
Gov 2000: 4. Sums, Means,
and Limit Theorems

Matthew Blackwell
Fall 2016

1 / 60
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4. Central Limit Theorem
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Where are we? Where are we
going?

• Probability: formal way to quantify uncertain
outcomes/random variables.

• Last week: how to work with multiple r.v.s at the same time.
• This week: applying those ideas to study large random

samples
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Large random samples

• In real data, we will have a set of 𝑛 measurements on a
variable:

𝑋1, 𝑋2, … , 𝑋𝑛

• Or we might have a set of 𝑛 measurements on two variables:

(𝑋1, 𝑌1), (𝑋2, 𝑌2), … , (𝑋𝑛, 𝑌𝑛)

• Empirical analyses: sums or means of these 𝑛 measurements
▶ Almost all statistical procedures involve a sum/mean.
▶ What are the properties of these sums and means?
▶ Can they tell us anything about the distribution of 𝑋𝑖?

• Asymptotics: what can we learn as 𝑛 gets big?
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1/ Sums and
Means of Random
Variables
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Sums and means are random
variables

• If 𝑋1 and 𝑋2 are r.v.s, then 𝑋1 + 𝑋2 is a r.v.
▶ Has a mean 𝔼[𝑋1 + 𝑋2] and a variance 𝕍[𝑋1 + 𝑋2]

• The sample mean is a function of sums and so it is a r.v. too:

̅𝑋 = 𝑋1 + 𝑋2
2
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Distribution of sums/means

𝑋1 𝑋2 𝑋1 + 𝑋2 ̅𝑋

draw 1 20 71 91 45.5

draw 2 12 66 78 39

draw 3 59 75 134 67

draw 4 3 58 61 30.5

⋮ ⋮ ⋮ ⋮ ⋮
distribution
of the sum

distribution
of the mean
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Independent and identical r.v.s

• We often will work with independent and identically
distributed r.v.s, 𝑋1, … , 𝑋𝑛

▶ Random sample of 𝑛 respondents on a survey question.
▶ Written “i.i.d.”

• Independent: 𝑋𝑖 ⟂⟂ 𝑋𝑗 for all 𝑖 ≠ 𝑗
• Identically distributed: 𝑓𝑋𝑖(𝑥) is the same for all 𝑖

▶ 𝔼[𝑋𝑖] = 𝜇 for all 𝑖
▶ 𝕍[𝑋𝑖] = 𝜎2 for all 𝑖
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Distribution of the sample mean

• Sample mean of i.i.d. r.v.s: 𝑋𝑛 = 1𝑛 ∑𝑛
𝑖=1 𝑋𝑖

• 𝑋𝑛 is a random variable, what is its distribution?
▶ What is the expectation of this distribution, 𝔼[𝑋𝑛]?
▶ What is the variance of this distribution, 𝕍[𝑋𝑛]?
▶ What is the p.d.f. of the distribution?

• How do they relate to the expectation, variance of 𝑋1, … , 𝑋𝑛?
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Properties of the sample mean

Mean and variance of the sample mean
Suppose that 𝑋1, … , 𝑋𝑛 is are i.i.d. r.v.s with 𝔼[𝑋𝑖] = 𝜇 and
𝕍[𝑋𝑖] = 𝜎2. Then:

𝔼[𝑋𝑛] = 𝜇 𝕍[𝑋𝑛] = 𝜎2

𝑛

• Key insights:
▶ Sample mean get the right answer on average
▶ Variance of 𝑋𝑛 depends on the variance of 𝑋𝑖 and the sample

size
▶ Not dependent on the (full) distribution of 𝑋𝑖!

• Standard error of the sample mean: √𝕍[𝑋𝑛] = 𝜎
√𝑛

• You’ll prove both of these facts in this week’s HW.
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2/ Useful
Inequalities
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Why inequalities?

• Behavior of r.v.s depend on their distribution, but we often
don’t know (or don’t want to assume) a distribution.

