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Housekeeping

• This Thursday, 10/6: HW 3 due, HW 4 goes out.
• Next Thursday, 10/13: HW 4 due, HW 5 goes out.
• Thursday, 10/20: HW 5 due, Midterm available.
• Midterm:

▶ Check-out exam: you have 8 hours to complete it once you
check it out.

▶ Answers must be typeset, as usual.
▶ You should have more than enough time.
▶ We’ll post practice midterms in advance.

• Evaluations: we’ll be fielding an anonymous survey about the
course this week.
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Where are we? Where are we
going?

• Last few weeks: probability, learning how to think about r.v.s
• Now: how to estimate features of underlying distributions

with real data.
• Build on last week: if the sample mean will be “close” to 𝜇,

can use it as a best guess for 𝜇?
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1/ Point Estimation
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Motivating example

• Gerber, Green, and Larimer (APSR, 2008)
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Motivating Example
load("../data/gerber_green_larimer.RData")
## turn turnout variable into a numeric
social$voted <- 1 * (social$voted == "Yes")
neigh.mean <- mean(social$voted[social$treatment ==

"Neighbors"])
neigh.mean

## [1] 0.378

contr.mean <- mean(social$voted[social$treatment ==
"Civic Duty"])

contr.mean

## [1] 0.315

neigh.mean - contr.mean

## [1] 0.0634

• Is this a “real”? Is it big?
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Why study estimators?

• Goal 1: Inference
▶ What is our best guess about some quantity of interest?
▶ What are a set of plausible values of the quantity of interest?

• Goal 2: Compare estimators
▶ In an experiment, use simple difference in sample means
(𝑌 − 𝑋)?

▶ Or the post-stratification estimator, where we estimate the
estimate the difference among two subsets of the data (male
and female, for instance) and then take the weighted average
of the two (𝑍 is the share of women):

(𝑌 𝑓 − 𝑋 𝑓 )𝑍 + (𝑌𝑚 − 𝑋𝑚)(1 − 𝑍)

▶ Which (if either) is better? How would we know?
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Samples from the population

• Our focus: 𝑌1, … , 𝑌𝑛 are i.i.d. draws from 𝑓 (𝑦)
▶ e.g.: 𝑌𝑖 = 1 if citizen 𝑖 votes, 𝑌𝑖 = 0 otherwise.
▶ i.i.d. can be justified through random sampling from a

population.
▶ 𝑓 (𝑦) is often called the population distribution

• Statistical inference or learning is using data to infer 𝑓 (𝑦).
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Point estimation

• Point estimation: providing a single “best guess” as to the
value of some fixed, unknown quantity of interest, 𝜃.

▶ 𝜃 is a feature of the population distribution, 𝑓 (𝑦)
▶ Also called: estimands, parameters.

• Examples of quantities of interest:
▶ 𝜇 = 𝔼[𝑌𝑖]: the mean (turnout rate in the population).
▶ 𝜎2 = 𝕍[𝑌𝑖]: the variance.
▶ 𝜇𝑦 − 𝜇𝑥 = 𝔼[𝑌] − 𝔼[𝑋]: the difference in mean turnout

between two groups.
▶ 𝑟(𝑥) = 𝔼[𝑌|𝑋 = 𝑥]: the conditional expectation function
(regression).

• These are the things we want to learn about.

10 / 56



Estimators

Estimator
An estimator, ̂𝜃𝑛 of some parameter 𝜃, is a function of the sample:

̂𝜃𝑛 = ℎ(𝑌1, … , 𝑌𝑛).

• ̂𝜃𝑛 is a r.v. because it is a function of r.v.s.
▶ ⇝ ̂𝜃𝑛 has a distribution.
▶ { ̂𝜃1, ̂𝜃2, …} is a sequence of r.v.s, so we can think about

convergence in probability/distribution.
• An estimate is one particular realization of the estimator/r.v.
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Examples of Estimators

• For the population expectation, 𝜇, we have many different
possible estimators:

▶ ̂𝜃𝑛 = 𝑌𝑛 the sample mean
▶ ̂𝜃𝑛 = 𝑌1 just use the first observation
▶ ̂𝜃𝑛 = max(𝑌1, … , 𝑌𝑛)
▶ ̂𝜃𝑛 = 3 always guess 3
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Understanding check

• Question Why is the following statement wrong: “My
estimate was the sample mean and my estimator was 0.38”?
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The three distributions

