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Readings



What is association?

I Let’s take two variables, an outcome, Yi , and a treatment (or
assignment/action), Ai .

I As a running example, let’s use whether or not an incumbent
candidate goes negative during the campaign as the treatment
and the incumbent’s share of the two party vote as the
outcome.

I If Yi and Ai are independent : Y ⊥⊥ A.
Pr[Y = 1|A = 1] = Pr[Y = 1|A = 0].

I If the variables are not independent, we say they are dependent
or associated: Pr[Y = 1|A = 1] 6= Pr[Y = 1|A = 0].

I Associations between variables, very famously, are not
necessarily due to causation.

I Is there a relationship between the number of swimming
accidents on a given day and the total sales of ice cream cones
on that day? Yes. Is that relationship causal? probably not.
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Potential outcomes

I Yi(a = 1) or Yi(1) is value that Y would take if the incumbet
went negative.

I Yi(a = 0) or Yi(0) is the outcome when the incumbent stays
positive.

I For each unit, we observe one of these two possible potential
outcomes. We can never observe both of the potential
outcomes for the same unit. This is called the fundamental
problem of causal inference.

I Here we have assumed that the treatment is binary, but we
could generalize the potential outcomes to be a function of any
value, Yi(a), where a can take any possible value.
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Consistency/SUTVA

I We need some way of connecting these potential outcomes to
the observed outcomes.

I We will do this with a consistency assumption. This is what
epidemiologists call it. Economists and statisticians call the
“stable unit treatment value assumption”.

Yi(a) = Yi if Ai = a

I Two key points here:

1. No interference between units.
2. Variation in the treatment is irrelevant.
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Ai Yi Yi(0) Yi(1)
0 .63 .63 ?
0 .52 .52 ?
0 .55 .55 ?
0 .47 .47 ?
1 .49 ? .49
1 .51 ? .51
1 .43 ? .43
1 .52 ? .52



Estimands

I Suppose there are a population of units, i = 1, . . . ,N.

I Individual causal effect (ICE):

τi = Yi(1)− Yi(0)

I Average treatment effect (ATE):

τ = E [τi ] =
1
N

N∑
i=1

Yi(1)− Yi(0)
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I Conditional average treatment effect (CATE) for a
subpopulation:

τ(x) = E [τi |Xi = x ] = 1
Nx

∑
i :Xi=x

Yi(1)− Yi(0),

where Nx is the number of units in the subpopulation.

I Average treatment effect on the treated (ATT):

τATT = E [τi |Ai = 1] = 1
Nt

∑
i :Ai=1

Yi(1)− Yi(0),

where Nt =
∑

i Ai .
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What is identification?

I If I gave you the entire population, so there is no sampling
variation, could you estimate this quantity?

I Nonparametric identification means that we could estimate
the parameter without placing any parametric models on the
distribution of the data.

I Parametric identification generally refers to the situation
where the estimand is identified under a certain parametric
model for the distribution of the data, but is not identified
otherwise.

I A Heckman selection model is parametrically identified because
estimating the causal effect in that case relies on the
parametric assumption of normaly distributed errors.
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Key to causal inference

I Data + assumptions = causal inference

I “What’s your identification strategy?” = what are the
assumptions that allow you to claim you’ve estimated a causal
effect?

I Estimation method (regression, matching, weighting, 2SLS,
3SLS, SEM, GMM, GEE, dynamic panel, etc) are secondary to
the identification assumptions.
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What is the selection problem?

I Start with prima facie effect, which is just the difference in
means between those who take a treatment and those who do
not.

E [Yi |Ai = 1]− E [Yi |Ai = 0] = E [Yi(1)|Ai = 1]− E [Yi(0)|Ai = 0]

= E [Yi(1)|Ai = 1]− E [Yi(0)|Ai = 1]
+ E [Yi(0)|Ai = 1]− E [Yi(0)|Ai = 0]

I The second line here is the average treatment effect on the
treated

I The third line is what we call selection bias.
I Because of the selection bias, without further assumptions we

say that the ATT is unidentified.
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Randomization solves the selection problem
I Randomizing the treatment means that the treated group is a

random sample from the population and the in-sample mean is
equal to overall mean:

E [Yi(0)|Ai = 0] = E [Yi(0)] = E [Yi(0)|Ai = 1]

I Being a random sample, we know that those included in the
sample are the same, on average, as those not included in the
sample on any measure.

