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Where are we? Where are we
going?

• Distributions of one variable: how to describe and summarize
uncertainty about one variable.

• Today: distributions of multiple variables to describe
relationships between variables.

• Later: use data to learn about probability distributions.
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Why multiple random variables?
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1. How do we summarize the relationship between two variables,
𝑋 and 𝑌?

2. What if we have many observations of the same variable,
𝑋1, 𝑋2, … , 𝑋𝑛?
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1/ Distributions of
Multiple Random
Variables
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Joint distributions
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• The joint distribution of two r.v.s, 𝑋 and 𝑌 , describes what
pairs of observations, (𝑥, 𝑦) are more likely than others.

▶ Settler mortality (𝑋) and GDP per capita (𝑌) for the same
country.

• Shape of the joint distribution now includes the relationship
between 𝑋 and 𝑌
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Discrete r.v.s

Joint probability mass function
The joint p.m.f. of a pair of discrete r.v.s, (𝑋, 𝑌) describes the
probability of any pair of values:

𝑓𝑋,𝑌 (𝑥, 𝑦) = ℙ(𝑋 = 𝑥, 𝑌 = 𝑦)

• Properties of a joint p.m.f.:
▶ 𝑓𝑋,𝑌 (𝑥, 𝑦) ≥ 0 (probabilities can’t be negative)
▶ ∑𝑥 ∑𝑦 𝑓𝑋,𝑌 (𝑥, 𝑦) = 1 (something must happen)
▶ ∑𝑥 is shorthand for sum over all possible values of 𝑋
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Example: Gay marriage and gender

Favor Gay Oppose Gay
Marriage Marriage

𝑌 = 1 𝑌 = 0
Female 𝑋 = 1 0.3 0.21

Male 𝑋 = 0 0.22 0.27

• Joint p.m.f. can be summarized in a cross-tab:
▶ Each cell is the probability of that combination, 𝑓𝑋,𝑌 (𝑥, 𝑦)

• Probability that we randomly select a woman who favors gay
marriage?

𝑓𝑋,𝑌 (1, 1) = ℙ(𝑋 = 1, 𝑌 = 1) = 0.3
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Marginal distributions

• Often need to figure out the distribution of just one of the
r.v.s

▶ Called the marginal distribution in this context.
• Computing marginals from the joint p.m.f.:

𝑓𝑌 (𝑦) = ℙ(𝑌 = 𝑦) = ∑
𝑥

𝑓𝑋,𝑌 (𝑥, 𝑦)

• Intuition: sum over the probability that 𝑌 = 𝑦 for all possible
values of 𝑥

▶ Works because these are mutually exclusive events that
partition the space of 𝑋
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Example: marginals for gay
marriage

Favor Gay Oppose Gay
Marriage Marriage Marginal

𝑌 = 1 𝑌 = 0
Female 𝑋 = 1 0.3 0.21 0.51

Male 𝑋 = 0 0.22 0.27 0.49
Marginal 0.52 0.48

• What’s the 𝑓𝑌 (1) = ℙ(𝑌 = 1)?
▶ Probability that a man favors gay marriage plus the probability

that a woman favors gay marriage.

𝑓𝑌 (1) = 𝑓𝑋,𝑌 (1, 1) + 𝑓𝑋,𝑌 (0, 1) = 0.3 + 0.22 = 0.52

• Works for all marginals.
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Continuous r.v.s

𝑋

𝑌
𝐴

• We will focus on getting the probability of being in some
subset of the 2-dimensional plane.
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Continuous joint p.d.f.

Continuous joint distribution
Two continuous r.v.s 𝑋 and 𝑌 have a continuous joint distribution
if there is a nonnegative function 𝑓𝑋,𝑌 (𝑥, 𝑦) such that for any
subset 𝐴 of the 𝑥𝑦-plane,

ℙ((𝑋, 𝑌) ∈ 𝐴) = ∬(𝑥,𝑦)∈𝐴 𝑓𝑋,𝑌 (𝑥, 𝑦)𝑑𝑥𝑑𝑦.

