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Where are we? Where are we
going?

= Probability: formal way to quantify uncertain
outcomes/random variables.

= Last week: how to work with multiple r.v.s at the same time.

= This week: applying those ideas to study large random
samples



Large random samples

In real data, we will have a set of n measurements on a
variable:
X1, X5,....X,

(leY])’ (X29 YQ,)""’ (Xn’ Yn)

Empirical analyses: sums or means of these n measurements

» Almost all statistical procedures involve a sum/mean.
» What are the properties of these sums and means?
» Can they tell us anything about the distribution of X;?

Asymptotics: what can we learn as n gets big?

Or we might have a set of n measurements on two variables:
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1/ SuMs ana

Means of Random
Variaples



Sums and means are random
variables

= If X; and X, are r.v.s, then X; + X, is a r.v.
» Has a mean E[X; + X;] and a variance V[X| + X, ]
= The sample mean is a function of sums and so it is a r.v. too:

X, + X5

X = >
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Distribution of sums/means

X X X+ X5 X

draw 1
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draw 4 @ @

distribution distribution
of the sum of the mean
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Independent and identical r.v.s

= We often will work with independent and identically
distributed r.v.s, Xi,..., X,

» Random sample of n respondents on a survey question.
» Written “i.i.d."

= Independent: X; 1L X; for all i #j

= Identically distributed: f, (x) is the same for all i

» E[X;] = p forall i
» V[X;] =02 forall i
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Distribution of the sample mean

.. = n
= Sample mean of i.id. rv.s: X, =137 X;
= X, is a random variable, what is its distribution?

» What is the expectation of this distribution, ]_E[}_(n]?
» What is the variance of this distribution, V[X,]7?
» What is the p.d.f. of the distribution?

= How do they relate to the expectation, variance of X;,..., X7
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Properties of the sample mean

Mean and variance of the sample mean

Suppose that X, ..., X, is are i.i.d. r.v.s with E[X;] = u and
V[X;] = o%. Then:

= Key insights:
» Sample mean get the right answer on average
» Variance of X,, depends on the variance of X; and the sample
size
» Not dependent on the (full) distribution of X;!

= Standard error of the sample mean: {V[X,] = J%
= You'll prove both of these facts in this week's HW.
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2/ Useful
Inequalities



Why inequalities?

= Behavior of r.v.s depend on their distribution, but we often
don’t know (or don't want to assume) a distribution.

= Today, we'll discuss results for r.v.s with any distribution
subject to some restrictions like finite variance.

= Why study these?

» Build toward massively important results like LLN
» Inequalities used regularly throughout statistics
» Gives us some practice with proofs/analytic reasoning
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Markov Inequality

Markov Inequality

Suppose that X is r.v. such that P(X = 0) = 1. Then, for every

real number ¢ > 0,
PX>1t) < E[X].

~

= For instance, if we know that E[X] = 1, then
P(X = 100) < 0.01

= Once we know the mean of a r.v., it limits how much
probability can be in the tail.
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Markov Inequality Proof

= For discrete X:

E[X] =) xfx(x) = ) xfx(x) + Y xfx(x)

x<t x>t

= Because X is nonnegative, E[X] >} _, xfx(x)

= Since x > ¢, then Y _ xfxy(x) = Y, tfx(x)

= But thisis just X tfx(x) =t X ., fx(x) =tP(X > 1)
= Implies E[X] > tP(X > 1)

14 /60



Chebyshev Inequality

Chebyshev Inequality

Suppose that X is r.v. for which V[X] < co. Then, for every real

number ¢ > 0,
VI[X]
2

POX - E[X]lz1) <

= The variance places limits on how far an observation can be
from its mean.
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Proof of Chebyshev

= Let ¥ = (X - E[X])?
» ~» P(Y 20) = 1 (nonnegative)
» E[Y] = E[(X - E[X])?] = V[X] (definition of variance)

= Note that if |X — E[X]| > ¢ then Y > % because we just
squared both sides.

= Thus, P(X - E[X]| > 1) = P(Y > 1?)

= Apply Markov's inequality:

P(X -E[X]|=t) =P =¢?) < -
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Application: planning a survey

= Suppose we want to estimate the proportion of voters who will
vote for Donald Trump, p, from a random sample of size n

» X,X,, ..., X, indicating voting intention for Trump for each
respondent.

» By our earlier, calculation, E[X,] = p and V[Y =2
» Since this is a Bernoulli r.v., we have o2 p(l—p)

= What does n need to be to have at least 0.95 probability that
X,, is within 0.02 of the true p?