I Specifically, randomization implies ignorability, which means
the potential outcomes are independent of the treatments. We
write ignorability like this:

(Yi(1),Yi(0)) ⊥⊥ Ai

I This is not the same as the treatment being independent of the
observed outcomes (Yi ⊥⊥ Ai).
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I How does randomization help indentify the causal effect? It
ensures that there is no selection bias Note that, because of
ingorability:

E [Yi(0)|Ai = 1]− E [Yi(0)|Ai = 0] = E [Yi(0)]− E [Yi(0)] = 0

I Plugging this in above gives us:

E [Yi |Ai = 1]− E [Yi |Ai = 0] = E [Yi(1)|Ai = 1]− E [Yi(0)|Ai = 1] + 0
= E [Yi(1)]− E [Yi(0)] = τ

I Thus, the ATE is nonparametrically identified: no matter what
assumptions we make about the distribution of Y , we can
always estimate it with the difference in means.
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Samples versus Populations

I Above we defined all of the estimands in terms of the
population. The ATE, τATE was the average over the
population, {1, . . . ,N}. Same with the ATT.

I Sometimes instead of making inference about a population, we
would rather make inference about the sample that we actually
observed.

I This might make more sense in a lot of political science, where
we don’t have a larger super population in mind. This is similar
to the arguments made about Bayesian inference.
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I Suppose that we have a sample, S, of units, i = 1, . . . , n where
nt of the units are treated.

I For this, we can define the sample average treatment effect
(SATE) as the in-sample average of the potential outcomes:

SATE = τS =
1
n
∑
i∈S

Yi(1)− Yi(0)

I The SATE is the in-sample version of the ATE (which we
sometimes call the PATE to distinguish it from the SATE) and
for any given sample, won’t equal the PATE.

I SATE varies over samples from the population. What’s this
distribution called?
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I If we are ignore the population here and condition on the
sample, why is there any uncertainty in our estimate of the
SATE? There is uncertainty in how the treatment was assigned.

I The usual difference in means estimator can consistently
estimate both the ATE and SATE, but the variance of that
estimator is smaller when estimating the SATE. This makes
sense as we are treating the sample as fixed, so that variation
doesn’t enter into the sampling distribution.

I Unfortunately, it is usually impossible to estimate the variance
of the sampling distribution for the SATE, but we know it’s
smaller than the variance for the ATE, so we can use that as a
conservative estimator.
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Observational studies and confounding

I An observational study is a study where the researcher does
not control the treatment assignment.

I No guarantee that the treatment and control groups are
comparable.

I Need to justify our claims by assumption and by theory instead
of by direct manipulation.
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Selection on observables

I If ignorability doesn’t hold by default, then what can we do?

I Find a set of covariates such that, conditional on those
covariates, the treatment is “as-if” randomized. Plausible?

I Basically, it says that selection into treatment is based only on
observable data, X . Or, more specifically,

Y (a) ⊥⊥ A|X

I There are many names for this assumption and they vary by
discipline. It is “selection on the observables” in economics,
“no unmeasured confounders” in epidemiology, “exchangability”
or “ingorability” in statistics, and “no omitted variables” in
political science.

I How can we figure out if ignorability holds in some case?
Untestable, but can infer from other assumptions. . .



Selection on observables

I If ignorability doesn’t hold by default, then what can we do?
I Find a set of covariates such that, conditional on those

covariates, the treatment is “as-if” randomized. Plausible?

I Basically, it says that selection into treatment is based only on
observable data, X . Or, more specifically,

Y (a) ⊥⊥ A|X

I There are many names for this assumption and they vary by
discipline. It is “selection on the observables” in economics,
“no unmeasured confounders” in epidemiology, “exchangability”
or “ingorability” in statistics, and “no omitted variables” in
political science.