• 𝑓𝑋,𝑌 (𝑥, 𝑦) is the joint probability density function.
• {(𝑥, 𝑦) ∶ 𝑓𝑋,𝑌 (𝑥, 𝑦) > 0} is called the support of the distribution.
• Joint p.d.f. must meet the following conditions:

1. 𝑓𝑋,𝑌 (𝑥, 𝑦) ≥ 0 for all values of (𝑥, 𝑦), (nonnegative)
2. ∫∞

−∞ ∫∞
−∞ 𝑓𝑋,𝑌 (𝑥, 𝑦)𝑑𝑥𝑑𝑦 = 1, (probabilities “sum” to 1)

• ℙ(𝑋 = 𝑥, 𝑌 = 𝑦) = 0 for similar reasons as with single r.v.s.
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Joint densities are 3D
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• 𝑋 and 𝑌 axes are on the “floor,” height is the value of
𝑓𝑋,𝑌 (𝑥, 𝑦).

• Remember 𝑓𝑋,𝑌 (𝑥, 𝑦) ≠ ℙ(𝑋 = 𝑥, 𝑌 = 𝑦).
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Probability = volume
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• ℙ((𝑋, 𝑌) ∈ 𝐴) = ∬(𝑥,𝑦)∈𝐴 𝑓𝑋,𝑌 (𝑥, 𝑦)𝑑𝑥𝑑𝑦
• Probability = volume above a specific region.
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Working with joint p.d.f.s
• Suppose we have the following form of a joint p.d.f.:

𝑓𝑋,𝑌 (𝑥, 𝑦) =
⎧{
⎨{⎩
𝑐(𝑥 + 𝑦) for 0 < 𝑥 < 2 and 0 < 𝑦 < 2
0 otherwise

• What does 𝑐 have to be for this to be a valid p.d.f.?

1 = ∫∞
−∞ ∫∞

−∞ 𝑓𝑋,𝑌 (𝑥, 𝑦)𝑑𝑥𝑑𝑦

= ∫2
0 ∫2

0 𝑐(𝑥 + 𝑦)𝑑𝑥𝑑𝑦

= 𝑐 ∫2
0 (𝑥2

2 + 𝑥𝑦)∣
𝑥=2

𝑥=0
𝑑𝑦

= 𝑐 ∫2
0 (2 + 2𝑦)𝑑𝑦

= (2𝑐𝑦 + 𝑐𝑦2)∣20 = 8𝑐

• Thus to be a valid p.d.f., 𝑐 = 1/8
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Example continuous distribution
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𝑓𝑋,𝑌 (𝑥, 𝑦) =
⎧{
⎨{⎩
(𝑥 + 𝑦)/8 for 0 < 𝑥 < 2 and 0 < 𝑦 < 2
0 otherwise
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Continuous marginal distributions

• We can recover the marginal PDF of one of the variables by
integrating over the distribution of the other variable:

𝑓𝑌 (𝑦) = ∫∞
−∞ 𝑓𝑋,𝑌 (𝑥, 𝑦)𝑑𝑥

• Works for either variable:

𝑓𝑋(𝑥) = ∫∞
−∞ 𝑓𝑋,𝑌 (𝑥, 𝑦)𝑑𝑦
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Visualizing continuous marginals
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• Marginal integrates (sums, basically) over other r.v.:
𝑓𝑌 (𝑦) = ∫∞

−∞ 𝑓𝑋,𝑌 (𝑥, 𝑦)𝑑𝑥
• Pile up/flatten all of the joint density onto a single dimension.
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Deriving continuous marginals

𝑓𝑋,𝑌 (𝑥, 𝑦) =
⎧{
⎨{⎩
(𝑥 + 𝑦)/8 for 0 < 𝑥 < 2 and 0 < 𝑦 < 2
0 otherwise

• Let’s calculate the marginals for this p.d.f.:

𝑓𝑋(𝑥) = ∫2
0

1
8(𝑥 + 𝑦)𝑑𝑦

= (𝑥𝑦
8 + 𝑦2

16)∣
𝑦=2

𝑦=0

= 𝑥
4 + 1

4 = 𝑥 + 1
4

• By symmetry we have the same for 𝑦:

𝑓𝑌 (𝑦) = (𝑦 + 1)/4
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Joint c.d.f.s

Joint cumulative distribution function
For two r.v.s 𝑋 and 𝑌 , the joint cumulative distribution function or
joint c.d.f. 𝐹𝑋,𝑌 (𝑥, 𝑦) is a function such that for finite values 𝑥 and
𝑦,

𝐹𝑋,𝑌 (𝑥, 𝑦) = ℙ(𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦).

• Deriving p.d.f. from c.d.f.: 𝑓𝑋,𝑌 (𝑥, 𝑦) = 𝜕2𝐹𝑋,𝑌 (𝑥,𝑦)
𝜕𝑥𝜕𝑦

• Deriving c.d.f. from p.d.f: 𝐹𝑋,𝑌 (𝑥, 𝑦) = ∫𝑦
−∞ ∫𝑥

−∞ 𝑓𝑋,𝑌 (𝑟, 𝑠)𝑑𝑟𝑑𝑠
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2/ Properties of
Joint Distributions
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Properties of joint distributions

• Single r.v.: summarized 𝑓𝑋(𝑥) with 𝔼[𝑋] and 𝕍[𝑋]
• With 2 r.v.s, we can additionally measure how strong the

dependence is between the variables.
• First: expectations over joint distributions and independence
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Expectations over multiple r.v.s
• 2-d LOTUS: take expectations over the joint distribution.
• With discrete 𝑋 and 𝑌 :

𝔼[𝑔(𝑋, 𝑌)] = ∑
𝑥

∑
𝑦

𝑔(𝑥, 𝑦) 𝑓𝑋,𝑌 (𝑥, 𝑦)

• With continuous 𝑋 and 𝑌 :

𝔼[𝑔(𝑋, 𝑌)] = ∫𝑥 ∫𝑦 𝑔(𝑥, 𝑦) 𝑓𝑋,𝑌 (𝑥, 𝑦)𝑑𝑥𝑑𝑦

• Marginal expectations:

𝔼[𝑌] = ∑
𝑥

∑
𝑦

𝑦 𝑓𝑋,𝑌 (𝑥, 𝑦)

• Example: expectation of the product:

𝔼[𝑋𝑌] = ∑
𝑥

∑
𝑦

𝑥𝑦 𝑓𝑋,𝑌 (𝑥, 𝑦)
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Marginal expectations from joint

𝑓𝑋,𝑌 (𝑥, 𝑦) =
⎧{
⎨{⎩
(𝑥 + 𝑦)/8 for 0 < 𝑥 < 2 and 0 < 𝑦 < 2
0 otherwise

• Marginal expectation of 𝑌 :

𝔼[𝑌] = ∫2
0 ∫2

0 𝑦1
8(𝑥 + 𝑦)𝑑𝑥𝑑𝑦

= ∫2
0 𝑦 ∫2

0
1
8(𝑥 + 𝑦)𝑑𝑥𝑑𝑦

= ∫2
0 𝑦1

4(𝑦 + 1)𝑑𝑦

= ( 𝑦3

12 + 𝑦2

8 )∣
2

0

= 2
3 + 1

2 = 7
6

• By symmetry, 𝔼[𝑋] = 𝔼[𝑌] = 7/6
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Independence

Independence
Two r.v.s 𝑌 and 𝑋 are independent (which we write 𝑋 ⟂⟂ 𝑌) if for
all sets 𝐴 and 𝐵:

ℙ(𝑋 ∈ 𝐴, 𝑌 ∈ 𝐵) = ℙ(𝑋 ∈ 𝐴)ℙ(𝑌 ∈ 𝐵).