• Today, we’ll discuss results for r.v.s with any distribution
subject to some restrictions like finite variance.

• Why study these?
▶ Build toward massively important results like LLN
▶ Inequalities used regularly throughout statistics
▶ Gives us some practice with proofs/analytic reasoning
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Markov Inequality

Markov Inequality
Suppose that 𝑋 is r.v. such that ℙ(𝑋 ≥ 0) = 1. Then, for every
real number 𝑡 > 0,

ℙ(𝑋 ≥ 𝑡) ≤ 𝔼[𝑋]
𝑡 .

• For instance, if we know that 𝔼[𝑋] = 1, then
ℙ(𝑋 ≥ 100) ≤ 0.01

• Once we know the mean of a r.v., it limits how much
probability can be in the tail.
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Markov Inequality Proof

• For discrete 𝑋:

𝔼[𝑋] = ∑
𝑥

𝑥𝑓𝑋(𝑥) = ∑
𝑥<𝑡

𝑥𝑓𝑋(𝑥) + ∑
𝑥≥𝑡

𝑥𝑓𝑋(𝑥)

• Because 𝑋 is nonnegative, 𝔼[𝑋] ≥ ∑𝑥≥𝑡 𝑥𝑓𝑋(𝑥)
• Since 𝑥 ≥ 𝑡, then ∑𝑥≥𝑡 𝑥𝑓𝑋(𝑥) ≥ ∑𝑥≥𝑡 𝑡𝑓𝑋(𝑥)
• But this is just ∑𝑥≥𝑡 𝑡𝑓𝑋(𝑥) = 𝑡 ∑𝑥≥𝑡 𝑓𝑋(𝑥) = 𝑡ℙ(𝑋 ≥ 𝑡)
• Implies 𝔼[𝑋] ≥ 𝑡ℙ(𝑋 ≥ 𝑡)
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Chebyshev Inequality

Chebyshev Inequality
Suppose that 𝑋 is r.v. for which 𝕍[𝑋] < ∞. Then, for every real
number 𝑡 > 0,

ℙ(|𝑋 − 𝔼[𝑋]| ≥ 𝑡) ≤ 𝕍[𝑋]
𝑡2 .

• The variance places limits on how far an observation can be
from its mean.
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Proof of Chebyshev

• Let 𝑌 = (𝑋 − 𝔼[𝑋])2

▶ ⇝ ℙ(𝑌 ≥ 0) = 1 (nonnegative)
▶ 𝔼[𝑌] = 𝔼[(𝑋 − 𝔼[𝑋])2] = 𝕍[𝑋] (definition of variance)

• Note that if |𝑋 − 𝔼[𝑋]| ≥ 𝑡 then 𝑌 ≥ 𝑡2 because we just
squared both sides.

• Thus, ℙ(|𝑋 − 𝔼[𝑋]| ≥ 𝑡) = ℙ(𝑌 ≥ 𝑡2)
• Apply Markov’s inequality:

ℙ(|𝑋 − 𝔼[𝑋]| ≥ 𝑡) = ℙ(𝑌 ≥ 𝑡2) ≤ 𝔼[𝑌]
𝑡2 = 𝕍[𝑋]

𝑡2
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Application: planning a survey

• Suppose we want to estimate the proportion of voters who will
vote for Donald Trump, 𝑝, from a random sample of size 𝑛.

▶ 𝑋1, 𝑋2, … , 𝑋𝑛 indicating voting intention for Trump for each
respondent.