I How can we figure out if ignorability holds in some case?
Untestable, but can infer from other assumptions. . .



Selection on observables

I If ignorability doesn’t hold by default, then what can we do?
I Find a set of covariates such that, conditional on those

covariates, the treatment is “as-if” randomized. Plausible?
I Basically, it says that selection into treatment is based only on

observable data, X . Or, more specifically,

Y (a) ⊥⊥ A|X

I There are many names for this assumption and they vary by
discipline. It is “selection on the observables” in economics,
“no unmeasured confounders” in epidemiology, “exchangability”
or “ingorability” in statistics, and “no omitted variables” in
political science.

I How can we figure out if ignorability holds in some case?
Untestable, but can infer from other assumptions. . .



Selection on observables

I If ignorability doesn’t hold by default, then what can we do?
I Find a set of covariates such that, conditional on those

covariates, the treatment is “as-if” randomized. Plausible?
I Basically, it says that selection into treatment is based only on

observable data, X . Or, more specifically,

Y (a) ⊥⊥ A|X

I There are many names for this assumption and they vary by
discipline. It is “selection on the observables” in economics,
“no unmeasured confounders” in epidemiology, “exchangability”
or “ingorability” in statistics, and “no omitted variables” in
political science.

I How can we figure out if ignorability holds in some case?
Untestable, but can infer from other assumptions. . .



Selection on observables

I If ignorability doesn’t hold by default, then what can we do?
I Find a set of covariates such that, conditional on those

covariates, the treatment is “as-if” randomized. Plausible?
I Basically, it says that selection into treatment is based only on

observable data, X . Or, more specifically,

Y (a) ⊥⊥ A|X

I There are many names for this assumption and they vary by
discipline. It is “selection on the observables” in economics,
“no unmeasured confounders” in epidemiology, “exchangability”
or “ingorability” in statistics, and “no omitted variables” in
political science.

I How can we figure out if ignorability holds in some case?
Untestable, but can infer from other assumptions. . .



DAGs
I We can encode assumptions about causal relationships in what

are called causal Directed Acyclic Graphs or DAGs. Here is an
example:

A

X

Y

I Each arrow represents the presence of a direct causal effect
(that is, an individual causal effect as above). The lack of an
arrow represents the lack of a causal effect.

I These are directed because each arrow implies a direction
(aspirin causes pain relief, not the other way around).

I They are acyclic because there are no cycles: a variable cannot
cause itself, either directly or through cycles.

I Causal Markov assumption: conditional on its direct causes, a
variable Vj is independent of its non-descendents.



DAGs
I We can encode assumptions about causal relationships in what

are called causal Directed Acyclic Graphs or DAGs. Here is an
example:

A

X

Y

I Each arrow represents the presence of a direct causal effect
(that is, an individual causal effect as above). The lack of an
arrow represents the lack of a causal effect.

I These are directed because each arrow implies a direction
(aspirin causes pain relief, not the other way around).

I They are acyclic because there are no cycles: a variable cannot
cause itself, either directly or through cycles.

I Causal Markov assumption: conditional on its direct causes, a
variable Vj is independent of its non-descendents.



DAGs
I We can encode assumptions about causal relationships in what

are called causal Directed Acyclic Graphs or DAGs. Here is an
example:

A

X

Y

I Each arrow represents the presence of a direct causal effect
(that is, an individual causal effect as above). The lack of an
arrow represents the lack of a causal effect.

I These are directed because each arrow implies a direction
(aspirin causes pain relief, not the other way around).

I They are acyclic because there are no cycles: a variable cannot
cause itself, either directly or through cycles.

I Causal Markov assumption: conditional on its direct causes, a
variable Vj is independent of its non-descendents.



DAGs
I We can encode assumptions about causal relationships in what

are called causal Directed Acyclic Graphs or DAGs. Here is an
example:

A

X

Y

I Each arrow represents the presence of a direct causal effect
(that is, an individual causal effect as above). The lack of an
arrow represents the lack of a causal effect.