• Knowing the value of 𝑋 gives us no information about the
value of 𝑌 .

• If 𝑋 and 𝑌 are independent, then:
▶ 𝑓𝑋,𝑌 (𝑥, 𝑦) = 𝑓𝑋(𝑥)𝑓𝑌 (𝑦) (joint is the product of marginals)
▶ 𝐹𝑋,𝑌 (𝑥, 𝑦) = 𝐹𝑋(𝑥)𝐹𝑌 (𝑦)
▶ ℎ(𝑋) ⟂⟂ 𝑔(𝑌) for any functions ℎ() and 𝑔() (functions of

independent r.v.s are independent)

25 / 57



Key properties of independent r.v.s

• Theorem If 𝑋 and 𝑌 are independent r.v.s, then

𝔼[𝑋𝑌] = 𝔼[𝑋]𝔼[𝑌].

• Proof for discrete 𝑋 and 𝑌 :

𝔼[𝑋𝑌] = ∑
𝑥

∑
𝑦

𝑥𝑦 𝑓𝑋,𝑌 (𝑥, 𝑦)

= ∑
𝑥

∑
𝑦

𝑥𝑦 𝑓𝑋(𝑥)𝑓𝑌 (𝑦)

= (∑
𝑥

𝑥 𝑓𝑋(𝑥)) ⎛⎜
⎝

∑
𝑦

𝑦 𝑓𝑌 (𝑦)⎞⎟
⎠

= 𝔼[𝑋]𝔼[𝑌]
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Why independence?

• Independence assumptions are everywhere in theoretical and
applied statistics.

▶ Each response in a poll is considered independent of all other
responses.

▶ In a randomized control trial, treatment assignment is
independent of background characteristics.

• Lack of independence is a blessing or a curse:
▶ Two variables not independent ⇝ potentially interesting

relationship.
▶ In observational studies, treatment assignment is usually not

independent of background characteristics.
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Covariance

• If two variables are not independent, how do we measure the
strength of their dependence?

▶ Covariance
▶ Correlation

• Covariance: how do two r.v.s vary together?
▶ How often do high values of 𝑋 occur with high values of 𝑌?
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Defining covariance
• If two variables are not independent, how do we measure the

strength of their dependence?

Covariance
The covariance between two r.v.s, 𝑋 and 𝑌 is defined as:

Cov[𝑋, 𝑌] = 𝔼[(𝑋 − 𝔼[𝑋])(𝑌 − 𝔼[𝑌])]

• How often do high values of 𝑋 occur with high values of 𝑌?
• Properties of covariances:

▶ Cov[𝑋, 𝑌] = 𝔼[𝑋𝑌] − 𝔼[𝑋]𝔼[𝑌]
▶ If 𝑋 ⟂⟂ 𝑌 ,

Cov[𝑋, 𝑌] = 𝔼[𝑋𝑌] − 𝔼[𝑋]𝔼[𝑌]
= 𝔼[𝑋]𝔼[𝑌] − 𝔼[𝑋]𝔼[𝑌] = 0
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Covariance intuition
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Covariance intuition
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Y > E[Y]
X > E[X]

Y > E[Y]
X < E[X]

Y < E[Y]
X < E[X]

Y < E[Y]
X > E[X]

• Large values of 𝑋 tend to occur with large values of 𝑌 :
▶ (𝑋 − 𝔼[𝑋])(𝑌 − 𝔼[𝑌]) = (pos. num.) × (pos. num) = +

• Small values of 𝑋 tend to occur with small values of 𝑌 :
▶ (𝑋 − 𝔼[𝑋])(𝑌 − 𝔼[𝑌]) = (neg. num.) × (neg. num) = +

