot(dbinom(0:1,size = 1, prob = 0.4), names.arg = c(0,1),

border = ”white”, ylab = ”P(x)”, xlab = ”x”)
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## we’re going to take **one** sample of size 10

my.samp <- rbinom(n = 10, size = 1, prob = 0.4)

## here is the empirical distribution:

table(my.samp)

## my.samp

## 0 1

## 6 4

plot(table(my.samp), type = ”h”, lwd = 5, bty = ”n”)
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## now we take the mean of the this sample, which is one draw from the

## **sampling distribution**

mean(my.samp)

## [1] 0.4

## let’s take another draw from the population Distribution

my.samp2 <- rbinom(n = 10, size = 1, prob = 0.4)

table(my.samp2)

## my.samp2

## 0 1

## 6 4

## Let’s feed this sample to the sample mean estimator and get another

## estimate, which is another draw from the sampling distribution

mean(my.samp2)

## [1] 0.4

• Remember that we are going to get to see one draw from the sampling distribu-
tion. Ideally we would want our estimator to have a sampling distribution that
puts all of the probability mass on one value: the true value of θ. But this isn’t
possible, so we want to make sure that we are using an estimator that has other
good properties.

• QuestionThe sampling distribution refers to the distribution of θ, true or false.
Explain your answer.

finite-sample properties of estimators
• Is our estimator good? It is better than some other estimators? How do we

evaluation these little machines that take in samples and output estimates?

• Why did we use the sample difference in means to estimate the population dif-
ference in means for the above experiment? Why not the difference in sample
medians or the difference in sample modes?

• There are two ways we evaluate estimators: the properties of its sampling distri-
bution for a fixed sample size n (finite-sample) and the properties of the sam-
pling distribution as we let n → ∞. On the homework, you’ll do both of these.
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• As a shorthand, we will often indicate that an estimator is operating on a given
sample size by giving it an n subscript:

θ̂n = θ̂(Y1, . . . , Yn)

• There are a few things we might want an estimator to do. We probably want it
to get the right answer on average and we would ideally like it bounce around
very little from sample to sample.

Unbiasedness

• Estimators can either be biased or unbiased. What does unbiased mean? It
means that if we were to take many many samples from the population distri-
bution, apply the estimator to each sample, and look at the distribution of those
estimates, the average of that distribution would be equal to the true parameter
value. More succinctly: on average, we get the right answer.

• Definition: The bias of an estimator θ̂ for population parameter θ is

bias(θ̂) = E[θ̂]− θ

• Definition: An estimator θ̂ of θ is unbiased if

E[θ̂] = θ

• Example It’s fairly straightforward to prove the sample mean is unbiased for the
population mean:

E[Ȳn] = E[
1

n

n∑
i=1

Yi]

=
1

n

n∑
i=1

E[Yi]

=
1

n

n∑
i=1

µ

=
1

n
nµ

= µ

• Sometimes we can prove unbiasedness analytically, where we just apply the
expectation operator to the estimator (remember it’s a random variable).
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• Problem Let Y1, . . . , Yn be an iid sample from a population distribution with
mean µ. Show that θ̂ = Y1 is an unbiased estimator for the mean.

• We can also check the bias of an estimator using simulation:

nsims <- 10000

mean.holder <- rep(NA, times = nsims)

first.holder <- rep(NA, times = nsims)

for (i in 1:nsims) {

my.samp <- rbinom(n = 100, size = 1, prob = 0.4)

mean.holder[i] <- mean(my.samp) ## sample mean

first.holder[i] <- my.samp[1] ## first obs

}

mean(mean.holder) - 0.4

## [1] 0.000175

mean(first.holder) - 0.4

## [1] -0.0025

• Both are pretty close to 0!

• What does the sampling distribution look like relative to the population distri-
bution? To see this, we’ll use the “first observation” estimator since this is just
a series of draws from the population distribution

hh <- hist(first.holder, plot = FALSE)

hh2 <- hist(mean.holder, plot = FALSE)

plot(hh, main = ””, xlim = c(0,1), col = ”grey”, border = ”white”, xlab = ””)

plot(hh2, add = TRUE)

text(x = 0.95, y = 10000*0.4, ”Population\nDistribution”, pos = 2)

text(x = 0.45, y = 1500, ”Sampling\nDistribution”, pos = 4)
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• The population distribution can only take on the values 0 or 1, whereas the
sampling distribution of the mean takes values that in between. Furthermore,
you can see that

• Problem Calculate the bias of the estimator θ̂ = 3 in terms of the population
mean, µ. When will this estimator be unbiased?