I These are directed because each arrow implies a direction
(aspirin causes pain relief, not the other way around).

I They are acyclic because there are no cycles: a variable cannot
cause itself, either directly or through cycles.

I Causal Markov assumption: conditional on its direct causes, a
variable Vj is independent of its non-descendents.



DAGs
I We can encode assumptions about causal relationships in what

are called causal Directed Acyclic Graphs or DAGs. Here is an
example:

A

X

Y

I Each arrow represents the presence of a direct causal effect
(that is, an individual causal effect as above). The lack of an
arrow represents the lack of a causal effect.

I These are directed because each arrow implies a direction
(aspirin causes pain relief, not the other way around).

I They are acyclic because there are no cycles: a variable cannot
cause itself, either directly or through cycles.

I Causal Markov assumption: conditional on its direct causes, a
variable Vj is independent of its non-descendents.



Causal DAGs and associations.

I DAGs are a convenient way to encode causal assumptions
about the problem at hand, but they also can tell us about
potential associations between variables in the graph.

I A path between two variables (C and D) in a DAG is a route
that connects the variables following nonintersecting edges.

I A path is causal if those edges all have their arrows pointed in
the same direction. Otherwise it is noncausal.

A

X

Y

I Two variables connected by common causes will have a
marginal associational relationship. That is, in the above
example Pr[Y = 1|A = 1] 6= Pr[Y = 1|A = 0].
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I Let’s look at another situation:

A

X

Y

I Here, X is a collider: a node that two arrows point into.
I Are A and Y related? No.
I Imagine that A is getting the flu and Y is getting hit by a bus.

Both of these might cause us to be in the hospital, but
knowing that I have the flu doesn’t give me any information
about whether or not I’ve been hit by a bus. The flow of
association is blocked by a collider.
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Conditioning on a confounder

I Above we have shown how marginal associations flow over
paths, but what about relationships between variables within
levels of a third variable? We can represent conditioning on a
variable by drawing a box around it.

A

X

Y

Conditioning on a variable is on a causal path or on a variable
that is a common cause (above), will block the association that
flows over that path.



Conditioning on a collider
I Conditioning on a collider (a common consequence) actually

opens the flow of association over that path, even though
before there was none:

A

X

Y

I To see why this is the case, let’s go back to the flu, getting hit
by a bus example.

I Conditional on being in the hospital, there is a negative
relationship between the flu and getting hit by a bus.

I To sum up: associations flow over paths (causal or noncausal)
that don’t contain a collider. These associations can be
blocked by conditioning a variable on the path that is not a
collider. We’ll come back to these properties later when we talk
about the back-door criteria.
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Backdoor paths and blocking paths

I A backdoor path is a non-causal path from A to Y . This is a
path that would remain if we were to remove any arrows
pointing out of A (these are the potentially causal paths from
A, sometimes called frontdoor paths).

I Backdoor paths between A and Y generally indicate common
causes of A and Y . The simplest possible backdoor path is the
common confounding situation:

A

X

Y

I Here there is a backdoor path A← X → Y , where X is a
common cause for the treatment and the outcome.
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I When there are unblocked backdoor paths, causal effect is
muddled by spurious association.

I A path is blocked if (a) we control for or stratify a non-collider
on that path OR (b) we do not control for a collider.

I Thus, in the above sample, if we condition on X , then the
backdoor path is blocked.
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Backdoor criterion

I How to tell if an effect is identifiable from the graph? From
Pearl ({2000}), we have the backdoor criterion which states
that an effect of A on Y is identifiable if either:

1. No backdoor paths from A to Y
2. Measured covariates are sufficient to block all backdoor paths

from A to Y .

I The first situation is only plausible in a randomized experiment,
but the second might be plausible in observational studies as
well.

I The backdoor criterion is fairly powerful. It can tell us (1) is
there confounding given this DAG, (2) if it is possible to
removing the confounding, and (3) what variables to condition
on to eliminate the confounding.
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I How does the backdoor criterion relate to ignorability? If the
graph is causal (in the sense that each of arrows represents a
causal effect in the potential outcomes sense), then there is a
specific relationship between the backdoor criterion and
ignorability.