• Population Distribution: the data-generating process
▶ Bernoulli in the case of the social pressure/voter turnout

example)
• Empirical distribution: 𝑌1, … , 𝑌𝑛

▶ series of 1s and 0s in the sample
• Sampling distribution: distribution of the estimator over

repeated samples from the population distribution
▶ the 0.38 sample mean in the “Neighbors” group is one draw

from this distribution
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Sampling distribution, in pictures

𝑓 (𝑦)

population
distribution

̂𝜃𝑛

estimator

{𝑌1
1 , … , 𝑌1𝑛 } 𝜃1𝑛

{𝑌2
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⋮ ⋮
{𝑌𝑘−1

1 , … , 𝑌𝑘−1𝑛 } 𝜃𝑘−1𝑛

{𝑌𝑘
1 , … , 𝑌𝑘𝑛 } 𝜃𝑘𝑛
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Sampling distribution
## now we take the mean of one sample, which is one
## draw from the **sampling distribution**
my.samp <- rbinom(n = 10, size = 1, prob = 0.4)
mean(my.samp)

## [1] 0.2

## let's take another draw from the population dist
my.samp.2 <- rbinom(n = 10, size = 1, prob = 0.4)

## Let's feed this sample to the sample mean
## estimator to get another estimate, which is
## another draw from the sampling distribution
mean(my.samp.2)

## [1] 0.4
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Sampling distribution by
simulation

• Let’s generate 10,000 draws from the sampling distribution of
the sample mean here when 𝑛 = 100.

nsims <- 10000
mean.holder <- rep(NA, times = nsims)
for (i in 1:nsims) {

my.samp <- rbinom(n = 100, size = 1, prob = 0.4)
mean.holder[i] <- mean(my.samp) ## sample mean
first.holder[i] <- my.samp[1] ## first obs

}
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Sampling distribution versus
population distribution
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Question The sampling distribution refers to the distribution of 𝜃,
true or false.
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2/ Properties of
Estimators
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Properties of estimators

• We only get one draw from the sampling distribution, ̂𝜃𝑛.
• Want to use estimators whose distribution is “close” to the

true value.
• There are two ways we evaluate estimators:

▶ Finite sample: the properties of its sampling distribution for a
fixed sample size 𝑛.

▶ Large sample: the properties of the sampling distribution as we
let 𝑛 → ∞.
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Running example

• Two independent random samples (treatment/control):
▶ 𝑌1, … , 𝑌𝑛𝑦 are i.i.d. with mean 𝜇𝑦 and variance 𝜎2𝑦
▶ 𝑋1, … , 𝑋𝑛𝑥 are i.i.d. with mean 𝜇𝑥 and variance 𝜎2𝑥
▶ Overall sample size 𝑛 = 𝑛𝑦 + 𝑛𝑥

• Parameter is the population difference in means, which is the
treatment effect of the social pressure mailer: 𝜇𝑦 − 𝜇𝑥

• Estimator is the difference in sample means:

𝐷̂𝑛 = 𝑌𝑛𝑦 − 𝑋𝑛𝑥
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Finite-sample properties

Let ̂𝜃𝑛 be a estimator of 𝜃. Then we have the following definitions:

• bias[ ̂𝜃𝑛] = 𝔼[ ̂𝜃𝑛] − 𝜃
▶ ̂𝜃𝑛 is unbiased if bias[ ̂𝜃𝑛] = 0
▶ Last week: 𝑋𝑛 is unbiased for 𝜇 since 𝔼[𝑋𝑛] = 𝜇

• Sampling variance is 𝕍[ ̂𝜃𝑛].
▶ Example: 𝕍[𝑋𝑛] = 𝜎2/𝑛

• Standard error is se[ ̂𝜃𝑛] = √𝕍[ ̂𝜃𝑛]
▶ Example: se[𝑋𝑛] = 𝜎/√𝑛
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Diff-in-means finite sample
properites

• Unbiasedness from unbiasedness of sample means:

𝔼[𝑌𝑛𝑦 − 𝑋𝑛𝑥] = 𝔼[𝑌𝑛𝑦] − 𝔼[𝑋𝑛𝑥] = 𝜇𝑦 − 𝜇𝑥

• Sampling variance, by independent samples:

𝕍[𝑌𝑛𝑦 − 𝑋𝑛𝑥] = 𝕍[𝑌𝑛𝑦] + 𝕍[𝑋𝑛𝑥] =
𝜎2𝑦
𝑛𝑦

+ 𝜎2𝑥
𝑛𝑥

• Standard error:

se[𝐷̂𝑛] = √𝜎2𝑦
𝑛𝑦

+ 𝜎2𝑥
𝑛𝑥
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Mean squared error

• Mean squared error or MSE is

MSE = 𝔼[( ̂𝜃𝑛 − 𝜃)2]

• The MSE assesses the quality of an estimator.
▶ How big are (squared) deviations from the true parameter?
▶ Ideally, this would be as low as possible!