▶ By our earlier, calculation, 𝔼[𝑋𝑛] = 𝑝 and 𝕍[𝑋𝑛] = 𝜎2
𝑛

▶ Since this is a Bernoulli r.v., we have 𝜎2 = 𝑝(1 − 𝑝)
• What does 𝑛 need to be to have at least 0.95 probability that

𝑋𝑛 is within 0.02 of the true 𝑝?
▶ How to guarantee a margin of error of ± 2 percentage points?
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Application: planning a survey
• What does 𝑛 have to be so that

ℙ(|𝑋𝑛 − 𝑝| ≤ 0.02) ≥ 0.95 ⟺ ℙ(|𝑋𝑛 − 𝑝| ≥ 0.02) ≤ 0.05

• Applying Chebyshev:

ℙ(|𝑋𝑛 − 𝑝| ≥ 0.02) ≤ 𝕍[𝑋𝑛]
0.022 = 𝑝(1 − 𝑝)

0.0004𝑛

• We don’t know 𝕍[𝑋𝑖] = 𝑝(1 − 𝑝), but:
▶ Conservative to use largest possible variance.
▶ It can’t be bigger than 𝑝(1 − 𝑝) ≤ (1/2) ⋅ (1/2) = (1/4)

ℙ(|𝑋𝑛 − 𝑝| ≥ 0.02) ≤ 𝑝(1 − 𝑝)
0.0004𝑛 ≤ 1

0.0016𝑛

• We want this probability to be bounded by 0.05 so we need
(1/0.0016𝑛) ≤ 0.05, which gives us 𝑛 ≥ 12, 500!!
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Application: planning a survey

• Do we really need 𝑛 ≥ 12, 500 to get a margin of error of ±2
percentage points?

• No! Chebyshev provides a bound that is guaranteed to hold,
but actual probabilities are much smaller.

▶ We’re also using the “worst-case” variance of 0.25.
• Let’s simulate 1000 samples of size 𝑛 = 12500 with 𝑝 = 0.4

and show the distribution of the means.
▶ What proportion of these are within 0.02 of 𝑝?
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Application: planning a survey
nsims <- 1000
holder <- rep(NA, times = nsims)
for (i in 1:nsims) {

this.samp <- rbinom(n = 12500, size = 1, prob = 0.4)
holder[i] <- mean(this.samp)

}
mean(abs(holder - 0.4) > 0.02)

## [1] 0
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3/ Law of Large
Numbers
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Current knowledge

• For i.i.d. r.v.s, 𝑋1, … , 𝑋𝑛, with 𝔼[𝑋𝑖] = 𝜇 and 𝕍[𝑋𝑖] = 𝜎2 we
know that:

▶ Expectation is 𝔼[𝑋𝑛] = 𝔼[𝑋𝑖] = 𝜇
▶ Variance is 𝕍[𝑋𝑛] = 𝜎2

𝑛 where 𝜎2 = 𝕍[𝑋𝑖]
▶ Some bounds on tail probabilities from Chebyshev.
▶ None of these rely on a specific distribution for 𝑋𝑖!

• Can we say more about the distribution of the sample mean?
• Yes, but we need to think about how 𝑋𝑛 changes as 𝑛 gets big.
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Sequence of sample means

• What can we say about the sample mean 𝑛 gets large?
• Need to think about sequences of sample means with

increasing 𝑛:

𝑋1 = 𝑋1

𝑋2 = (1/2) ⋅ (𝑋1 + 𝑋2)
𝑋3 = (1/3) ⋅ (𝑋1 + 𝑋2 + 𝑋3)
𝑋4 = (1/4) ⋅ (𝑋1 + 𝑋2 + 𝑋3 + 𝑋4)
𝑋5 = (1/5) ⋅ (𝑋1 + 𝑋2 + 𝑋3 + 𝑋4 + 𝑋5)

⋮
𝑋𝑛 = (1/𝑛) ⋅ (𝑋1 + 𝑋2 + 𝑋3 + 𝑋4 + 𝑋5 + ⋯ + 𝑋𝑛)

• Note: this is a sequence of random variables!
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Convergence in Probability

Convergence in probability
A sequence of random variables, 𝑍1, 𝑍2, …, is said to converge in
probability to a value 𝑏 if for every 𝜀 > 0,

ℙ(|𝑍𝑛 − 𝑏| > 𝜀) → 0,

as 𝑛 → ∞. We write this 𝑍𝑛
𝑝→ 𝑏.