• If these dominate ⇝ positive covariance.
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Covariance intuition
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• Large values of 𝑋 tend to occur with small values of 𝑌 :
▶ (𝑋 − 𝔼[𝑋])(𝑌 − 𝔼[𝑌]) = (pos. num.) × (neg. num) = −

• Small values of 𝑋 tend to occur with large values of 𝑌 :
▶ (𝑋 − 𝔼[𝑋])(𝑌 − 𝔼[𝑌]) = (neg. num.) × (pos. num) = −

• If these dominate ⇝ negative covariance.
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Covariance from joint p.d.f.
• Using our running example of 𝑓𝑋,𝑌 (𝑥, 𝑦) = (𝑥 + 𝑦)/8
• From earlier: 𝔼[𝑋] = 𝔼[𝑌] = 7/6
• Expectation of the product:

𝔼[𝑋𝑌] = ∫2
0 ∫2

0 𝑥𝑦1
8(𝑥 + 𝑦)𝑑𝑥𝑑𝑦

= ∫2
0 ∫2

0
1
8(𝑥2𝑦 + 𝑥𝑦2)𝑑𝑥𝑑𝑦

= ∫2
0 (𝑥3𝑦

24 + 𝑥2𝑦2

16 )∣
𝑥=2

𝑥=0
𝑑𝑦

= ∫2
0 (𝑦

3 + 𝑦2

4 ) 𝑑𝑦

= (𝑦2

6 + 𝑦3

12)∣
2

0
= 2

3 + 2
3 = 4

3
• Covariance:

Cov[𝑋, 𝑌] = 𝔼[𝑋𝑌] − 𝔼[𝑋]𝔼[𝑌] = 4
3 − (7

6)
2

= − 1
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Zero covariance doesn’t imply
independence

• We saw that 𝑋 ⟂⟂ 𝑌 ⇝ Cov[𝑋, 𝑌] = 0.
• Does Cov[𝑋, 𝑌] = 0 imply that 𝑋⟂⟂𝑌? No!
• Counterexample: 𝑋 ∈ {−1, 0, 1} with equal probability and

𝑌 = 𝑋2.
• Covariance is a measure of linear dependence, so it can miss

non-linear dependence.
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Properties of variances and
covariances

• Properties of covariances:

1. Cov[𝑎𝑋 + 𝑏, 𝑐𝑌 + 𝑑] = 𝑎𝑐Cov[𝑋, 𝑌].
2. Cov[𝑋, 𝑋] = 𝕍[𝑋]

• Properties of variances that we can state now that we know
covariance:

1. 𝕍[𝑎𝑋 + 𝑏𝑌 + 𝑐] = 𝑎2𝕍[𝑋] + 𝑏2𝕍[𝑌] + 2𝑎𝑏Cov[𝑋, 𝑌]
2. If 𝑋 and 𝑌 independent, 𝕍[𝑋 + 𝑌] = 𝕍[𝑋] + 𝕍[𝑌].
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Using properties of covariance

• Rescale our running example: 𝑍 = 2𝑋, 𝑊 = 2𝑌 .
• What’s the covariance of (𝑍, 𝑊)?

▶ Ugh, let’s avoid more integrals.
• Use properties of covariances:

Cov[𝑍, 𝑊] = Cov[2𝑋, 2𝑌] = 2 × 2 × Cov[𝑋, 𝑌] = −1
9
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Correlation
• Covariance is not scale-free: Cov[2𝑋, 𝑌] = 2Cov[𝑋, 𝑌]

▶ ⇝ hard to compare covriances across different r.v.s
▶ Is a relationship stronger? Or just do to rescaling?

• Correlation is a scale-free measure of linear dependence.

Correlation
The correlation between two r.v.s 𝑋 and 𝑌 is defined as:

𝜌 = 𝜌(𝑋, 𝑌) = Cov[𝑋, 𝑌]
√𝕍[𝑋]𝕍[𝑌]

• Covariance after dividing out the scales of the respective
variables.