• Useful decomposition result:

MSE = bias[ ̂𝜃𝑛]2 + 𝕍[ ̂𝜃𝑛]

• ⇝ for unbiased estimators, MSE is the sampling variance.
• Might accept some bias for large reductions in variance for

lower overall MSE.
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Consistency

• An estimator is consistent if ̂𝜃𝑛
𝑝→ 𝜃.

▶ Distribution of ̂𝜃𝑛 collapses on 𝜃 as 𝑛 → ∞.
▶ WLLN: 𝑋𝑛 is consistent for 𝜇.
▶ Inconsistent estimator are bad bad bad: more data gives worse

answers!

• Theorem: If bias[ ̂𝜃𝑛] → 0 and se[ ̂𝜃𝑛] → 0 as 𝑛 → ∞, then ̂𝜃𝑛
is consistent.

• Example: Difference-in-means.
▶ 𝐷̂𝑛 is unbiased with 𝕍[𝐷̂𝑛] = 𝜎2𝑦

𝑛𝑦 + 𝜎2𝑥𝑛𝑥
▶ ⇝ 𝐷̂𝑛 consistent since 𝕍[𝐷̂𝑛] → 0

• NB: Unbiasedness does not imply consistency, nor vice versa.
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Unbiased versus consistent

• Unbiased, not consistent: “first observation” estimator,
̂𝜃𝑓
𝑛 = 𝑌1.

▶ Unbiased because 𝔼[ ̂𝜃𝑓
𝑛] = 𝔼[𝑌1] = 𝜇𝑦

▶ Not consistent: ̂𝜃𝑓
𝑛 is constant in 𝑛 so its distribution never

collapses.
▶ Said differently: the variance of ̂𝜃𝑓

𝑛 never shrinks.
• Consistent, but biased: sample mean with 𝑛 replaced by 𝑛 − 1:

𝑛
𝑛 − 1𝑌𝑛 = 1

𝑛 − 1
𝑛

∑
𝑖=1

𝑌𝑖

▶ Bias: 𝔼[ 𝑛
𝑛−1𝑌𝑛] − 𝜇𝑦 = 1

𝑛−1𝜇𝑦
▶ Consistent because bias and se → 0 as 𝑛 → ∞.
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Asymptotic normality
• An estimator is asymptotically normal if

̂𝜃𝑛 − 𝜃
se[ ̂𝜃𝑛]

𝑑→ 𝑁(0, 1)

▶ Allows us to approximate the probability of ̂𝜃𝑛 being far away
from 𝜃 in large samples.

• Many, many, many estimators will be asymptotically normal
by some version of the Central Limit Theorem.

▶ CLT: 𝑋𝑛 is asymptotically normal
• By an extension of the CLT for independent samples:

𝐷̂𝑛 − (𝜇𝑦 − 𝜇𝑥)
√𝜎2𝑦/𝑛𝑦 + 𝜎2𝑥/𝑛𝑥

𝑑→ 𝑁(0, 1)
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Help, I don’t know the SE

• But we don’t know se[ ̂𝜃𝑛]?!
• ⇝ plug in a consistent estimator ŝe[ ̂𝜃𝑛]!
• If ̂𝜃𝑛 is asymptotically normal and ŝe[ ̂𝜃𝑛] 𝑝→ se[ ̂𝜃𝑛], then:

̂𝜃𝑛 − 𝜃
ŝe[ ̂𝜃𝑛]

𝑑→ 𝑁(0, 1)

• Using the true vs. estimated standard error doesn’t matter in
large samples.
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Estimating the Sampling
Variance/Standard Error

• Diff-in-means variance: 𝕍[𝐷̂𝑛] = 𝜎2𝑦
𝑛𝑦 + 𝜎2𝑥𝑛𝑥

▶ Need to estimate these dang unknown population variances,
𝜎2𝑦 and 𝜎2𝑥 .

