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Where are we? Where are we

going?

= Distributions of one variable: how to describe and summarize
uncertainty about one variable.

= Today: distributions of multiple variables to describe
relationships between variables.

= Later: use data to learn about probability distributions.



Why multiple random variables?
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1. How do we summarize the relationship between two variables,
X and Y?

2. What if we have many observations of the same variable,
X, X5,...,X,?



1/ Distributions of
Multiple Random

Variaples



Joint distributions
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= The joint distribution of two r.v.s, X and Y, describes what
pairs of observations, (x,y) are more likely than others.

» Settler mortality (X) and GDP per capita () for the same
country.

= Shape of the joint distribution now includes the relationship
between X and Y

6

57



Discrete r.v.s

Joint probability mass function

The joint p.m.f. of a pair of discrete r.v.s, (X, Y) describes the
probability of any pair of values:

fX,Y(-x’y) = P(X =X,Y :y)

= Properties of a joint p.m.f.:

» fx.y(x,y) =0 (probabilities can't be negative)
DI nyX’Y(x,y) =1 (something must happen)
» Y. is shorthand for sum over all possible values of X
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Example: Gay marriage and gender

Favor Gay Oppose Gay
Marriage Marriage

Y=1 Y=0
Female X =1 0.3 0.21
Male X =0 0.22 0.27

= Joint p.m.f. can be summarized in a cross-tab:

» Each cell is the probability of that combination, fx y (x,y)

= Probability that we randomly select a woman who favors gay
marriage?

fxy(L)=PX=1Y=1) =03



Marginal distributions

= Often need to figure out the distribution of just one of the
r.v.s

» Called the marginal distribution in this context.

= Computing marginals from the joint p.m.f.:
fr) =P =y) =) fyyxy)

= Intuition: sum over the probability that ¥ =y for all possible
values of x

» Works because these are mutually exclusive events that
partition the space of X
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Example: marginals for gay

marriage
Favor Gay Oppose Gay
Marriage Marriage | Marginal
Y=1 Y=0
Female X =1 0.3 0.21 0.51
Male X =0 0.22 0.27 0.49
Marginal 0.52 0.48

= What's the fy (1) = P(Y = 1)7?

» Probability that a man favors gay marriage plus the probability
that a woman favors gay marriage.

fy(l) :fX,Y(l’ 1) +fX,Y(0’ l) = 03 ar 022 = 052

= Works for all marginals.
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Continuous r.v.s

= We will focus on getting the probability of being in some
subset of the 2-dimensional plane.
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Continuous joint p.d.f.

Continuous joint distribution

Two continuous r.v.s X and Y have a continuous joint distribution
if there is a nonnegative function fy y (x,y) such that for any
subset A of the xy-plane,

P(X,Y)€d) = [[ _ fey(xy)dxdy.

* fx.y(x,y) is the joint probability density function.

= Joint p.d.f. must meet the following conditions:

1. fx.y(x,y) =0 for all values of (x,y), (nonnegative)
2. [T 7 fxy(x,y)dxdy = 1, (probabilities “sum” to 1)

= P(X =x,Y =y) =0 for similar reasons as with single r.v.s.

{(x,y) : fx.y(x,y) >0} is called the support of the distribution.



Joint densities are 3D
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= X and Y axes are on the “floor,” height is the value of
fX,Y(x’y)'
= Remember fx y(x,y) # P(X =x,Y = ).

13 /57



Probability = volume

-4 —T 0.00

= P((X,Y) €A) = ﬂ‘(x,y)eAfX,Y(x,y)dxdy
= Probability = volume above a specific region.
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Working with joint p.d.f.s

= Suppose we have the following form of a joint p.d.f.:

c(x+y) forO<x<2and0<y<?2
fX,Y(x’y):

0 otherwise

= What does ¢ have to be for this to be a valid p.d.f.?
= foo foo fx,y(x,y)dxdy

f f c(x +y)dxdy

2 x2 =2
@ fo (7 ar .Xy)

dy
2
c fo (2 +2y)dy

x=0

(2cy + cy2)|(2) =8¢

= Thus to be a valid p.d.f.,, ¢ = 1/8
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Example continuous distribution
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forO<x<2and0<y<?2

otherwise
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Continuous marginal distributions

= We can recover the marginal PDF of one of the variables by
integrating over the distribution of the other variable:

) = [ fry(nyadx

= Works for either variable:

fx(@x) = f_o:ofx,y(x,Y)dy
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Visualizing continuous marginals

= Marginal integrates (sums, basically) over other r.v.:

fr(y) = f_O;fX,Y(X,y)dx
= Pile up/flatten all of the joint density onto a single dimension.
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Deriving continuous marginals

(x+y)/8 forO<x<2and0<y<?2
fX,Y(xsy) =

0 otherwise

= Let's calculate the marginals for this p.d.f.:

= By symmetry we have the same for y:

fr =@+1)/4
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Joint c.d.f.s

Joint cumulative distribution function
For two r.v.s X and Y, the joint cumulative distribution function or
joint c.d.f. Fyx y(x,y) is a function such that for finite values x and

y1
Fyyxy =PX <x,Y<y).