• Problem Suppose that Y1, . . . , Yn is an iid sample from a population withmean
µy andX1, . . . Xn is an iid sample from a population with mean µx. Show that
the sample difference in means Ȳ − X̄ is an unbiased estimator for popula-
tion difference in means, µy − µx. (For a bigger challenge, show that the post-
stratification estimator is also unbiased for the same difference in population
means. Protip: use the law of iterated expectations.)

Sampling Variance

• Intuitively, we would like to say that if an estimator is unbiased, then the one
estimate that we get in our one sample should be “close” to the true value of
the parameter. But unbiasedness is only about central tendency so the estimate
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might be very far from the truth. Thus, we need to think about the spread of
the sampling distribution.

• The first observation, Y1 and the sample mean Ȳn are both unbiased, but obvi-
ously the second feels like a better estimator. We obviously need more criteria
to evaluate estimators.

• Question If we have an unbiased estimator, do we want the sampling distribu-
tion to have higher or lower variance?

• Definition: The sampling variance of an estimator is simply its variance over
repeated samples, Var[θ̂].

• Definition: The standard error of an estimator is the standard deviation of the
sampling distribution, SE[θ̂] =

√
Var[θ̂]

• These quantities are incredibly important because they tell us how uncertain
our estimates are. If the sampling variance is very high, then our estimator will
produce very different estimates from sample to sample. If it is very low, then
the estimates will be very similar from sample to sample.

• Again, we can calculate the sampling variance analytically in some cases.

• Example Let’s calculate the sampling variance of the samplemean of an iid sam-
ple, Y1, . . . , Yn, with mean µ and variance σ2:

Var[Ȳn] = Var[
1

n

n∑
i=1

Yi] (definition of variance)

=
1

n2
Var[

n∑
i=1

Yi] (properties of variance)

=
1

n2

n∑
i=1

Var[Yi] (independence of observations)

=
1

n2

n∑
i=1

σ2 (definition)

=
1

n2
nσ2 (sum of a constant)

=
σ2

n

• The standard error of the sample mean, then, is just σ/
√
n.
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• We can also investigate the sampling variance by simulation. Take the above
code and let’s look at the variance of the two sampling distributions:

var(mean.holder)

## [1] 0.002381598

var(first.holder)

## [1] 0.2395177

• Obviously, the sample mean has a much lower variance than just using the first
observation. And since they are both unbiased, this means that our estimates
will be closer to the truth on average.

• Problem SupposeY1, . . . , Yny is an iid sample of sizeny from a populationwith
mean µy and variance σ2

y and X1, . . . , Xnx is an iid sample of size nx from a
population withmeanµx and variance σ2

x. Calculate the sampling variance and
the standard error of the difference in sample means estimator, Ȳ − X̄ .

Estimating the Sampling Variance/Standard Error

• Above we saw that the sampling variance (the variance of the sampling distri-
bution) of the sample mean is σ2/n when we apply the mean to an iid sample
of size n from a population distribution with variance σ2.

• Obviously we know n for our sample, so we just need to know σ2 in order to
know how much variability there will be in the sample mean between samples.

• In order to get an estimate of the sampling variance for the samplemean, we just
need an estimator for the population variance. Turns out, know one of those,
the sample variance:

S2
n =

1

n− 1

n∑
i=1

(Yi − Ȳn)
2

• Thus, our estimate of the sampling variance of the sample mean is S2
n/n and

the standard error of the sample mean is the Sn/
√
n.

• These are estimates of how uncertain our estimates are.
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Efficiency

• Definition: If θ̂1 and θ̂2 are two unbiased estimators of θ, then θ̂1 is efficient
relative to θ̂2 when Var[θ̂1] ≤ Var[θ̂2] for any possible value of θ with strict
inequality for at least one value of θ.

• Problem Show that the sample mean, Ȳ is efficient relative to the “first obser-
vation” estimator, θ̂ = Y1 when n > 1.