• Correlation properties:
▶ −1 ≤ 𝜌 ≤ 1
▶ if |𝜌(𝑋, 𝑌)| = 1, then 𝑋 and 𝑌 are perfectly correlated with a

deterministic linear relationship: 𝑌 = 𝑎 + 𝑏𝑋.
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3/ Conditional
Distributions
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Conditional distributions
• Conditional distribution: distribution of 𝑌 if we know 𝑋 = 𝑥.

Conditional probability mass function
The conditional probability mass function or conditional p.m.f. of
𝑌 conditional on 𝑋 is

𝑓𝑌|𝑋(𝑦|𝑥) = ℙ(𝑋 = 𝑥, 𝑌 = 𝑦)
ℙ(𝑋 = 𝑥) = 𝑓𝑋,𝑌 (𝑥, 𝑦)

𝑓𝑋(𝑥)

• Intuitive definition:

𝑓𝑌|𝑋(𝑦|𝑥) = Probability that 𝑋 = 𝑥 and 𝑌 = 𝑦
Probability that 𝑋 = 𝑥

• This is a valid univariate probability distribution!
▶ 𝑓𝑌|𝑋(𝑦|𝑥) ≥ 0 and ∑𝑦 𝑓𝑌|𝑋(𝑦|𝑥) = 1

• If 𝑋 ⟂⟂ 𝑌 then 𝑓𝑌|𝑋(𝑦|𝑥) = 𝑓𝑌 (𝑦) (conditional is the marginal)
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Example: conditionals for gay
marriage

Favor Gay Oppose Gay
Marriage Marriage Marginal

𝑌 = 1 𝑌 = 0
Female 𝑋 = 1 0.3 0.21 0.51

Male 𝑋 = 0 0.22 0.27 0.49
Marginal 0.52 0.48

• Probability of favoring gay marriage conditional on being a
man?

𝑓𝑌|𝑋(𝑦 = 1|𝑥 = 0) = ℙ(𝑋 = 0, 𝑌 = 1)
ℙ(𝑋 = 0) = 0.22

0.22 + 0.27 = 0.44
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Example: conditionals for gay
marriage
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• Two values of 𝑋 ⇝ two univariate conditional distribution of 𝑌
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Continuous conditional
distributions

Conditional probability density function
The conditional p.d.f. of a continuous random variable is

𝑓𝑌|𝑋(𝑦|𝑥) = 𝑓𝑋,𝑌 (𝑥, 𝑦)
𝑓𝑋(𝑥)

assuming that 𝑓𝑋(𝑥) > 0.

• Implies
ℙ(𝑎 < 𝑌 < 𝑏|𝑋 = 𝑥) = ∫𝑏

𝑎 𝑓𝑌|𝑋(𝑦|𝑥)𝑑𝑦.
• Based on the definition of the conditional p.m.f./p.d.f., we

have the following factorization:

𝑓𝑋,𝑌 (𝑥, 𝑦) = 𝑓𝑌|𝑋(𝑦|𝑥)𝑓𝑋(𝑥)
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Conditional distributions as slices

• 𝑓𝑌|𝑋(𝑦|𝑥0) is the conditional p.d.f. of 𝑌 when 𝑋 = 𝑥0
• 𝑓𝑌|𝑋(𝑦|𝑥0) is proportional to joint p.d.f. along 𝑥0: 𝑓𝑋,𝑌 (𝑦, 𝑥0)
• Normalize by dividing by 𝑓𝑋(𝑥0) to ensure proper p.d.f.
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Continuous conditional example

• Using our running example of 𝑓𝑋,𝑌 (𝑥, 𝑦) = (𝑥 + 𝑦)/8
• Earlier we calculated 𝑓𝑋(𝑥) = (𝑥 + 1)/4
• Calculate conditional:

𝑓𝑌|𝑋(𝑦|𝑥) = 𝑓𝑋,𝑌 (𝑥, 𝑦)
𝑓𝑋(𝑥)

= (𝑥 + 𝑦)/8
(𝑥 + 1)/4

= 𝑥 + 𝑦
2(𝑥 + 1)

• Remember the limits: 0 < 𝑦 < 2, 0 otherwise
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Conditional Independence

Conditional independence
Two r.v.s 𝑋 and 𝑌 are conditionally independent given 𝑍 (written
𝑋 ⟂⟂ 𝑌|𝑍) if

𝑓𝑋,𝑌|𝑍(𝑥, 𝑦|𝑧) = 𝑓𝑋|𝑍(𝑥|𝑧)𝑓𝑌|𝑍(𝑦|𝑧).