I “All backdoor paths blocked” ≡ conditional ignorability
I No free lunch: DAG must be correctly specified



I How does the backdoor criterion relate to ignorability? If the
graph is causal (in the sense that each of arrows represents a
causal effect in the potential outcomes sense), then there is a
specific relationship between the backdoor criterion and
ignorability.

I “All backdoor paths blocked” ≡ conditional ignorability

I No free lunch: DAG must be correctly specified



I How does the backdoor criterion relate to ignorability? If the
graph is causal (in the sense that each of arrows represents a
causal effect in the potential outcomes sense), then there is a
specific relationship between the backdoor criterion and
ignorability.

I “All backdoor paths blocked” ≡ conditional ignorability
I No free lunch: DAG must be correctly specified



Readings



Estimating causal effects under no unmeasured
confounders

I Another assumption we’ll need here is the following overlap (or
positivity) assumption: 0 < Pr(A = 1|X ) < 1.

I The assumption of selection on the observables is what allows
us to identify causal effects.

I But we still have to estimate them. And given ignorability,
there are several choices we can make for the estimation of
causal effects.
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Conditional ignorability and identification

I We can identify the CATE with conditional ignorability:

τ(x) = E [Yi(1)− Yi(0)|Xi = x ]

= E [Yi(1)|Xi = x ]− E [Yi(0)|Xi = x ]
= E [Yi(1)|Ai = 1,Xi = x ]− E [Yi(0)|Ai = 0,Xi = x ]
= E [Yi |Ai = 1,Xi = x ]− E [Yi |Ai = 0,Xi = x ]

I We can just use the within-levels of X difference in means to
estimate the CATE. There are a number of ways we could
estimate those conditional expectations, though. We’ll cover a
few in this class.
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Regression
I When we look at a textbook, we often see regression defined

without respect to causality. There is talk of the β̂ estimator
being “biased,” but it isn’t always clear what the “correct”
specification would look like. There is an implicit assumption
of causality, but no formal definitions. This can obscure the
identification of the causal effects of interest. Today, we’ll see
if we can estimate causal effects with regression.

I Angrist and Pischke argue that a regression is causal when the
CEF it approximates is causal. Identification is king.

I We will show that under certain conditions, a regression of the
outcome on the treatment and the covariates can recover a
causal parameter, but perhaps not the one in which we are
interested.

I We have shown in past weeks that these effects are identified
when ignorability holds. Angrist and Pischke call this the
conditional independence assumption (CIA).
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Linear constant effects model, binary treatment

I Experiment: with a simple experiment, we can rewrite the
consistency assumption to be a regression formula:

Yi = AiYi(1) + (1− Ai)Yi(0)

= Yi(0) + (Yi(1)− Yi(0))Ai

= µ0 + τAi + (Yi(0)− µ0)

= µ0 + τAi + v0
i

- Note that if ignorability holds (as in an experiment) for Yi(0), then
it will also hold for v0

i , since µ0 is constant. Thus, this satifies the
usual assumptions for regression.
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I Let’s now say that ignorability holds only conditional the
covariates, so Yi(a) ⊥⊥ Ai |Xi . We will assume a linear model
for the potential outcomes:

Yi(a) = α+ τa + ηi

I Because we are assuming the effect of A is constant here, the
ηi are the only source of individual variation and we have
E [ηi ] = 0. We can use the consistency assumption to write this
as a linear regression model:

Yi = α+ τAi + ηi .
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I Assume that ηi is linear in the covariates ηi = X ′
i γ + νi .
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E [Yi |Ai ,Xi ] = E [Yi(a)|Xi ] = α+ τAi + E [ηi |Xi ]

= α+ τAi + X ′
i γ + E [νi |Xi ]
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i γ

I Thus, a regression where Ai and Xi enter linearly will correctly
estimate the average treatment effect, τ , since the residual of
the linear regression is independent of the covariates:

Yi = α+ τAi + X ′
i γ + νi

I Note that nothing we have done changes if Ai were continuous
or ordinal (so long as linearity holds)
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Heterogeneous effects

I What if we allow for individual effects to vary, τi?