Bias-Variance Tradeoff

• In many situations, there is tradeoff between bias and variance. In the extreme,
think about comparing the sample mean θ̂ = Ȳ to the dumb, always selection
3 estimator: θ̂3 = 3. The always choose 3 estimator has bias that can be quite
high when the population mean is very far from 3, but it has 0 variance.

Mean Squared Error

• Obviously, if both of the estimators are unbiased, then all we want is lower sam-
pling variance. But what about comparing biased and unbiased estimators or
two biased estimators. How do we figure out which is better.

• One way to compare them is to see their squared estimation errors. For ex-
ample, we might prefer a slightly biased estimator if it reduces the sampling
variance.

• Definition: Themean squared error (MSE) of an estimator θ̂ for θ isMSE(θ̂) =
E[(θ̂ − θ)2]. We can write this as:

MSE(θ̂) = Var[θ̂] + [bias(θ̂)]2

• Problem What is the mean squared error of an unbiased estimator?

large-sample properties of estimators
• Remember that we have been investigating the properties of some estimator for

a fixed number of observations, θ̂n. And this is useful because we usually only
have one sample that has a fixed sample size.

• Another way to compare estimators is to see how perform as we increase the
sample size, n.
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• Intuitively, we might want to know that the estimator “converges” to true pa-
rameter in some way.

• In addition, as n gets large, it turns out that many estimators have an approxi-
mately Normal distribution. This is really useful, since it allows us to figure out
(approximately) the probability of seeing estimates that are larger or smaller
than a particular value: P(Ȳn > 0). This will be very important next week
when we want to form confidence intervals and think about hypothesis tests.

• Some of the math here gets a little complicated, but the intuitions are fairly sim-
ple.

Convergence in Probability

• A series of numbers, xn converges to some value x if for every ε > 0, there
exists an N such that for n > N we have |xn − x| < ε. Basically, as n grows,
xn gets arbitrarily close to x (though it may never reach it). What does it mean
for a an estimator, or more generally a random variable, to “converge to some
value”?

• Question: Suppose we have an iid sample, Y1, . . . , Yn from a population dis-
tribution with mean µ. What is P(Ȳn = µ) as n → ∞?

• Definition: A sequence of random variables,X1, X2, . . ., is said to converge in
probability to a value c if for every ε > 0,

P(|Xn − c| > ε) → 0,

as n → ∞. We write this Xn
p→ c.

• IntuitionWhat is this saying intuitively? It says that the probability ofXn being
more than a small value (ε) away from c goes to 0 asn gets large. In other words,
the distribution of Xn becomes concentrated around c as n gets large.

• Wooldridge writes plim(Xn) = c if Xn
p→ c.

• Properties of the convergence in probability:

1. if Xn
p→ c, then g(Xn)

p→ g(c) for any continuous function g.
2. if Xn

p→ a and Zn
p→ b, then

• Xn + Zn
p→ a+ b

• XnZn
p→ ab

• Xn/Zn
p→ a/b if b > 0
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Consistency

• Definition An estimator θ̂n is consistent for θ if θ̂n
p→ θ.

• Definition: Let θ̂n be an estimate of θ from a sample Y1, . . . , Yn of size n. Then,
θ̂n estimator is consistent for θ for every ε > 0,

P(|θ̂n − θ| > ε) → 0 as n → ∞

• An intuitive way to understand consistency is that the sampling distribution of
θ̂n is collapsing around the true value. As n increases, the entire distribution of
estimates is getting closer to the truth.

• If an estimator is unbiased, then it is easy to figure out if it is consistent: an
unbiased estimator is consistent if the sampling variance goes to 0 as n → ∞
or limn→∞ Var[θ̂n] = 0.

• An estimator is inconsistent if θ̂n ̸ p→θ. This might be because it converges
to another value or because it never converges at all. Either of these are bad
properties—imagine giving your estimator more data and your estimates either
staying the same or getting worse! These estimators violate the first golden rule
of statistics: more data is better.

• Example The “first observation” estimator, Y1 is unbiased as we said, but it is
inconsistent. This is because the sampling distribution never collapses to any
value. As we add more observations, we simply drop those added observations
and only use the first.