» How to guarantee a margin of error of + 2 percentage points?
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Application: planning a survey

= What does n have to be so that

P(X, - pl <0.02) 2095 < P(X, —p| > 0.02) <0.05

= Applying Chebyshev:

V[X,] p(l-p)

P(X,, - p| > 0.02) < 0.022 ~ 0.0004n

= We don't know V[X;] = p(1 —p), but:

» Conservative to use largest possible variance.
» It can’t be bigger than p(1 —p) < (1/2) - (1/2) = (1/4)

- p(l-p) 1
P(X, —pl = 0.02) < 55662, = 5.00T6n

= We want this probability to be bounded by 0.05 so we need
(1/0.0016n) < 0.05, which gives us n > 12, 500!!
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Application: planning a survey

= Do we really need n > 12,500 to get a margin of error of +2
percentage points?

= No! Chebyshev provides a bound that is guaranteed to hold,
but actual probabilities are much smaller.

» We're also using the “worst-case” variance of 0.25.

= Let's simulate 1000 samples of size n = 12500 with p = 0.4
and show the distribution of the means.

» What proportion of these are within 0.02 of p?
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Application: planning a survey

nsims <- 1000
holder <- rep(NA, times = nsims)
for (i in 1:nsims) {

this.samp <- rbinom(n = 12500, size = 1, prob = 0.4)
holder[i] <- mean(this.samp)

¥
mean(abs(holder - 0.4) > 0.02)

#H[1] e
80
., 60
5=
2
S 40
[a]
20
0 —_— -—
I T T T 1

-0.03 -0.02 -0.01 0.00 0.01 0.02 0.03



3/ Law of Large
Numbers



Current knowledge

= Fori.id. rvs, Xq,...,X,, with E[X;] = ¢ and V[X;] = 62 we
know that:
> Expectation is E[X,] = E[X;] = u
» Variance is V[X,] = 22 where 02 = V[X;]
» Some bounds on tail probabilities from Chebyshev.
>

None of these rely on a specific distribution for X;!

= Can we say more about the distribution of the sample mean?
= Yes, but we need to think about how X,, changes as n gets big.
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Sequence of sample means

= What can we say about the sample mean n gets large?

= Need to think about sequences of sample means with

increasing n:
)_(1 :XI
X, = (1/2) - (X; +X»)
X3 = (1/3) - (X; + X, + X3)
X, = (1/4) - (X + X, + X5 + Xy)
(1/5) - (X7 + X5 + X3 + X4 + X5)

g
I

Xn = (l/l’l) 0 (Xl +X2 +X3 +X4 +X5+...+Xn)

= Note: this is a sequence of random variables!
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Convergence in Probability

Convergence in probability

A sequence of random variables, Z,,Z,, ..., is said to converge in
probability to a value b if for every £ > 0,

P(Z,-bl > ¢) > 0,

as n —» co. We write this Z, 2.

= Basically: probability that Z, lies outside any (teeny, tiny)
interval around b approaches 0 as n —» oo

= Wooldridge writes plim(Z,) = b if Z, 2 b.
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Law of large numbers

Theorem: Weak Law of Large Numbers

Let X,...,X,, be a an i.i.d. draws from a distribution with mean u
and finite variance 2. Let X,, = £ Y% | X;. Then, X, L

= Intuition: The probability of X, being “far away” from u goes
to 0 as n gets big.

» The distribution of X,, “collapses” on u

= No assumptions about the distribution of X; beyond i.i.d. and
a finite variance!

25 /60



LLN proof

= Proof: by Chebyshev and properties of probabilities, we have

_ Y 2
0<P(X, - pl>e) < Enl _ 0~
g2 ne?

= Asn - oo, we know that ¢2/ng? - 0 which by the sandwich
theorem implies

lim P(X,, — ul > &) =0
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LLN by simulation in R

= Draw different sample sizes from Exponential distribution with
rate 0.5
o & ]E[Xi] =2

nsims <- 10000
holder <- matrix(NA, nrow = nsims, ncol = 6)
for (i in 1:nsims) {

s5 <- rexp(n = 5, rate = 0.5)

s15 <= rexp(n 15, rate = 0.5)

s30 <- rexp(n 30, rate = 0.5)

s100 <- rexp(n = 100, rate = 0.

s1000 <- rexp(n = 1000, rate =

s10000 <- rexp(n = 10000, rate

holder[i, 1] mean(s5)
holder[i, 2] mean(s15)
holder[i, 3] mean (s30)
holder[i, 4] mean(s100)
holder[i, 5] mean(s1000)
holder[i, 6] mean(s10000)




LLN in action

Density
w
]

= Distribution of )_(15
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LLN in action

Density
w
]

= Distribution of )_(30
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LLN in action

Density
w
]

= Distribution of )_(100
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LLN in action

Density

= Distribution of )_(1000
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Properties of convergence in
probability

1. if X, L ¢, then g(X,) LA g(c) for any continuous function g.