• Basically: probability that 𝑍𝑛 lies outside any (teeny, tiny)
interval around 𝑏 approaches 0 as 𝑛 → ∞

• Wooldridge writes plim(𝑍𝑛) = 𝑏 if 𝑍𝑛
𝑝→ 𝑏.
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Law of large numbers

Theorem: Weak Law of Large Numbers
Let 𝑋1, … , 𝑋𝑛 be a an i.i.d. draws from a distribution with mean 𝜇
and finite variance 𝜎2. Let 𝑋𝑛 = 1𝑛 ∑𝑛

𝑖=1 𝑋𝑖. Then, 𝑋𝑛
𝑝→ 𝜇.

• Intuition: The probability of 𝑋𝑛 being “far away” from 𝜇 goes
to 0 as 𝑛 gets big.

▶ The distribution of 𝑋𝑛 “collapses” on 𝜇
• No assumptions about the distribution of 𝑋𝑖 beyond i.i.d. and

a finite variance!
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LLN proof

• Proof: by Chebyshev and properties of probabilities, we have

0 ≤ ℙ(|𝑋𝑛 − 𝜇| ≥ 𝜀) ≤ 𝕍[𝑋𝑛]
𝜀2 = 𝜎2

𝑛𝜀2

• As 𝑛 → ∞, we know that 𝜎2/𝑛𝜀2 → 0 which by the sandwich
theorem implies

lim𝑛→∞ ℙ(|𝑋𝑛 − 𝜇| > 𝜀) = 0
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LLN by simulation in R
• Draw different sample sizes from Exponential distribution with

rate 0.5
• ⇝ 𝔼[𝑋𝑖] = 2

nsims <- 10000
holder <- matrix(NA, nrow = nsims, ncol = 6)
for (i in 1:nsims) {

s5 <- rexp(n = 5, rate = 0.5)
s15 <- rexp(n = 15, rate = 0.5)
s30 <- rexp(n = 30, rate = 0.5)
s100 <- rexp(n = 100, rate = 0.5)
s1000 <- rexp(n = 1000, rate = 0.5)
s10000 <- rexp(n = 10000, rate = 0.5)

holder[i, 1] <- mean(s5)
holder[i, 2] <- mean(s15)
holder[i, 3] <- mean(s30)
holder[i, 4] <- mean(s100)
holder[i, 5] <- mean(s1000)
holder[i, 6] <- mean(s10000)

}
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LLN in action
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LLN in action
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LLN in action
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LLN in action
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Properties of convergence in
probability

1. if 𝑋𝑛
𝑝→ 𝑐, then 𝑔(𝑋𝑛) 𝑝→ 𝑔(𝑐) for any continuous function 𝑔.

2. if 𝑋𝑛
𝑝→ 𝑎 and 𝑍𝑛

𝑝→ 𝑏, then
▶ 𝑋𝑛 + 𝑍𝑛

𝑝→ 𝑎 + 𝑏
▶ 𝑋𝑛𝑍𝑛

𝑝→ 𝑎𝑏
▶ 𝑋𝑛/𝑍𝑛

𝑝→ 𝑎/𝑏 if 𝑏 > 0

• Thus, by LLN:
▶ (𝑋𝑛)2 𝑝→ 𝜇2

▶ log(𝑋𝑛) 𝑝→ log(𝜇)
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4/ Central Limit
Theorem
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Current knowledge

• For i.i.d. r.v.s, 𝑋1, … , 𝑋𝑛, with 𝔼[𝑋𝑖] = 𝜇 and 𝕍[𝑋𝑖] = 𝜎2 we
know that:

▶ 𝔼[𝑋𝑛] = 𝜇 and 𝕍[𝑋𝑛] = 𝜎2
𝑛

▶ 𝑋𝑛 converges to 𝜇 as 𝑛 gets big
▶ Chebyshev provides some bounds on probabilities.
▶ Still no distributional assumptions about 𝑋𝑖!