Law of Large Numbers

• One consistency result has a special name and that is the idea that the sample
mean is consistent for the population mean.

• Theorem (Weak Law of Large Numbers) Let Y1, . . . , Yn be a an iid draws from
a distribution with mean µ and let Ȳn = 1

n

∑n
i=1 Yi. Then, Ȳn

p→ µ.

• Note that this is very easy to prove if the population distribution has a finite
variance, σ2 given that the sample mean is unbiased and the sampling variance
of the sample mean is σ2/n. Thus, as n gets large, the variance around the true
values goes to 0.
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Consistency example

• Let’s compare two estimators that we might experience out in the real world.
In both, we’ll take iid samples from the population distribution which is Ex-
ponential with rate parameter 0.5. It’s not vital that we know much about the
Exponential, just that the mean of this population distribution will be 2. We
want to estimate this mean.

curve(dexp(x, rate = 0.5), from = 0, to = 12, col = ”orange”, lwd = 3, bty = ”n”,

ylab = ”f(x)”, xlab = ”x”)
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0
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4

x

f(x
)

• Suppose that we are interested in how long a government lasts in parliamentary
democracies. So what we do is start today in 2014 record when each govern-
ment dissolves andhow long it took fromwhenwe started counting (9/30/2014).
Call this X . Now, suppose that the distribution of X is Exponential with rate
0.5.

• Now imagine two data collection schemes: one in which we wait until we’ve
collected n observations from the process (this is just an iid sample) and one in
which we stop collecting after 3 years, which we call a censored sample.

• What are the properties of these two approaches? We can investigate these by
thinking about the two implied estimators: first, the usual sample mean for the
entire sample of size n; and second, the censored sample mean, which is just
the usual sample mean applied to any of the n observations that are less than 3.
What is going to happen to these estimators as we increase n?



19

nsims <- 10000

holder <- matrix(NA, nrow = nsims, ncol = 6)

bad.holder <- matrix(NA, nrow = nsims, ncol = 6)

for (i in 1:nsims) {

s5 <- rexp(n = 5, rate = 0.5)

s15 <- rexp(n = 15, rate = 0.5)

s30 <- rexp(n = 30, rate = 0.5)

s100 <- rexp(n = 100, rate = 0.5)

s1000 <- rexp(n = 1000, rate = 0.5)

s10000 <- rexp(n = 10000, rate = 0.5)

holder[i,1] <- mean(s5)

holder[i,2] <- mean(s15)

holder[i,3] <- mean(s30)

holder[i,4] <- mean(s100)

holder[i,5] <- mean(s1000)

holder[i,6] <- mean(s10000)

bad.holder[i,1] <- mean(s5[s5 < 3])

bad.holder[i,2] <- mean(s15[s15 < 3])

bad.holder[i,3] <- mean(s30[s30 < 3])

bad.holder[i,4] <- mean(s100[s100 < 3])

bad.holder[i,5] <- mean(s1000[s1000 < 3])

bad.holder[i,6] <- mean(s10000[s10000 < 3])

}

par(mfrow = c(1,2))

plot(density(holder[,5]), xlim = c(0,4), bty = ”n”, main = ”sample mean”, lwd = 2)

abline(v=2, col = ”grey50”)

lines(density(holder[,4]), col = ”violet”, lwd = 2)

lines(density(holder[,3]), col = ”dodgerblue”, lwd = 2)

lines(density(holder[,2]), col = ”green3”, lwd = 2)

plot(density(bad.holder[,5]), xlim = c(0,5), bty = ”n”, main = ”censored sample mean”, lwd = 2)

abline(v=2, col = ”grey50”)

lines(density(bad.holder[,4]), col = ”violet”, lwd = 2)

lines(density(bad.holder[,3]), col = ”dodgerblue”, lwd = 2)

lines(density(bad.holder[,2]), col = ”green3”, lwd = 2)
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• As you can see, as we increase the sample size, the usual samplemean converges
to the true mean, 2 (what theorem do we have to thank for that?). But the
sampling distribution of the censored sample mean starts to concentrates all of
its mass very far away from the truth.

• Why is this important? The censored sample mean here will almost never be
close to the true mean in large samples. Thus, inconsistent estimators are really
misleading.