I For the binary case with a randomized treatment, no problems.
I When we have to condition on some variables, things get
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Heterogeneous effects

I Focus on the case where Xi is univariate and binary and we can
generalize from there.

Yi = Xiαx + τRAi + ei .

I Is τR equal to the ATE or the ATT?
I How can we investigate τR? Well, we can rely on the

regression anatomy:

τR =
Cov(Yi , Ãi)

V (Ãi)

I Ãi is the residual from a regression of Ai on the Xi or
Ãi = Ai − E [Ai |Xi ].
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I Ãi is the residual from a regression of Ai on the Xi or
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Heterogeneous effects (cont’d)
I A regression of Yi on the treatment and covariates is the same

as a regression of the E [Yi |Xi ,Ai ] on the treatment and
covariates. Thus, in the above expression, we can replace Yi
with E [Yi |Xi ,Ai ].

τR =
Cov(E [Yi |Xi ,Ai ],Ai − E [Ai |Xi ])

V (Ai − E [Ai |Xi ])

=
E {E [Yi |Xi ,Ai ](Ai − E [Ai |Xi ])}

E [(Ai − E [Ai |Xi ])2]

I Why stop here? We can simplify the CEF a bit more:

E [Yi |Xi ,Ai ] = E [AiYi(1) + (1− Ai)Yi(0)|Xi ,Ai ]

= E [Yi(0)|Xi ,Ai = 0] + AiE [Yi(1)− Yi(0)|Xi ,Ai ]

= E [Yi |Xi ,Ai = 0] + τ(Xi)Ai
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Heterogeneous effects (cont’d)

I We can plug this into the numerator of τR above. After a bit
of simplification, we get the following:

τR =
E
[
τ(x)(Ai − E [Ai |Xi ])

2]
E [(Ai − E [Ai |Xi ])2]

=
E [τ(Xi)σ

2
A(Xi)]

E [σ2
A]

I Here, σ2
A is the variance of Ai conditional on Xi .

I Remember that
τ = E [τi(Xi)]

I For the ATE, we simply take the average of the CATEs over
the distribution of Xi .

I For the regression coefficient, we take the average weighted by
the conditional variance of treatment in that stratum.
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I Why does the OLS estimator weight by the conditional variance
of the treatment? OLS is a minimum-variance estimator.

I Gives more weight to strata with lower expected variance in
their estimates. That is, it gives higher weight to more precise
within-strata estimates. When are these estimates going to be
more precise? When the treatment and control group are
roughly the same size and so the variance is maximized.

I When does τ = τR? When τ(x) = τ is constant across the
strata of the covariates.
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Nonparametric regression

I What do we do about the fact that the regression coefficient
does not estimate the ATE or the ATT under heterogeneous
effects? Do we have to abandon regression?

I An alternative regression estimator is sometimes called the
imputation estimator. and

I Impute the values of Yi(1) and Yi(0) for each unit, using a
regression, and then taking the average of the differences
between these imputations as the estimator for the ATE.
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Nonparametric regression

I Let µ̂a(x) be a consistent estimator for
µa(x) = E [Yi(a)|X = x ]. We could always run a saturated (in
Xi) linear regression in the treated and control groups
separately as this estimator.

τimp =
1
N
∑

i
µ̂1(Xi)− µ̂0(Xi)

I Thus, we use the regression(s) to predict values of the
potential outcomes, then average across the imputed
individuals treatment effects. Because each of the regression
estimators are consistent, then the imputations estimator is
consistent for the ATE as well.