• Use the sample variances: 𝑆2𝑦 = 1
𝑛𝑦−1 ∑𝑛𝑦

𝑖=1(𝑌𝑖 − 𝑌𝑛𝑦)2

▶ Consistent for population variance: 𝑆2𝑦
𝑝→ 𝜎2𝑦

• Estimated diff-in-means variance is consistent:

𝕍̂[𝐷̂𝑛] =
𝑆2𝑦
𝑛𝑦

+ 𝑆2𝑥
𝑛𝑦

𝑝→
𝜎2𝑦
𝑛𝑦

+ 𝜎2𝑥
𝑛𝑥

= 𝕍[𝐷̂𝑛]
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Putting it all together

• If 𝕍̂[𝐷̂𝑛] 𝑝→ 𝕍[𝐷̂𝑛] then ŝe[𝐷̂𝑛] = √𝕍̂[𝐷̂𝑛] 𝑝→ se[𝐷̂]
▶ Challenge question: prove this.

• Since we know 𝐷̂𝑛 is asymptotically normal and ŝe[𝐷̂𝑛] is
consistent, then we know that:

𝐷̂𝑛 − (𝜇𝑦 − 𝜇𝑥)
√𝑆2𝑦 /𝑛𝑦 + 𝑆2𝑥 /𝑛𝑥

𝑑→ 𝑁(0, 1)

• Now we can make approximate probability statements about
how far 𝐷̂𝑛 will be from the truth!
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3/ Interval
Estimation
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Interval estimation - what and
why?

• 𝑌𝑛 − 𝑋𝑛 is our best guess about 𝜇𝑦 − 𝜇𝑥
• But ℙ(𝑌𝑛 − 𝑋𝑛 = 𝜇𝑦 − 𝜇𝑥) = 0!
• Alternative: produce a range of values that will contain the

truth with some fixed probability
• An interval estimate of the population difference in means,

𝜇𝑦 − 𝜇𝑥, consists of two bounds within which we expect
𝜇𝑦 − 𝜇𝑥 to reside:

𝑎 ≤ 𝜇𝑦 − 𝜇𝑥 ≤ 𝑏
• How can we possibly figure out such an interval? We’ll rely on

the distributional properties of estimators. Ideas extend to all
estimators, including regression.
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What is a confidence interval?

Confidence interval
A 100(1 − 𝛼)% confidence interval for a population parameter 𝜃 is
an interval 𝐶𝑛 = (𝑎, 𝑏), where 𝑎 = 𝑎(𝑌1, … , 𝑌𝑛) and
𝑏 = 𝑏(𝑌1, … , 𝑌𝑛) are functions of the data such that

ℙ(𝑎 ≤ 𝜃 ≤ 𝑏) ≥ 1 − 𝛼.

• The random interval (𝑎, 𝑏) will bound 𝜃 100(1 − 𝛼)% of the
time.

▶ An estimator just like 𝑋𝑛 but with two values.
• 1 − 𝛼 is the coverage of the confidence interval.
• Extremely useful way to represent our uncertainty about our

estimate.
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Deriving a probabilistic bound
• Let ŝe = √𝑆2𝑦 /𝑛𝑦 + 𝑆2𝑥 /𝑛𝑥, so that:

𝐷̂𝑛 − (𝜇𝑦 − 𝜇𝑥)
ŝe

𝑑→ 𝑁(0, 1)

• Because of the CLT, we can use this to derive a confidence
interval such that: (𝜇𝑦 − 𝜇𝑥):

ℙ (𝑎 ≤ (𝜇𝑦 − 𝜇𝑥) ≤ 𝑏) = 0.95

• We want to find a value so that in 95% of random samples, it
will between these two bounds.

• Use the following fact. For large 𝑛:

ℙ ⎛⎜
⎝

−1.96 ≤
𝐷̂𝑛 − (𝜇𝑦 − 𝜇𝑥)

ŝe ≤ 1.96⎞⎟
⎠

≈ 0.95
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Deriving the interval

• Let’s work backwards to derive the confidence interval:

0.95 ≈ ℙ( − 1.96 ≤
𝐷̂𝑛 − (𝜇𝑦 − 𝜇𝑥)

ŝe ≤ 1.96)

=ℙ( − 1.96 × ŝe ≤ 𝐷̂𝑛 − (𝜇𝑦 − 𝜇𝑥) ≤ 1.96 × ŝe)
=ℙ( − 𝐷̂𝑛 − 1.96 × ŝe ≤ − (𝜇𝑦 − 𝜇𝑥) ≤ − 𝐷̂𝑛 + 1.96 × ŝe)
=ℙ(𝐷̂𝑛 − 1.96 × ŝe ≤ (𝜇𝑦 − 𝜇𝑥) ≤ 𝐷̂𝑛 + 1.96 × ŝe)