Convergence in Distribution

• One nice property of many estimators is that their sampling distribution is ap-
proximately Normal in large samples.

• Definition: A sequence of random variables,X1, X2, . . ., is said to converge in
distribution to Z if

lim
n→∞

P(Xn ≤ x) = P(Z ≤ x),

which we write as Xn
d→ Z .

Asymptotic Normality

• Definition: An estimator is said to be asymptotically Normal if

θ̂n − θ√
Var(θ̂n)

=
θ̂n − θ

SE(θ̂)

d→ N(0, 1).
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Central Limit Theorem

• Theorem (Central Limit Theorem) Let Y1, . . . , Yn be a an iid draws from a dis-
tribution with mean µ and variance σ2. Then

Zn =
Ȳn − µ

σ/
√
n

d→ N(0, 1)

• Intuition This is saying that for large samples (usually greater than 30 with an
iid sample), the sampling distribution of the standardized sample mean is just
the standard Normal distribution.

• Note that the central limit theoremalso applies to sums anddifferences inmeans.

• Why do we standardize the sample mean here? Because we already know that
the sample mean converges in probability to the population mean, so the sam-
pling distribution of the sample mean is just converging to a single point. Stan-
dardizing ensures that this random variable is centered at 0 and has a variance
that remains constant (at 1).

Empirical Rule for the Normal Distribution

• If Z ∼ N(0, 1), then the following are roughly true:

– Roughly 68% of the distribution of Z is between -1 and 1.
– Roughly 95% of the distribution of Z is between -2 and 2.
– Roughly 99.7% of the distribution of Z is between -3 and 3.

• You can use the pnorm() function in R to figure out any probability questions
about the Normal distribution.

Asymptotic Normality Example

• Going back to the Gerber, Green, and Larimer paper. Remember that we saw
that there was roughly a 0.063 difference between the Neighbors group and
Civic Duty group. That’s our estimate in this example.

• Problem Show that the Central Limit Theorem also applies to the difference in
sample means when the group sizes are the same (n = ny = nx). Obviously
the result applies to other cases, but this is easiest to show using what we have
learned so far.
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• Suppose that in this case we have estimated the standard error of the difference
in means to be ŜE(θ̂) = 0.02.

• Let’s do one of the Lady Tasting Tea statistical thought experiments. What if
there was no difference in means in the population (µy − µx = 0)? What
would the sampling distribution of the difference in sample means look like in
large samples?

• Well, we know by asymptotic Normality and the thought experiment assump-
tion that

(θ̂ − 0)/SE(θ̂) ∼ N(0, 1)

by the properties of Normals, we know that this implies that

θ̂ ∼ N(0, SE(θ̂))

• What will this distribution look like? We know it’s going to be centered around
0, but what about the spread? Here we can plug in the estimated SE to get our
best guess as to what the distribution will look like. Let’s do that and plot the
results along with the observed difference in means:

nsims <- 10000

sampling.dist <- rnorm(n = nsims, mean = 0, sd = 0.02)

hist(sampling.dist, xlim = c(-0.07, 0.07), main = ””, col = ”grey”,

border = ”white”)

abline(v = 0.063, col = ”dodgerblue”)

text(x = 0.063, y = 1000, ”Observed\nDifference”, pos = 2, col = ”dodgerblue”)

sampling.dist
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• Question Does the observed difference in means seem plausible if there really
were no difference between the two groups in the population?
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interval estimation
Interval estimation - what and why?

• Last week we talked about producing a single estimate of some population pa-
rameter. For example, we estimated the population difference in means using
the sample difference inmeans. But that gave us one number. Thatmight be our
“best guess” about the true value, but what is the probability that our estimate
will be equal to the true value? Zero!

• A different (complementary) approach to estimation is to produce a range of
values that will contain the truth with some fixed probability.

• An interval estimate of the population mean, µ, consists of two bounds within
which we expect µ to reside:

LB ≤ µ ≤ UB

• A confidence interval is a kind of interval estimator that guarantees that the true
value of the parameters will be in interval in some fixed proportion of random
samples.

• How can we possibly figure out such an interval? We’ll rely on the distribu-
tional properties of estimators that we learned last week. Today we’ll focus on
developing these types of interval estimators for the sample mean, but the same
ideas apply to all estimators. Later in the course, we’ll see how they apply to
regression coefficients.