• 𝑋 and 𝑌 are independent within levels of 𝑍.
• Massively important for regression, causal inference.
• Example:

▶ 𝑋 = swimming accidents, 𝑌 = number of ice cream cones sold.
▶ In general, dependent.
▶ Conditional on 𝑍 = temperature, independent.

45 / 57



Summarizing conditional
distributions

-4 -2 0 2 4

y

f(y|0) f(y|1)

• Conditional distributions are also univariate distribution and
so we can summarize them with its mean and variance.

• Gives us insight into a key question:
▶ How does the mean of 𝑌 change as we change 𝑋?

46 / 57



Defining condition expectations

Conditional expectation
The conditional expectation of 𝑌 conditional on 𝑋 = 𝑥 is:

𝔼[𝑌|𝑋 = 𝑥] =
⎧{{
⎨{{⎩

∑
𝑦

𝑦 𝑓𝑌|𝑋(𝑦|𝑥) discrete 𝑌

∫∞
−∞ 𝑦 𝑓𝑌|𝑋(𝑦|𝑥)𝑑𝑦 continuous 𝑌

• Intuition: exactly the same definition of the expected value
with 𝑓𝑌|𝑋(𝑦|𝑥) in place of 𝑓𝑌 (𝑦)

• The expected value of the (univariate) conditional distribution.
• This is a function of 𝑥!
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Calculating conditional
expectations

Favor Gay Oppose Gay
Marriage Marriage Marginal

𝑌 = 1 𝑌 = 0
Female 𝑋 = 1 0.3 0.21 0.51

Male 𝑋 = 0 0.22 0.27 0.49
Marginal 0.52 0.48

• What’s the conditional expectation of support for gay
marriage 𝑌 given someone is a man 𝑋 = 0?

𝔼[𝑌|𝑋 = 0] = ∑
𝑦

𝑦 𝑓𝑌|𝑋(𝑦|𝑥 = 0)

= 0 × 𝑓 (𝑦 = 0|𝑥 = 0) + 1 × 𝑓 (𝑦 = 1|𝑥 = 0)

= 1 × 0.22
0.22 + 0.27

= 0.44
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Conditional expectations are
random variables

• For a particular 𝑥, 𝔼[𝑌|𝑋 = 𝑥] is a number.
• But 𝑋 takes on many possible values with uncertainty
⇝ 𝔼[𝑌|𝑋] takes on many possible values with uncertainty.

• ⇝ Conditional expectations are random variables!
• Binary 𝑋:

𝔼[𝑌|𝑋] =
⎧{
⎨{⎩
𝔼[𝑌|𝑋 = 0] with prob. ℙ(𝑋 = 0)
𝔼[𝑌|𝑋 = 1] with prob. ℙ(𝑋 = 1)

• Has an expectation, 𝔼[𝔼[𝑌|𝑋]], and a variance, 𝕍[𝔼[𝑌|𝑋]].
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Law of iterated expectations

• Average/mean of the conditional expectations: 𝔼[𝔼[𝑌|𝑋]].
▶ Can we connect this to the marginal (overall) expectation?