• Can we say more?
▶ Can we approximate Pr(𝑎 < 𝑋𝑛 < 𝑏)?
▶ What family of distributions (Binomial, Uniform, Gamma,

etc)?
• Again, need to analyze when 𝑛 is large.
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Convergence in Distribution

Convergence in distribution
Let 𝑍1, 𝑍2, …, be a sequence of r.v.s, and for 𝑛 = 1, 2, … let 𝐹𝑛(𝑧)
be the c.d.f. of 𝑍𝑛. Then it is said that 𝑍1, 𝑍2, … converges in
distribution to r.v. 𝑊 with c.d.f. 𝐹𝑊 if

lim𝑛→∞ 𝐹𝑛(𝑥) = 𝐹𝑊(𝑥),

which we write as 𝑍𝑛
𝑑→ 𝑊 .

• Basically: when 𝑛 is big, the distribution of 𝑍𝑛 is very similar
to the distribution of 𝑊

• We use c.d.f.s here to avoid messy details with discrete vs
continuous.

• If 𝑋𝑛
𝑝→ 𝑋, then 𝑋𝑛

𝑑→ 𝑋
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Standardizing an r.v.

• Common to standardize a r.v. by subtracting its expectation
and dividing by its standard deviation:

𝑍 = 𝑋 − 𝔼[𝑋]
√𝕍[𝑋]

• Possible to show that for any 𝑋, we have (try to prove these
to yourself):

▶ 𝔼[𝑍] = 0
▶ 𝕍[𝑍] = 1

• Sometimes called a z-score.
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Central Limit Theorem

Central Limit Theorem
Let 𝑋1, … , 𝑋𝑛 be i.i.d. r.v.s from a distribution with mean 𝜇 and
variance 0 < 𝜎2 < ∞. Then,

𝑋𝑛 − 𝜇
𝜎/√𝑛

𝑑→ 𝑁(0, 1).

• Distribution free! We don’t have to make specific assumptions
about the distribution of 𝑋𝑖

• Implies that 𝑋𝑛 ∼ 𝑁(𝜇, 𝜎2/𝑛)
▶ ⇝ easy approximations to probability statements about 𝑋𝑛
when 𝑛 is big!
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CLT by simulation in R

set.seed(2138)
nsims <- 10000
holder2 <- matrix(NA, nrow = nsims, ncol = 6)
for (i in 1:nsims) {

s5 <- rbinom(n = 5, size = 1, prob = 0.25)
s15 <- rbinom(n = 15, size = 1, prob = 0.25)
s30 <- rbinom(n = 30, size = 1, prob = 0.25)
s100 <- rbinom(n = 100, size = 1, prob = 0.25)
s1000 <- rbinom(n = 1000, size = 1, prob = 0.25)
s10000 <- rbinom(n = 10000, size = 1, prob = 0.25)

holder2[i, 1] <- mean(s5)
holder2[i, 2] <- mean(s15)
holder2[i, 3] <- mean(s30)
holder2[i, 4] <- mean(s100)
holder2[i, 5] <- mean(s1000)
holder2[i, 6] <- mean(s10000)

}
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CLT in action
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CLT in action
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CLT in action
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CLT in action
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CLT in action
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Empirical Rule for the Normal
Distribution

-4 -2 0 2 4

• If 𝑍 ∼ 𝑁(0, 1), then the following are roughly true:
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Empirical Rule for the Normal
Distribution

-4 -2 0 2 4

0.68

• If 𝑍 ∼ 𝑁(0, 1), then the following are roughly true:
• Roughly 68% of the distribution of 𝑍 is between -1 and 1.
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Empirical Rule for the Normal
Distribution