Estimating the standard error of the sample mean

• We’re going to make heavy use of the sampling distribution of the sample mean
to derive interval estimates, called confidence intervals, for the sample mean.

• By the CLT, we know that in large samples, we know that the sample mean will
be approximately Normally distributed:

Ȳ ∼ N(µ, SE[Ȳ ]2)

• By the properties of probability limits from last week, if we have a consistent
estimator, ŜE[Ȳ ]

p→ SE[Ȳ ], then when n is large, we know can replace the
true SE with the estimate in the approximating distribution:

Ȳ ∼ N(µ, ŜE[Ȳ ]2)
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• For the sample mean, remember that the sampling variance is σ2

n . Remember
that we know n and we can estimate σ2 with the sample variance:

S2
n =

1

n− 1

n∑
i=1

(Yi − Ȳ )2

• To get an estimate of the population standard deviation, we just use the sample
standard deviation: Sn =

√
S2
n

• We can plug this into our formula for the standard error the sample mean:

ŜE[Ȳ ] =
S√
n

Derivation of the Confidence Interval for the Population Mean

• Definition A 100(1− α)% confidence interval with confidence level 1− α is
an interval estimator for a population parameter θ that will contain/cover the
true value, θ, 100(1− α)% of the time.

• We going to use the above distributional results to come up with a rule for con-
structing a confidence interval. This rule will be an estimator just like the sam-
ple mean or the sample variance, but it will produce two values instead of one:
the upper and lower values of the intervals.

• If Y1, . . . , Yn are iid and n is large, then we have

Ȳ ∼ N(µ, ŜE[Ȳ ]2)

Ȳ − µ ∼ N(0, ŜE[Ȳ ]2)

Ȳ − µ

ŜE[Ȳ ]
∼ N(0, 1)

• One fact that you should memorize is that that 95% of the probability mass of a
standard Normal falls between -1.96 and 1.96, so we know that:

P(−1.96 ≤ Ȳ − µ

ŜE[Ȳ ]
≤ 1.96) = 0.95

• Let’s work backwards to derive the confidence interval:
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P
(
− 1.96 ≤ Ȳ − µ

ŜE[Ȳ ]
≤ 1.96

)
= 0.95

P
(
− 1.96× ŜE[Ȳ ] ≤ Ȳ − µ ≤ 1.96× ŜE[Ȳ ]

)
= 0.95

P
(
− 1.96× ŜE[Ȳ ]− Ȳ ≤ −µ ≤ 1.96× ŜE[Ȳ ]− Ȳ

)
= 0.95

P
(
Ȳ − 1.96× ŜE[Ȳ ] ≤ µ ≤ Ȳ + 1.96× ŜE[Ȳ ]

)
= 0.95

Different confidence intervals

• Confidence intervals take the following form: Ȳ ± 1.96 × ŜE[Ȳ ], which is
shorthand for [LB,UB] where these are:

LB = Ȳ − 1.96× ŜE[Ȳ ]

UB = Ȳ + 1.96× ŜE[Ȳ ]

• Where did the 1.96 come from?

P
(
− 1.96 ≤ Ȳ − µ

ŜE[Ȳ ]
≤ 1.96

)
= 0.95

• What about confidence intervals other than 95%? Say we want an (1 − α)%
confidence interval:

P
(
− zα/2 ≤

Ȳ − µ

ŜE[Ȳ ]
≤ zα/2

)
= (1− α)

P
(
Ȳ − zα/2 × ŜE[Ȳ ] ≤ µ ≤ Ȳ + zα/2 × ŜE[Ȳ ]

)
= (1− α)

• General formula for a (1− α)% confidence interval:

Ȳ ± zα/2 × ŜE[Ȳ ]

• Here we call the zα/2 values the z-values for the particular confidence intervals.
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Finding the z values

• How do we figure out what zα/2 will be? We will need to find the values such
that the following holds. Given a standard Normal variable, Z N(0, 1):

P(−zα/2 ≤ Z ≤ zα/2) = 1− α

• Thus, we want the values that puts α/2 in each of the tails.