0% Fx y(x.y)
dxdy

= Deriving c.d.f. from p.d.f: Fx y(x,y) = [°_[*_fx.y(r,s)drds

= Deriving p.d.f. from c.d.f.: fx y(x,y) =
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2/ Properties of
Joint Distributions



Properties of joint distributions

= Single r.v.: summarized fy (x) with E[X] and V[X]

= With 2 r.v.s, we can additionally measure how strong the
dependence is between the variables.

= First: expectations over joint distributions and independence
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Expectations over multiple r.v.s

= 2-d LOTUS: take expectations over the joint distribution.
= With discrete X and Y:

E[g(X.Y)] = Z ; g6,y fie.y (%)
= With continuous X and Y:
ElgX, V)] = [ [ 806y fiy(x.y)dxdy
= Marginal expectations:
E[Y] = Z ;)’fx,y(x,y)

= Example: expectation of the product:

EIXY]=) ) xyfyy(xy)
Xy
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Marginal expectations from joint

(x+y)/8 forO<x<2and0<y<?2
fX,Y(xsy) =

0 otherwise

= Marginal expectation of Y:
2 02 1
E[Y] = [ [ ygx +ydxdy
(] dxd
—foy o g\ tyldxdy

= [Pyip+
—foyz(y+ )dy
2

0
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Independence

Independence

Two r.v.s Y and X are independent (which we write X 1L Y) if for
all sets A and B:

PXeAYeB) =PXeAPY €B).

= Knowing the value of X gives us no information about the
value of Y.

= If X and Y are independent, then:

> fx.y (x,y) = fx(X)fy (y) (joint is the product of marginals)

» Fxy(x,y) = Fx(x)Fy(y)

» h(X) L g(Y) for any functions A() and g() (functions of
independent r.v.s are independent)
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Key properties of independent r.v.s

= Theorem If X and Y are independent r.v.s, then
E[XY] = E[X]E[Y].

= Proof for discrete X and Y:

E[XY] = ZnyfX’Y(x,y)
x Y
= sz)’fx(x)f)’()’)

(i) ()
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Why independence?

= Independence assumptions are everywhere in theoretical and
applied statistics.

» Each response in a poll is considered independent of all other
responses.

» In a randomized control trial, treatment assignment is
independent of background characteristics.

= Lack of independence is a blessing or a curse:

» Two variables not independent ~~ potentially interesting
relationship.

> In observational studies, treatment assignment is usually not
independent of background characteristics.
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Covariance

= |f two variables are not independent, how do we measure the
strength of their dependence?

» Covariance
» Correlation

= Covariance: how do two r.v.s vary together?

» How often do high values of X occur with high values of Y7
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Defining covariance

= |f two variables are not independent, how do we measure the
strength of their dependence?

Covariance
The covariance between two r.v.s, X and Y is defined as:

Cov[X, Y] = B[(X - E[X])(Y - E[Y])]

= How often do high values of X occur with high values of Y7
= Properties of covariances:

» Cov[X,Y] = E[XY] - E[X]E[Y]

» IfX LY,

Cov[X,Y] = E[XY] - E[X]E[Y]
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Covariance intuition
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Covariance intuition

4 9 Y>E[Y] E[X] %> E[Y]
X < E[X] X > E[X]
2 —
> 0
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4 4 X<E[X] X > E[X]
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= Large values of X tend to occur with large values of Y:
» (X -E[X])(Y -E[Y]) = (pos. num.) x (pos. num) = +

= Small values of X tend to occur with small values of Y:
» (X - E[X])(Y - E[Y]) = (neg. num.) x (neg. num) = +

= |f these dominate ~~ positive covariance.
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Covariance intuition

4 5 Y >E[Y] E[X] Y > E[Y]

X < E[X] X > E[X]
2 —

> 0 ° E[Y]

_2 -

Y < E[Y] Y < E[Y]

4 4 X<E[X] X > E[X]

[ | | |

-4 -2 0 2 4

= Large values of X tend to occur with small values of Y:
» (X -E[X])(Y-E[Y]) = (pos. num.) x (neg. num) = —
= Small values of X tend to occur with large values of Y:
» (X -E[X])(Y-E[Y]) = (neg. num.) x (pos. num) = —
= |f these dominate ~~ negative covariance.
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Covariance from joint p.d.f.