-4 -2 0 2 4

0.95

• If 𝑍 ∼ 𝑁(0, 1), then the following are roughly true:
• Roughly 68% of the distribution of 𝑍 is between -1 and 1.
• Roughly 95% of the distribution of 𝑍 is between -2 and 2.
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Empirical Rule for the Normal
Distribution

-4 -2 0 2 4

0.997

• If 𝑍 ∼ 𝑁(0, 1), then the following are roughly true:
• Roughly 68% of the distribution of 𝑍 is between -1 and 1.
• Roughly 95% of the distribution of 𝑍 is between -2 and 2.
• Roughly 99.7% of the distribution of 𝑍 is between -3 and 3.
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Simulating the empirical rule
• Actual probability of 𝑍 ∼ 𝑁(0, 1) between −2 and 2:

pnorm(2) - pnorm(-2)

## [1] 0.9545

• Simulated probability of 𝑋𝑛−𝜇
𝜎/√𝑛 between −2 and 2:

▶ 𝑛 = 15⇝ 0.9683
▶ 𝑛 = 30⇝ 0.9666
▶ 𝑛 = 100⇝ 0.9523
▶ 𝑛 = 1000⇝ 0.9551
▶ 𝑛 = 10000⇝ 0.9546

• Quality of the approximation depends on the underlying
distribution of the 𝑋𝑖

▶ Obviously if 𝑋𝑖 ∼ 𝑁(0, 1) it’s going to be perfect with 𝑛 = 1
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Slustsky’s Theorem

• Let 𝑋1, 𝑋2, … converge in distribution to some r.v. 𝑋
• Let 𝑌1, 𝑌2, … converge in probability to some number, 𝑐
• Slutsky’s Theorem gives the following result:

1. 𝑋𝑛𝑌𝑛 converges in distribution to 𝑐𝑋
2. 𝑋𝑛 + 𝑌𝑛 converges in distribution to 𝑋 + 𝑐

• Extremely useful when trying to figure out what the
large-sample distribution of an estimator is.
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Application: planning a survey
• Trump example: we want the the probability of being within

0.02 from the true 𝑝 to be 95%.
• ⇝ we want 𝑛 such that:

ℙ(|𝑋𝑛 − 𝑝| > 0.02) ≤ 0.05
• By the CLT, if 𝑛 is large, then

𝑋𝑛 − 𝑝 ≈ 𝑁 (0, 𝜎2/𝑛)
• We know 𝜎2 ≤ 1/4, so to be conservative:

▶ 𝑋𝑛 − 𝑝 ≈ 𝑁 (0, 1
4𝑛)

▶ Standardizing ⇝ 𝑍 = (𝑋𝑛−𝑝)
1/√4𝑛

= 2√𝑛(𝑋𝑛 − 𝑝) ≈ 𝑁(0, 1)

• Easier to work with standardized r.v.:

ℙ(|𝑋𝑛 − 𝑝| > 0.02) ≤ 0.05 ⟺ ℙ(|𝑍| > 0.02 × 2√𝑛) ≤ 0.05
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Application: planning a survey
• We want:

ℙ(|𝑍| > 0.04√𝑛) ≤ 0.05
ℙ(𝑍 < −0.04√𝑛) + ℙ(𝑍 > 0.04√𝑛) ≤ 0.05

• The standard normal is symmetric around 0, so:
▶ Upper tail probs = lower tail probs
▶ ℙ(𝑍 < −0.04√𝑛) = ℙ(𝑍 > 0.04√𝑛)

• Allow us to simplify:
2 × ℙ(𝑍 < −0.04√𝑛) ≤ 0.05

ℙ(𝑍 < −0.04√𝑛) ≤ 0.025

• To solve for 𝑛, we need to know 𝑞 such that ℙ(𝑍 ≤ 𝑞) = 0.025
▶ Inverse of the c.d.f. called the quantile: 𝑞 = 𝐹−1(0.025)
▶ 𝑞 = 𝐹−1(𝑝) is the (smallest) value of the r.v. such that