2. if X, L aand 7 L b, then

> Xn+Zn£>a+b
> X,Z, 5 ab
> X,/Z, 5 a/bifb>0

= Thus, by LLN:
AR
> log(X,,) > log(p)
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4/ Central Limit
Theorem



Current knowledge

= Fori.id. rvs, X;,...,X,, with E[X;] = ¢ and V[X;] = 62 we
know that:

2

» E[X,] = pand V[X,] =%
» X, converges to u as n gets big
» Chebyshev provides some bounds on probabilities.
» Still no distributional assumptions about X!

= Can we say more?

» Can we approximate Pr(a < X,, < b)?
» What family of distributions (Binomial, Uniform, Gamma,
etc)?

= Again, need to analyze when n is large.
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Convergence in Distribution

Convergence in distribution

Let Z,,Z,, ..., be a sequence of r.v.s, and for n = 1,2, ... let F,(z)
be the c.d.f. of Z,. Then it is said that Z,Z,, ... converges in
distribution to r.v. W with c.d.f. Fy, if

which we write as Z, 4w

= Basically: when n is big, the distribution of Z, is very similar
to the distribution of W

= We use c.d.f.s here to avoid messy details with discrete vs
continuous.

= IfX, 5 X, then X, % X
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Standardizing an r.v.

Common to standardize a r.v. by subtracting its expectation
and dividing by its standard deviation:

7 = X - EiX]
VI[X]

Possible to show that for any X, we have (try to prove these
to yourself):

» E[Z]
» V([Z]

0
1

Sometimes called a z-score.

36 /60



Central Limit Theorem

Central Limit Theorem

Let X,..., X, bei.i.d. r.v.s from a distribution with mean u and
variance 0 < 02 < co. Then,

= Distribution free! We don’t have to make specific assumptions
about the distribution of X;
= Implies that X,, ~ N(u, 0%/n)

» ~+ easy approximations to probability statements about X,
when 7 is big!
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CLT by simulation

set.seed(2138)

nsims <- 10000

holder2 <- matrix(NA, nrow = nsims, ncol = 6)

for (i in 1:nsims) {
s5 <- rbinom(n = 5, size = 1, prob = 0.25)
s15 <- rbinom(n = 15, size = 1, prob = 0.25)
s$30 <- rbinom(n = 30, size = 1, prob = 0.25)
s100 <- rbinom(n = 100, size = 1, prob = 0.25)
s1000 <- rbinom(n = 1000, size = 1, prob = 0.25)
s10000 <- rbinom(n = 10000, size = 1, prob = 0.25)

holder2[i, 1] mean (s5)
holder2[i, 2] mean(s15)
holder2[i, 3] mean(s30)
holder2[i, 4] mean (s100)
holder2[i, 5] mean(s1000)
holder2[i, 6] mean(s10000)




CLT in action

1.2
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CLT in action

1.2

1.0

0.6 —

Density
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« Distribution of X1s=#
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CLT in action

1.2
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0.8
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= Distribution of Xs0-pt
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41/60



CLT in action

1.2
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CLT in action

1.2
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= Distribution of X100

/Y0000
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Empirical Rule for the Normal
Distribution

= If Z~N(0,1), then the following are roughly true:
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Empirical Rule for the Normal
Distribution

[ | | | 1
-4 2 0 2 4

= If Z~N(0,1), then the following are roughly true:
= Roughly 68% of the distribution of Z is between -1 and 1.
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Empirical Rule for the Normal
Distribution

[ I I I 1
-4 ) 0 2 4

= If Z~N(0,1), then the following are roughly true:

= Roughly 68% of the distribution of Z is between -1 and 1.
= Roughly 95% of the distribution of Z is between -2 and 2.
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Empirical Rule for the Normal
Distribution

-4 =) 0 2 4

= If Z~N(0,1), then the following are roughly true:

= Roughly 68% of the distribution of Z is between -1 and 1.

= Roughly 95% of the distribution of Z is between -2 and 2.