• For example, with α = 0.05 for a 95% confidence interval, we want the z values
that put 0.025 (2.5%) in each of the tails:
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0.025 0.025

z = 1.96-z = -1.96

• But how did we find the 1.96 in this case? For these types of two-sided confi-
dence intervals, we will simply find the z-value that puts α/2 of the probability
mass above it or, equivalently, 1 − α/2 below it. Thus, we want to know the
value z, such that P(Z ≤ z) = 1− α/2:
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0.975

• This is just the CDF of the standard Normal evaluated at 1− α/2! We can find
this using the qnorm() function in R.

• Procedure:

1. Choose a value α (0.1 for example) for a 100(1−α)% confidence interval
(90% in this case)

2. Convert this to 1− α/2 (0.95 in this case)
3. Plug this value into qnorm() to find zα/2:

qnorm(0.95)

## [1] 1.644854

• QuestionWhat happens to the size of the confidence interval when we increase
our confidence, from say 95% to 99%? Do confidence intervals get wider or
shorter?

Confidence intervals you should probably memorize

• For a 90% CI, we have α = 0.1 and z0.05 = 1.64
• For a 95% CI, we have α = 0.05 and z0.025 = 1.96
• For a 99% CI, we have α = 0.01 and z0.005 = 2.58
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Interpreting the confidence interval

• Caution An often recited, but incorrect interpretation of a confidence interval
is the following: “I calculated a 95% confidence interval for the sample mean
of [0.05,0.13], which means that there is a 95% chance that the true population
mean in is that interval.” This is WRONG.

• The true value of the population mean, µ, is fixed. It is either in the interval or
it isn’t—there’s no room for probability at all. The randomness is in the interval:
Ȳ ± 1.96× ŜE[Ȳ ]. This is what varies from sample to sample.

• Correct interpretation: across 95% of random samples, the constructed confi-
dence interval will contain the true value.

Confidence interval simulation

• Let’s do a simulation to show how this works. We’re going to draw samples of
size 500 from a N(1, 10) and then calculate the confidence interval for popu-
lation mean and then calculate the proportion of the intervals that contain the
true value of the population mean.

set.seed(02143)

sims<- 10000

cover <- rep(NA, times = sims)

low.bound <- up.bound <- rep(NA, times = sims)

for(i in 1:sims){

draws <- rnorm(500, mean=1, sd=sqrt(10))

low.bound[i] <- mean(draws) - sd(draws)/sqrt(500) * 1.96

up.bound[i] <- mean(draws) + sd(draws)/sqrt(500) * 1.96

if (low.bound[i] < 1 & up.bound[i] > 1) {

cover[i] <- 1

} else {

cover[i] <- 0

}

}

mean(cover)

## [1] 0.9498

• We can see that roughly 95% of the confidence intervals (across the samples)
contain the true value. Let’s plot the first 100 of these interval estimates from
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the first 100 samples and then color code the intervals by whether they cover
the true value:

cols <- ifelse(cover == 1, ”dodgerblue”, ”indianred”)

plot(x = NULL, y = NULL, xlim = c(1,100), ylim = c(0.5, 1.5), bty = ”n”,

xlab = ”Trial”, ylab = ”Estimate”)

abline(h = 1, col = ”grey”, lwd = 3)

segments(x0 = 1:100, y0 = low.bound[1:100], y1 = up.bound[1:100],

col = cols[1:100], lwd = 3)
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• You can see that in these 100 samples, exactly 95 of the calculated confidence
intervals contains the true value.

• Question What happens to the intervals when we increase n, the sample size?
Do the intervals get shorter or longer? Do more or fewer of them contain the
true value?

Interval estimation of the difference in means

• Suppose we have two iid samples (also independent from each other) from pos-
sibly different distributions:

– Y11, Y12, . . . , Y1n1 with population mean µ1 and population variance σ2
1

– Y21, Y22, . . . , Y2n2 with population mean µ2 and population variance σ2
2

• Last week we saw that the sample difference in means is unbiased so we know
that E[Ȳ1 − Ȳ2] = µ1 − µ2.
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• Let’s calculate the sampling variance of the difference in means:

Var[Ȳ1 − Ȳ2] = Var[Ȳ1] + Var[Ȳ2] (independence + variance properties)