I Can go even further by weakening parametric assumptions on
µa(x).
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Nonparametric regression R example

## load in lalonde data
data(LL, package = 'cem')

reg.0 <- lm(re78 ~ age + education + black + married,
data = LL, subset = treated == 0)

reg.1 <- lm(re78 ~ age + education + black + married,
data = LL, subset = treated == 1)

muhat0 <- predict(reg.0, newdata = LL)
muhat1 <- predict(reg.1, newdata = LL)

mean(muhat1 - muhat0)

## [1] 806.9



Subclassification/stratification

I Can we avoid the mismatch between the ATE and the
regression coefficient in other ways?

I Stratify the data based on X and calculate the condtional
average treatment effect

τ(x) = E [Yi(1)− Yi(0)|Xi = x ].

I Ignorability ensures that these conditional average treatment
effects are identified.

I If X is discrete with only a few levels, can use the exact values
of X .

I Otherwise, we may have to subclassify/coarsen the data.
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Stratification on the propensity score

I What about when X has has many dimensions?

I Curse of dimensionality: there will be very few, if any, units in
a given stratum of Xi .

I Stratify on a low-dimensional summary, the propensity score,
which is the unit’s individual probability of receiving treatment,
condition on the covariates:

ei = Pr[Ai = 1|Xi ]

I Rosenbaum and Rubin (1983) showed that if we correctly
estimate the ei , stratifying on ei is the same as stratifying on
the full Xi .
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Estimating the propensity score
I Of course, in observational studies, we don’t know the

propensity score.

I We would run a parametric model with parameters γ to
estimate the propensity scores:

1. Estimate γ̂
2. Create êi = Pr[Ai = 1|Xi ; γ̂]

I For instance, in R, we could easily calculate the propensity
scores using the glm function:

I What variables do we include in the propensity score model?
Any set of variables that blocks all the backdoor paths from Ai
to Yi .

I Check balance within strata of êi or use
automated/nonparametric tools for estimating êi .
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Standardization/direct adjustment

I Above we calculated the CATE, τ(x), but what if we want the
average treatment effect, τ?

I Take the average of the CATEs over the distribution of X :

τ =
∑

x
E [Yi(1)− Yi(0)|Xi = x ]Pr[Xi = x ]

I When Xi is low dimensional and discrete, we can easily
calculate Pr[Xi = x ] with its empirical distribution:
1
N
∑N

i I(Xi = x).
I For subclassification on the propensity score, you simply weight

by the size of each stratum.
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Matching

I Basic idea: find control units that are very similar to treated
units on Xi .

I One way to think of this approach is that we are “imputing”
the missing values Yi(0) for the treated units, using control
units with very similar values of Xi .

I Remember that matching doesn’t justify a causal effect,
ignorability does.
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Exact matching

I Let’s say that for each treated unit we can find an exact match:
a control unit with the same values of Xi and suppose we drop
any control units that are not matched.

I Exact balance: Pr(Xi = x |Ai = 1) = Pr(Xi = x |Ai = 0) for all
values of x .

I This is because in the matched data, for every treated unit,
there is one (and, in this case, only one) control unit with the
same exact value of Xi . The two groups must have the same
distribution in Xi .
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Why exact matching works

τATT =E [Yi(1)|Ai = 1]− E [Yi(0)|Ai = 1]

=E [Yi |Ai = 1]−
∑
x∈X

E [Yi(0)|Xi = x ,Ai = 1]Pr(Xi |Ai = 1)

(Consistency & Interated Expectations)
=E [Yi |Ai = 1]−

∑
x∈X

E [Yi(0)|Xi = x ,Ai = 0]Pr(Xi |Ai = 1)

(Ignorability)
=E [Yi |Ai = 1]−

∑
x∈X

E [Yi |Xi = x ,Ai = 0]Pr(Xi |Ai = 1)

(Consistency)
=E [Yi |Ai = 1]−

∑
x∈X

E [Yi |Xi = x ,Ai = 0]Pr(Xi |Ai = 0)

(Exactly Matched Data)
=E [Yi |Ai = 1]− E [Yi |Ai = 0]
(Iterated Expectations)
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The matching procedure

1. Choose a number of matches (1 control:1 treated, 2:1, k:1,
etc), whether to match with replacement or not, and a distance
metric (propensity scores, Mahalanobis distance).