• Theorem (The Law of Iterated Expectations): If the
expectation exist and for discrete 𝑋,

𝔼[𝑌] = 𝔼 [𝔼[𝑌|𝑋]] = ∑
𝑥

𝔼[𝑌|𝑋 = 𝑥]𝑓𝑋(𝑥)
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Example: law of iterated
expectations

Favor Gay Oppose Gay
Marriage Marriage Marginal

𝑌 = 1 𝑌 = 0
Female 𝑋 = 1 0.3 0.21 0.51

Male 𝑋 = 0 0.22 0.27 0.49
Marginal 0.52 0.48 1

• 𝔼[𝑌|𝑋 = 1] = 0.59 and 𝔼[𝑌|𝑋 = 0] = 0.44.
• 𝑓𝑋(1) = 0.51 (females) and 𝑓𝑋(0) = 0.49 (males).
• Plug into the iterated expectations:

𝔼[𝔼[𝑌|𝑋]] = 𝔼[𝑌|𝑋 = 0]𝑓𝑋(0) + 𝔼[𝑌|𝑋 = 1]𝑓𝑋(1)
= 0.44 × 0.49 + 0.59 × 0.51
= 0.52 = 𝔼[𝑌]
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Properties of conditional
expectations

1. 𝔼[𝑐(𝑋)|𝑋] = 𝑐(𝑋) for any function 𝑐(𝑋).
▶ Example: 𝔼[𝑋2|𝑋] = 𝑋2 (If we know 𝑋, then we also know 𝑋2)

2. If 𝑋 and 𝑌 are independent r.v.s, then

𝔼[𝑌|𝑋 = 𝑥] = 𝔼[𝑌].

3. If 𝑋 ⟂⟂ 𝑌|𝑍, then

𝔼[𝑌|𝑋 = 𝑥, 𝑍 = 𝑧] = 𝔼[𝑌|𝑍 = 𝑧].
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Conditional Variance
Conditional expectation
The conditional variance of a 𝑌 given 𝑋 = 𝑥 is defined as:

𝕍[𝑌|𝑋 = 𝑥] = 𝔼 [(𝑌 − 𝔼[𝑌|𝑋 = 𝑥])2|𝑋 = 𝑥]

• Conditional variance describes the spread of the conditional
distribution around the conditional expectation.

• Usual variance formula applied to conditional distribution.
• Using LOTUS:

▶ Discrete 𝑌 :

𝕍[𝑌|𝑋 = 𝑥] = ∑
𝑦

(𝑦 − 𝔼[𝑌|𝑋 = 𝑥])2𝑓𝑌|𝑋(𝑦|𝑥)

▶ Continuous 𝑌 :

𝕍[𝑌|𝑋 = 𝑥] = ∫𝑦(𝑦 − 𝔼[𝑌|𝑋 = 𝑥])2𝑓𝑌|𝑋(𝑦|𝑥)𝑑𝑦
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Conditional variance is a random
variable

• Again, 𝕍[𝑌|𝑋] is a random variable and a function of 𝑋, just
like 𝔼[𝑌|𝑋]. With a binary 𝑋:

𝕍[𝑌|𝑋] =
⎧{
⎨{⎩
𝕍[𝑌|𝑋 = 0] with prob. ℙ(𝑋 = 0)
𝕍[𝑌|𝑋 = 1] with prob. ℙ(𝑋 = 1)
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Law of total variance

• We can also relate the marginal variance to the conditional
variance and the conditional expectation.

• Theorem (Law of Total Variance/EVE’s law):

𝕍[𝑌] = 𝔼[𝕍[𝑌|𝑋]] + 𝕍[𝔼[𝑌|𝑋]]

• The total variance can be decomposed into:
1. the average of the within group variance (𝔼[𝕍[𝑌|𝑋]]) and
2. how much the average varies between groups (𝕍[𝔼[𝑌|𝑋]]).
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4/ Wrap-up
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Review

• Multiple r.v.s require joint p.m.f.s and joint p.d.f.s
• Multiple r.v.s can have distributions that exhibit dependence

as measured by covariance and correlation.
• The conditional expectation of one variable on the other is an

important quantity that we’ll see over and over again.
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