ℙ(𝑋 ≤ 𝑞) = 𝐹(𝑞) ≥ 𝑝
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Application: planning a survey

• We can use the qnorm() function in R:

qnorm(0.025, mean = 0, sd = 1)

## [1] -1.96

• if −0.04√𝑛 ≤ 𝑞, then ℙ (𝑍 < −0.04√𝑛) ≤ 0.025
• So, we need −0.04√𝑛 ≤ −1.96 or 𝑛 > 2401
• Much lower than the 12,500 from Chebyshev.
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Application: planning a survey
nsims <- 1000
holder <- rep(NA, times = nsims)
for (i in 1:nsims) {

this.samp <- rbinom(n = 2401, size = 1, prob = 0.4)
holder[i] <- mean(this.samp)

}
mean(abs(holder - 0.4) > 0.02)

## [1] 0.052
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5/ More Exotic
CLTs*
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CLT for non-iid r.v.s

• What if we don’t have i.i.d. r.v.s? Does the CLT still apply?
• Let 𝑋1, 𝑋2, … be independent (but not identically distributed)

with means 𝔼[𝑋𝑖] = 𝜇𝑖 and variances 𝕍[𝑋𝑖] = 𝜎2
𝑖 .

• Scaled and centered:

𝑌𝑛 = ∑𝑛
𝑖=1 𝑋𝑖 − ∑𝑛

𝑖=1 𝜇𝑖

(∑𝑛
𝑖=1 𝜎2

𝑖 )1/2

▶ No need to divide by 𝑛 because there are 𝑛 entries in the sum
∑𝑛

𝑖=1 𝜇𝑖

• Easy to show that 𝔼[𝑌𝑛] = 0 and 𝕍[𝑌𝑛] = 1. Does the CLT
apply?
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Liapounov CLT

Liapounov CLT
Suppose that the r.v.s 𝑋1, 𝑋2, … are independent and that
𝔼[|𝑋𝑖 − 𝜇𝑖|3] < ∞ for 𝑖 = 1, 2, …. Also, suppose that

lim𝑛→∞
∑𝑛

𝑖=1 𝔼 [|𝑋𝑖 − 𝜇𝑖|3]
(∑𝑛

𝑖=1 𝜎2
𝑖 )3/2 = 0.

Then,
𝑌𝑛 = ∑𝑛

𝑖=1 𝑋𝑖 − ∑𝑛
𝑖=1 𝜇𝑖

(∑𝑛
𝑖=1 𝜎2

𝑖 )1/2
𝑑→ 𝑁(0, 1)

• Key condition: there isn’t one r.v.s in the sequence that is
“too big” that could dominate the sum
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CLT for dependent sequences

• We have shown the CLT for i.i.d. and for independent r.v.s.
What about dependent sequences?

• CLT works for a dependent sequence 𝑋1, 𝑋2, ….
▶ What does dependent sequence mean? Cov[𝑋𝑖, 𝑋𝑗] ≠ 0

• Key condition for dependent CLT: r.v.s aren’t “too correlated”
• Overall conditions for CLT to hold: the sum/mean of many,

not too correlated, not too big r.v.s
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6/ Wrap-up
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Limitations of asymptotics

• These results are practically and theoretically very useful.
• But remember that they are approximations
• We don’t live in asymptopia—𝑛 is always finite.
• Asymptotics often give reasonable answers, but you can check

with simulations.
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Review

• Sums and means of r.v.s are themselves r.v.s
• Learned about the distribution of the sample mean of i.i.d.

r.v.s
▶ Expectation 𝔼[𝑋𝑛] = 𝜇
▶ Variance 𝕍[𝑋𝑛] = 𝜎2/𝑛
▶ Converges in probability to true mean (LLN)
▶ Converges in distribution to a normal distribution (CLT)

• Ahead: generalizing these ideas to arbitrary estimators of
parameters.
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