= Roughly 99.7% of the distribution of Z is between -3 and 3.
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Simulating the empirical rule

= Actual probability of Z ~ N(0, 1) between -2 and 2:

pnorm(2) - pnorm(-2)

## [1] 0.9545

= Simulated probability of )f]"/?/g between —2 and 2:
n=15~ 0.9683

n =30 ~ 0.9666

n =100 ~~» 0.9523

n = 1000 ~~ 0.9551

n = 10000 ~~ 0.9546

vV V.V v Vv

= Quality of the approximation depends on the underlying
distribution of the X;

» Obviously if X; ~ N(0, 1) it's going to be perfect with n = 1
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Slustsky’s Theorem

= Let X{,X,,... converge in distribution to some r.v. X
= Let Yy,Y,,... converge in probability to some number, ¢
= Slutsky’s Theorem gives the following result:

1. X,Y, converges in distribution to cX
2. X, + Y, converges in distribution to X + ¢

= Extremely useful when trying to figure out what the
large-sample distribution of an estimator is.
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Application: planning a survey

= Trump example: we want the the probability of being within
0.02 from the true p to be 95%.
= ~~ we want n such that:

P (X, —pl > 0.02) < 0.05

By the CLT, if n is large, then
X,-p=N (0, az/n)

= We know o2 < 1/4, so to be conservative:
> )_(n —-p=N (0 L)

> dn -
» Standardizing ~ Z = % =2vn(X,, - p) ~ N(0,1)
n

= Easier to work with standardized r.v.:

P(X, - p| > 0.02) <0.05 < P(Z| > 0.02 x 2vn) < 0.05
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Application: planning a survey

= We want:
P(Z| > 0.04vn) < 0.05
P(Z < -0.04vn) + P(Z > 0.04vn) < 0.05

The standard normal is symmetric around 0, so:

» Upper tail probs = lower tail probs
» P(Z < -0.04Vn) = P(Z > 0.04/n)

= Allow us to simplify:

2xP(Z < -0.04vn) <0.05
P(Z < -0.04vn) < 0.025

= To solve for n, we need to know ¢ such that P(Z < ¢g) = 0.025

» Inverse of the c.d.f. called the quantile: ¢ = F~1(0.025)
» g =F~!(p) is the (smallest) value of the r.v. such that
P(X<q)=F(g) zp
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Application: planning a survey

= We can use the gnorm() function in R:

gnorm(@.025, mean = @, sd = 1)

## [1] -1.96

= if —0.04vn < ¢q, then P (Z < -0.04vn) < 0.025
= So, we need —0.04vn < —1.96 or n > 2401
= Much lower than the 12,500 from Chebyshev.
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Application: planning a survey

nsims <- 1000
holder <- rep(NA, times = nsims)
for (i in 1:nsims) {

this.samp <- rbinom(n = 2401, size = 1, prob = 0.4)
holder[i] <- mean(this.samp)

¥
mean(abs(holder - 0.4) > 0.02)

## [1] 0.052
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5/ More Exotic
CLTs™



CLT for non-iid r.v.s

= What if we don't have i.i.d. r.v.s? Does the CLT still apply?

= Let X;,X,, ... be independent (but not identically distributed)
with means E[X;] = p; and variances V[X;] = o7.

= Scaled and centered:

Y = Z?:] X; - Z?:] Hi
n - 1/2
(Z?:l ‘712)

» No need to divide by n because there are n entries in the sum
Z:l:l Hi
= Easy to show that E[Y,,] =0 and V[Y,] = 1. Does the CLT
apply?
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Liapounov CLT

Liapounov CLT

Suppose that the r.v.s X;, X5, ... are independent and that
E[IX; — p;13] < oo fori = 1,2, .... Also, suppose that

lim Z?:l E [|Xi - ﬂi|3] -0
n—oo 3/2 -
(X1 07)

Then,
n n
_ Zi=1 X - Zi=1 Hi

12
(Z;;l ‘712)

Y, 4 N(©,1)

= Key condition: there isn't one r.v.s in the sequence that is
“too big" that could dominate the sum



CLT for dependent sequences

= We have shown the CLT for i.i.d. and for independent r.v.s.
What about dependent sequences?

= CLT works for a dependent sequence X;,X>, ...
» What does dependent sequence mean? Cov[X;,X;] # 0

= Key condition for dependent CLT: r.v.s aren’t “too correlated”

= Overall conditions for CLT to hold: the sum/mean of many,
not too correlated, not too big r.v.s
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6/ \Wrap-up



Limitations of asymptotics

= These results are practically and theoretically very useful.

= But remember that they are approximations

= We don't live in asymptopia—mn is always finite.

= Asymptotics often give reasonable answers, but you can check
with simulations.
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Review

= Sums and means of r.v.s are themselves r.v.s
= Learned about the distribution of the sample mean of i.i.d.
r.v.s
» Expectation E[X,] = u
» Variance V[X,] = ¢2/n
» Converges in probability to true mean (LLN)
» Converges in distribution to a normal distribution (CLT)

= Ahead: generalizing these ideas to arbitrary estimators of
parameters.

60 /60



	Sums and Means of Random Variables
	Useful Inequalities
	Law of Large Numbers
	Central Limit Theorem
	More Exotic CLTs*
	Wrap-up