• Lower bound: 𝐷̂𝑛 − 1.96 × ŝe
• Upper bound: 𝐷̂𝑛 + 1.96 × ŝe

▶ Usually written as 𝐷̂𝑛 ± 1.96 × ŝe

• Bounds are random! Not (𝜇𝑦 − 𝜇𝑥)!
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CI for social pressure effect

neigh_var <- var(social$voted[social$treatment == "Neighbors"])
neigh_n <- 38201
civic_var <- var(social$voted[social$treatment == "Civic Duty"])
civic_n <- 38218

se_diff <- sqrt(neigh_var/neigh_n + civic_var/civic_n)

## lower bound
(0.378 - 0.315) - 1.96 * se_diff

## [1] 0.0563

## upper bound
(0.378 - 0.315) + 1.96 * se_diff

## [1] 0.0697
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Interpreting the confidence
interval

• Caution! An often recited, but incorrect interpretation of a
confidence interval is the following:

▶ “I calculated a 95% confidence interval of [0.05,0.13], which
means that there is a 95% chance that the true difference in
means in is that interval.”

▶ This is WRONG.

• The true value of the population difference in means, 𝜇𝑦 − 𝜇𝑥,
is fixed.

▶ It is either in the interval or it isn’t—there’s no room for
probability at all.

• The randomness is in the interval: 𝐷̂𝑛 ± 1.96 × ŝe[𝐷̂𝑛]. This is
what varies from sample to sample.

• Correct interpretation: across 95% of random samples, the
constructed confidence interval will contain the true value.
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Confidence interval simulation
• Draw samples of size 500 (pretty big) from 𝑁(1, 10)
• Calculate confidence intervals for the sample mean:

𝑌𝑛 ± 1.96 × ŝe[𝑌𝑛]⇝ 𝑌𝑛 ± 1.96 × 𝑆𝑛/√𝑛

set.seed(2143)
sims <- 10000
cover <- rep(0, times = sims)
low.bound <- up.bound <- rep(NA, times = sims)
for (i in 1:sims) {

draws <- rnorm(500, mean = 1, sd = sqrt(10))
low.bound[i] <- mean(draws) - sd(draws)/sqrt(500) *

1.96
up.bound[i] <- mean(draws) + sd(draws)/sqrt(500) *

1.96
if (low.bound[i] < 1 & up.bound[i] > 1) {

cover[i] <- 1
}

}
mean(cover)

## [1] 0.95 39 / 56



Plotting the CIs
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Plotting the CIs
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Plotting the CIs
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Plotting the CIs
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Plotting the CIs
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• You can see that in these 100 samples, exactly 95 of the
calculated confidence intervals contains the true value.
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More general confidence intervals

• Let ̂𝜃𝑛 be an asymptotically normal estimator for 𝜃.
▶ Any aysmp. normal estimator! 𝑋𝑛, 𝐷̂𝑛, or whatever!

• A general formula for a 100(1 − 𝛼)% confidence interval is:

̂𝜃𝑛 ± 𝑧𝛼/2 × ŝe[ ̂𝜃𝑛]

• 𝑧𝛼/2 comes from a similar derivation as earlier:

ℙ (−𝑧𝛼/2 ≤
̂𝜃𝑛 − 𝜃

ŝe[ ̂𝜃𝑛] ≤ 𝑧𝛼/2) = (1 − 𝛼)

• Remember! Asymptotics are approximations!
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Finding the z values

-4 -2 0 2 4

-0.1
0.0
0.1
0.2
0.3
0.4
0.5

dn
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m
(x

)

0.95

z = 1.96-z = -1.96

• How do we figure out what 𝑧𝛼/2 will be? Need to find the
values such that for 𝑍 ∼ 𝑁(0, 1):

ℙ(−𝑧𝛼/2 ≤ 𝑍 ≤ 𝑧𝛼/2) = 1 − 𝛼
• Intuitively, we want the 𝑧 values that puts 𝛼/2 in each of the

tails.
• For example, with 𝛼 = 0.05 for a 95% confidence interval, we

want the 𝑧 values that put 0.025 (2.5%) in each of the tails.
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Putting it in the tails
• How to get the 𝑧 values? Put 𝛼 probability in the tails:

ℙ({𝑍 < −𝑧𝛼/2} ∪ {𝑍 > 𝑧𝛼/2}) = 𝛼
ℙ(𝑍 < −𝑧𝛼/2) + ℙ(𝑍 > 𝑧𝛼/2) = 𝛼 (additivity)

2 × ℙ(𝑍 > 𝑧𝛼/2) = 𝛼 (symmetry)
ℙ(𝑍 < 𝑧𝛼/2) = 1 − 𝛼/2

• Find the 𝑧-value that puts probability 1 − 𝛼/2 below it:

-4 -2 0 2 4

0.0

0.1

0.2

0.3

0.4

0.5

dn
or

m
(x

)

0.975

z = ?
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Calculating z-values in R

• Inverse of the CDF (quantile) of the standard Normal
evaluated at 1 − 𝛼/2!