=
1

n2
1

n1∑
i=1

Var[Y1i] +
1

n2
2

n2∑
i=1

Var[Y2i]

=
1

n2
1

n1∑
i=1

σ2
1 +

1

n2
2

n2∑
i=1

σ2
2

=
σ2
1

n1
+

σ2
2

n2

• Putting all of this together, we know that in large samples, we have the following:

Ȳ1 − Ȳ2 ∼ N(µ1 − µ2,
σ2
1

n1
+

σ2
2

n2
)

• Using the logic from the last section, we can replace the true population vari-
ances with sample estimates:

Ȳ1 − Ȳ2 ∼ N(µ1 − µ2,
s21
n1

+
s22
n2

)

• Combining this with the arguments above, we can construct the following con-
fidence interval for the difference in means in large samples:

(Ȳ1 − Ȳ2)± zα/2 ×

√
s21
n1

+
s22
n2

Interval estimation of the population proportion

• Let’s say that we have a sample of iid Bernoulli random variables, Y1, . . . , Yn,
where each takesYi = 1with probabilityπ. Note that this is also thepopulation
proportion of ones. We have shown in previous weeks that the expectation of
one of these variable is just the probability of seeing a 1: E[Yi] = π.

• The variance of a Bernoulli random variable is a simple function of its mean:
Var(Yi) = π(1− π).

• Problem Show that the sample proportion, π̂ = 1
n

∑n
i=1 Yi, of the above iid

Bernoulli sample, is unbiased for the true population proportion, π, and that
the sampling variance is equal to π(1−π)

n .
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• Note that if we have an estimate of the population proportion, π̂, then we also
have an estimate of the sampling variance: π̂(1−π̂)

n .

• Given the facts from the previous problem, we just apply the same logic from
the population mean to show that the following confidence interval:

P

(
π̂ − zα/2 ×

√
π̂(1− π̂)

n
≤ π ≤ π̂ + zα/2 ×

√
π̂(1− π̂)

n

)
= (1− α)

Gerber, Green, and Larimer experiment

• Let’s go back to the Gerber, Green, and Larimer experiment from last week.
Here are the results of their experiment:

Figure 2: Experimental results

• Let’s use what we have learned up until now and the information in the table
to calculate a 95% confidence interval for the difference in proportions voting
between the Neighbors group and the Civic Duty group.

• Youmay assume that the samples with in each group are iid and the two samples
are independent.

• First, we know that the sample proportion for the Civic Duty π̂C group will be
approximately Normal around the populationmean πC with sampling variance
(πC(1−πC))/n. Same goes for the sample proportion in the Neighbors group,
π̂N .

• Given that these are just samplemeans (of the underlyingBernoulli voter turnout
variables), we can apply the difference in means results from above to show that
the difference in proportions has the following distribution:

π̂N − π̂C ∼ N

(
πN − πC ,

πN (1− πN )

nN
+

πC(1− πC)

nC

)
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• We can replace the variances with our estimates from the sample proportions:

π̂N − π̂C ∼ N

(
πN − πC ,

π̂N (1− π̂N )

nN
+

π̂C(1− π̂C)

nC

)
• Now, we can use this in the same way as every other example to calculate the

95% confidence interval:

(π̂N − π̂C)± 1.96×

√
π̂N (1− π̂N )

nN
+

π̂C(1− π̂C)

nC

• Let’s plug in the values into R and go!

n.n <- 38201

samp.var.n <- (0.378 * (1 - 0.378))/n.n

n.c <- 38218

samp.var.c <- (0.315 * (1 - 0.315))/n.c

se.diff <- sqrt(samp.var.n + samp.var.c)

se.diff

## [1] 0.003435201

## lower bound

lb <- (0.378 - 0.315) - 1.96 * se.diff

lb

## [1] 0.05626701

## upper bound

ub <- (0.378 - 0.315) + 1.96 * se.diff

ub

## [1] 0.06973299

• Thus, the confidence interval for the effect is [0.056267, 0.069733].

Interval estimation of the population variance

• Challenge Problem Suppose that you have an iid sample, Y1, . . . , Yn, from a
population with variance, σ2. Derive a (1 − α)% confidence interval for the
sample variance, S2

n. (Hint: you may have to look in Wooldridge and learn
about a new distribution.)
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