= Using our running example of fy y(x,y) = (x +y)/8
= From earlier: E[X] = E[Y] =7/6
= Expectation of the product:

E[XY] = f f xy8(x+y)dxdy

—f fo = (x2y + xy?)dxdy

si=2

2 (x3y x2y2)
Sl Al | S
0(2 1 9
_r2(y ¥
‘o(3+4)dy
(P e\ iz, 24
et 2)|, 737373

= Covariance:

2
Cov[X,Y] = E[XY] - E[X]E[Y] = %‘ - (%) -
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Zero covariance doesn’t imply
independence

= We saw that X 1L Y ~~» Cov[X, Y] =0.

= Does Cov[X,Y] =0 imply that X1.Y? No!

= Counterexample: X € {-1,0, 1} with equal probability and
Y = X2

= Covariance is a measure of linear dependence, so it can miss
non-linear dependence.
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Properties of variances and
covariances

= Properties of covariances:

1. Cov[aX + b,cY +d] = acCov[X, Y].
2. Cov[X,X] = V[X]

= Properties of variances that we can state now that we know
covariance:

1. V[aX +bY +c] = a®>V[X] + b2V [Y] + 2abCov[X, Y]
2. If X and Y independent, V[X + Y] = V[X] + V[Y].
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Using properties of covariance

= Rescale our running example: Z =2X, W = 2Y.
= What's the covariance of (Z, W)?

» Ugh, let’s avoid more integrals.

= Use properties of covariances:

Cov[Z, W] = Cov[2X,2Y] = 2 x 2 x Cov[X, Y] = —é
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Correlation

= Covariance is not scale-free: Cov[2X,Y] = 2Cov[X, Y]

» ~~ hard to compare covriances across different r.v.s
> Is a relationship stronger? Or just do to rescaling?

= Correlation is a scale-free measure of linear dependence.

Correlation
The correlation between two r.v.s X and Y is defined as:

Cov[X,Y]

p=pXY)= ——e—ex
VVIXIV[Y]

= Covariance after dividing out the scales of the respective
variables.
= Correlation properties:
» —1<p<1
» if [p(X,Y)| =1, then X and Y are perfectly correlated with a
deterministic linear relationship: Y = a + bX.



3/ Conditional
Distributions



Conditional distributions

= Conditional distribution: distribution of Y if we know X = x.

Conditional probability mass function
The conditional probability mass function or conditional p.m.f. of
Y conditional on X is

_PX=xY=y) fxy&xy
Srix (kx) = P(X = x) T )

= |ntuitive definition:

Probability that X =x and Y =y
Probability that X = x

fy\x(ypf) =

= This is a valid univariate probability distribution!
> frx(ylx) =0 and 3 fyx (ylx) =1
= If X 1L Y then fyx(ylx) = fy(y) (conditional is the marginal)
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Example: conditionals for gay
marriage

Favor Gay Oppose Gay
Marriage Marriage | Marginal
Y=1 Y=0
Female X =1 0.3 0.21 0.51
Male X =0 0.22 0.27 0.49
Marginal 0.52 0.48

= Probability of favoring gay marriage conditional on being a
man?

_P(X=0,Y=1 0.22

frx =1 =0)=—p 57 “o0m+027 - %
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Example: conditionals for gay
marriage

Men Women

1.0 1.0
o o
S 0.8 S 0.8
a a
T 0.6 T 0.6
5 5
5 04 5 04
2 2
8 0.2 8 0.2

0.0 0.0

0 1 0 1
Gay marriage support (Y) Gay marriage support (Y)

= Two values of X ~~ two univariate conditional distribution of Y
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Continuous conditional
distributions

Conditional probability density function

The conditional p.d.f. of a continuous random variable is

_ fX,Y(-xsy)
fY|X(y|x) = fxT

assuming that fy (x) > 0.

= Implies
b
Pla<Y <blX =x) = [ frxOdy.

= Based on the definition of the conditional p.m.f./p.d.f., we
have the following factorization:

Sy (6, )) = fyix (V1) fx (x)
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Conditional distributions as slices

= frixlxo) is the conditional p.d.f. of ¥ when X = x,

= fyix(¥lxg) is proportional to joint p.d.f. along xq: fx y (y,Xo)
= Normalize by dividing by fx (xg) to ensure proper p.d.f.
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Continuous conditional example

= Using our running example of fy y(x,y) = (x +y)/8
= Earlier we calculated fy(x) = (x + 1)/4
= Calculate conditional:

fxy(x.y)
fx(x)
_ (x+y)/8

C(x+1)/4
xX+y

2(x+ 1)

Srix kx) =

= Remember the limits: 0 <y < 2, 0 otherwise
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Conditional Independence

Conditional independence
Two r.v.s X and Y are conditionally independent given Z (written
X 1 Y7Z)if

Fxyiz(%,¥12) = fxiz (x|2)fyiz (¥12).