• Procedure for a 90% confidence interval:
1. Choose a value 𝛼 (0.1 for example) for a 100(1 − 𝛼)%

confidence interval (90% in this case)
2. Convert this to 1 − 𝛼/2 (0.95 in this case)
3. Plug this value into qnorm() to find 𝑧𝛼/2:

qnorm(0.95)

## [1] 1.64

• 90% CI: ̂𝜃𝑛 ± 1.64 × ŝe[ ̂𝜃𝑛]
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Question

• Question What happens to the size of the confidence interval
when we increase our confidence, from say 95% to 99%? Do
confidence intervals get wider or shorter?

• Answer Wider!
• Decreases 𝛼⇝ increases 1 − 𝛼/2⇝ increases 𝑧𝛼/2
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4/ Where Do
Estimators Come
From?*
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Statistical models
• A statistical model, 𝔽, is a set of distributions we will consider

that could have possibly generated the data.
• A parametric model is a set that can be parameterized by a

finite number of parameters.
▶ Bernoulli distribution:

𝔽 = {𝑓 (𝑦; 𝑝) = 𝑦𝑝(1 − 𝑦)1−𝑝 ∶ 0 ≤ 𝑝 ≤ 1}
▶ Normal distribution:

𝔽 = {𝑓 (𝑦; 𝜇, 𝜎2) = 1
𝜎√2𝜋

exp {− 1
2𝜎2 (𝑦 − 𝜇)2} ∶ 𝜇 ∈ ℝ, 𝜎2 > 0}

• Pros: easy to work with and explicit answers often exist
▶ Basis of maximum likelihood, Bayesian inference, etc.

• Cons: inferences are model dependent
▶ ⇝ if our choice of model is wrong, our inferences might be
wrong

51 / 56



Nonparametric models

• A nonparametric model is a set that cannot be parameterized
by a finite set of parameters.

▶ All distributions with finite mean:

𝔽 = {𝑓 (𝑦) ∶ 𝔼[𝑌] < ∞}

▶ All distributions with finite mean and variance:

𝔽 = {𝑓 (𝑦) ∶ 𝔼[𝑌] < ∞, 𝕍[𝑌] < ∞}

• Pros: no modeling assumptions beyond what we need.
• Cons: can be difficult to work with and difficult to interpret.
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Where do estimators come from?

• Parametric models: maximum likelihood, Bayesian estimation,
method of moments.

▶ Derive estimators from the assumed p.m.f./p.d.f. 𝑓 (𝑦).
▶ Gov 2001 and beyond.

• Nonparametric models: plug-in estimation/analogy principle.
▶ Quantities of interest are usually made up of expectations:

𝔼[𝑔(𝑌)] for some function 𝑔()
▶ Analogy principle: replace any population expectations,

𝔼[𝑔(𝑌)] with sample means, 1𝑛 ∑𝑛
𝑖=1 𝑔(𝑌𝑖)
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Plug-in estimators, examples

• Expectation:
𝜇 = 𝔼[𝑌𝑖]⇝ 𝜇 = 1

𝑛
𝑛

∑
𝑖=1

𝑌𝑖

• Variance:

𝜎2 = 𝔼[(𝑌𝑖 − 𝔼[𝑌𝑖])2]⇝ 1
𝑛

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑌)2

• Covariance:

Cov[𝑋𝑖, 𝑌𝑖] = 𝔼[(𝑋𝑖−𝔼[𝑋𝑖])(𝑌𝑖−𝔼[𝑌𝑖])]⇝
1
𝑛

𝑛
∑
𝑖=1

(𝑋𝑖−𝑋)(𝑌𝑖−𝑌)
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5/ Wrap up
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Wrap up

• Generalized discussion of sample means to any estimator of
any parameter.

• Unbiasedness, consistency, confidence intervals, etc will be
with you for almost any statistical procedure moving forward.

• These properties give us an expectation about how far away
our estimates will be from the truth.

• Next time: Testing hypotheses about parameters
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