2. Choose a set of pre-treatment covariates that satify ignorability.
3. Find matches (nearest neighbor, GenMatch, optimal matching),

dropping control units that are not matched.
4. Check balance (difference-in-means, medians, eQQ, etc)
5. Repeat (1)-(4) until balance is acceptable, adding variables or

functions of variables to improve balance.
6. Calculate the effect of the treatment on the outcome in the

matched datasets.
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Matching notes

I As long as you only drop control units, matching will estimate
the ATT. But if we drop any treatment units, then we are
estimating a different quantity of interest depending on the
sample that remains. Sometimes we call this the feasible ATE.

I There’s a bias-variance tradeoff in the number of
matches—more matches means the set of matches might be
worse, but you have more of them so the estimates are better.
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Weighting

I The intuition behind the weighting approach comes from a
sampling mindset: each of the treated and control samples are
unrepresentative of the overall population, which leads to
imbalance in the covariates and the confounding.

I What do we usually do with unrepresentative samples?
Reweight them to be more representative.

I Turns out, we can weight by the inverse of the probability of
receiving the treatment the unit actually received:

Wax = 1/Pr[A = a|X = x ]

I Taking a weighted difference in means or using a WLS with
these as weights can estimate the ATE.

I Nice because it avoids having to model the relationship between
X and Y , but you do have to model the propensity score.
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Wrap-up

I Randomization breaks selection bias.

I Without randomization we have to rely on assumptions about
conditional ingorability.

I With this selection on observables assumption, we can use a
couple of different techniques for estimating causal effects.
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Next week

I What if selection on observables doesn’t hold? Are we
completely out of luck?

I Not necessarily. If we have access to “natural experiments,” we
can sometimes make more limited inferences.

I We’ll start down that path next week with instrumental
variables.
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SATE vs PATE (more info)

I Once we assign some groups to treatment and some to control
we do not actually observe Yi(1) and Yi(0) and so we cannot
actually observe SATE. We can, however, estimate it:

τ̂S =
1
nt

∑
i :Ai=1

Yi −
1
nc

∑
i :Ai=0

Yi

- Note that, conditional on the sample, the only variation in τ̂S is
from the treatment assignment. Unconditionally, there are two
sources of variation: the treatment assignment and the sampling
procedure.



I We can show that, with a completely randomized experiment
assignment, τ̂S is unbiased for τS and, in fact, τ :

E [τ̂S |S] =
1
nt

∑
i :Ai=1

E [Yi |Ai = 1,S]− 1
nc

∑
i :Ai=0

E [Yi |Ai = 0,S]

=
1
nt

∑
i :Ai=1

E [Yi(1)|S]−
1
nc

∑
i :Ai=0

E [Yi(0)|S]

=
1
nt

ntE [Yi(1)|S]−
1
nc

ncE [Yi(0)|S]

= E [Yi(1)− Yi(0)|S] =
1
n
∑
i∈S

Yi(1)− Yi(0) = τS

I By the law of iterated expectations, we also know that
E [E [τ̂S |S]] = E [τS ] = τ . Thus, the difference in means is also
unbiased for the PATE.
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I It turns out that the sampling variance of the difference in
means estimator is:

V (τ̂S |S) =
S2

c
nc

+
S2

t
nt
−

S2
τi

n ,

I Here S2
c and S2

t are the in-sample variances of Yi(0) and Yi(1),
respectively. We can use sample variances within levels of Ai to
estimat these.

I The last term, S2
τi is the in-sample variance of the individual

treatmente effects.
I Obviously, we don’t observe any individual treatment effects, so

we can’t estimate a sample variance of this quantity. If the
treatment effect is constant, then this term equals zero.
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I It turns out that the overall variance of the estimator is simply:

V (τ̂S) =
σ2

c
nc

+
σ2

t
nt
,

which can be estimated with this simple variance estimator:

V̂ =
ŝ2
c
nc

+
ŝ2
t
nt

I This estimator is unbiased for the variance of the difference in
means in the population OR a conservative estimate of the
variance of the difference in means in the sample.
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