= X and Y are independent within levels of Z.
= Massively important for regression, causal inference.
= Example:

» X = swimming accidents, ¥ = number of ice cream cones sold.

> In general, dependent.
» Conditional on Z = temperature, independent.
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Summarizing conditional
distributions

f(yl0) >< iyl

-4 -2 0 2 4

= Conditional distributions are also univariate distribution and
so we can summarize them with its mean and variance.

= Gives us insight into a key question:

» How does the mean of Y change as we change X7
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Defining condition expectations

Conditional expectation
The conditional expectation of ¥ conditional on X = x is:

nynx(ylx) discrete Y
E[¥Yx=x]={ 7
f_oo yfyx(ylx)dy  continuous Y

= Intuition: exactly the same definition of the expected value
with fyx (vlx) in place of fy (y)

= The expected value of the (univariate) conditional distribution.

= This is a function of x!
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Calculating conditional

expectations
Favor Gay Oppose Gay
Marriage Marriage | Marginal
Y=1 Y=0
Female X =1 0.3 0.21 0.51
Male X =0 0.22 0.27 0.49
Marginal 0.52 0.48

= What's the conditional expectation of support for gay
marriage Y given someone is a man X = 07

E[YX = 0] =) yfyx(ix =0)
y

=0xf(y=0x=0)+1xf(y=1x=0)
0.22

*022+027

- 0.44

=1
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Conditional expectations are
random variables

= For a particular x, E[Y|X = x] is a number.

= But X takes on many possible values with uncertainty
~ E[Y|X] takes on many possible values with uncertainty.

~~ Conditional expectations are random variables!

= Binary X:

E[Y|X = 0] with prob. P(X =0)

E[Y|X] =
L¥ix] {IE[YIX = 1] with prob. P(X = 1)

= Has an expectation, E[E[Y|X]], and a variance, V[E[Y|X]].
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Law of iterated expectations

= Average/mean of the conditional expectations: E[E[Y|X]].

» Can we connect this to the marginal (overall) expectation?

= Theorem (The Law of Iterated Expectations): If the
expectation exist and for discrete X,

E[(Y] = E [E[Y|X]] Z]E YIX = x|y (x
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Example: law of iterated

expectations
Favor Gay Oppose Gay
Marriage Marriage | Marginal
Y=1 Y=0
Female X =1 0.3 0.21 0.51
Male X =0 0.22 0.27 0.49
Marginal 0.52 0.48 1

« E[YIX = 1] =0.59 and E[Y|X = 0] = 0.44.
= fx(1) = 0.51 (females) and fx (0) = 0.49 (males).
= Plug into the iterated expectations:
E[E[YIX]] = E[YIX = 0]fx(0) + E[YIX = 1]fx (1)
=0.44 x 0.49 + 0.59 x 0.51
=0.52 = E[Y]
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Properties of conditional
expectations

1. E[c(X)|X] = ¢(X) for any function ¢(X).
» Example: E[X?|X] = X? (If we know X, then we also know X?)

2. If X and Y are independent r.v.s, then
E[Y|X =x] = E[Y].
3. If X 1L Y|Z, then

E(Y|X =x,Z =z] = E[Y|Z = z].
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Conditional Variance

Conditional expectation

The conditional variance of a Y given X = x is defined as:

VIYIX =x] = E[(Y - E[YIX = x])2X = x|

= Conditional variance describes the spread of the conditional
distribution around the conditional expectation.

= Usual variance formula applied to conditional distribution.

= Using LOTUS:

» Discrete Y:
VIYIX =x] =) (y - BIYIX = x])2fyx (yl)
y

» Continuous Y:

VYIX =x] = fy (y - E[YIX = x])fyx () dy

55

57



Conditional variance is a random
variable

= Again, V[Y|X] is a random variable and a function of X, just
like E[Y|X]. With a binary X:

V[Y|X =0] with prob. P(X =0)

VIYIX] =
[ {V[Y|X =1] with prob. P(X =1)
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Law of total variance

= We can also relate the marginal variance to the conditional
variance and the conditional expectation.
= Theorem (Law of Total Variance/EVE's law):

VY] = E[V[YIX]] + V[E[Y|X]]

= The total variance can be decomposed into:

1. the average of the within group variance (E[V[Y]X]]) and
2. how much the average varies between groups (V[E[Y|X]]).
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4/ \Nrap-up



Review

= Multiple r.v.s require joint p.m.f.s and joint p.d.f.s

= Multiple r.v.s can have distributions that exhibit dependence
as measured by covariance and correlation.

= The conditional expectation of one variable on the other is an
important quantity that we'll see over and over again.
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