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Abstract

This paper introduces a Stata implementation of Coarsened Exact Matching (CEM), a new
method for improving the estimation of causal effects by reducing imbalance in covariates be-
tween treated and control groups. CEM is faster, easier to use and understand, requires fewer as-
sumptions, more easily automated, and possesses more attractive statistical properties for many
applications than existing matching methods. In CEM, users temporarily coarsen their data, ex-
act match on these coarsened data, then run their analysis on the uncoarsened, matched data.
CEM bounds the degree of model dependence and causal effect estimation error by ex ante user
choice, is montonic imbalance bounding (so that reducing the maximum imbalance on one vari-
able has no effect on others), does not require a separate procedure to restrict data to common
support, meets the congruence principle, is approximately invariant to measurement error, bal-
ances all nonlinearities and interactions in-sample (i.e., not merely in expectation), and works
with multiply imputed data sets. Other matching methods inheret many of CEM’s properties
when applied to further match data preprocessed by CEM. The library cem implements the CEM
algorithm in Stata.
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1 Introduction

This program is designed to improve the estimation of causal effects via a powerful method of match-
ing that is widely applicable in observational data and easy to understand and use (if you understand
how to draw a histogram, you will understand this method). The program implements the Coarsened
Exact Matching (CEM) algorithm described in (Iacus, King, and Porro, 2011). CEM is a monotonoic
imbalance reducing matching method — which means that the balance between the treated and
control groups is chosen by ex ante user choice rather than discovered through the usual laborious
process of checking after the fact, tweaking the method, and repeatedly reestimating. CEM also as-
sures that adjusting the imbalance on one variable has no effect on the maximum imbalance of any
other. CEM strictly bounds through ex ante user choice both the degree of model dependence and
the average treatment effect estimation error, eliminates the need for a separate procedure to restrict
data to common empirical support, meets the congruence principle, is robust to measurement error,
works well with multiple imputation methods for missing data, can be completely automated, and is
extremely fast computationally even with very large data sets. After preprocessing data with CEM,
the analyst may then use a simple difference in means or whatever statistical model they would have
applied without matching. CEM can also be used to improve other methods of matching by apply-
ing those methods to CEM-matched data (they formally inherent CEM’s properties if applied within
CEM strata). CEM also works well for determining blocks in randomized experiments, and evaluat-
ing extreme counterfactuals.

2 Background

2.1 Notation

Consider a sample of n units randomly drawn from a population of N units, where n < N. For
unit i, denote T; as an indicator variable with value T; = 1 if unit i receives the treatment (and so
is a member of the “treated” group) and T; = 0 if not (and is therefore a member of the “control”
group). The outcome variable is denoted Y, where Y;(0) is the potential outcome for observation i
if the unit does not receive treatment and Y;(1) is the potential outcome if the (same) unit receives
treatment. For each observed unit, the observed outcome is Y; = T;Y;(1) + (1 — T;) Y;(0) and so Y;(0)
is unobserved if i receives treatment and Y;(1) is unobserved if i does not receive treatment.

To compensate for the observational data problem where the treated and control groups are not
necessarily identical before treatment (and, lacking random assignment, not the same on average),
matching estimators attempt to control for pre-treatment covariates. For this purpose, we denote
X = (X1,X3,...,Xg) as a k-dimensional data set, where each X is a column vector of observed
values of pre-treatment variable j for the n sample observations (possibly drawn from a population,
of size N). Thatis, X = [Xj;,i = 1,...,n,j = 1,...,k].

2.2 Quantities of Interest

As usual, the treatment effect for unit i, TE; = Y;(1) — Y;(0), is unobserved. All relevant causal
quantities of interest are functions of TE;, for different groups of units, and so must be estimated. We
focus on the sample average treatment effect on the treated (SATT):

1
SATT = — 3" TE; (1)
nr ieT
where ny = 3 Tiand T = {1 < i < n: T} = 1}. Matching algorithms sometimes also change the
quantity being estimated to one that can be estimated without much model dependence by selecting
control and/or treated units.



We assume that treatment assignment is ignorable conditional on X. This assumption is often
stated as “no unmeasured confounders” or “no omitted variables.” Formally, this means that the treat-
ment assignment is independent of the potential outcomes,

P(T|X,Y(0),Y(1)) = P(T|X). 2

2.3 Existing matching methods and practice

Matching is a nonparametric method of controlling for some or all of the confounding influence of
pretreatment control variables in observational data. The key goal of matching is to prune observa-
tions from the data so that the remaining data have better balance between the treated and control
groups, meaning that the empirical distributions of the covariates (X) in the groups are more similar.
Exactly balanced data means that controlling further for X is unnecessary (since it is unrelated to the
treatment variable), and so a simple difference in means on the matched data can estimate the causal
effect; approximately balanced data requires controlling for X with a model (such as the same model
that would have been used without matching), but the only inferences necessary are only those rel-
atively close to the data, leading to less model dependence and reduced statistical bias than without
matching.

The most common matching methods involve finding, for each treated unit, at least one control
unit that is “similar” on the covariates. The distinction between methods is how to define this similar-
ity. For example, exact matching simply matches a treated unit to all of the control units with the same
covariate values. Unfortunately, due to the richness of covariates in many examples, this method of-
ten produces very few matches. A whole host of approximate matching methods specify a metric to
find control units that are close to the treated unit. This metric is often the Mahalanobis distance or
the propensity score (which is simply the probability of being treated, conditional on the covariates).
Many of these related methods are implemented in Stata (Becker and Ichino, 2002; Abadie et al., 2002;
Leuven and Sianesi, 2004; Abadie, Diamond, and Hainmueller, 2009, forthcoming). A problem with
this type of solution is that it requires the user to set the size of the matching solution ex ante, then
check for balance ex post. Thus analysts must check for balance after the algorithm is finished, then
respecify a matching model and recheck balance, etc. This process repeats until the user obtains an
acceptable amount of balance.

As matching is simply a data preprocessing technique, analysts must still apply statistical esti-
mators to the data after matching. When one-to-one exact matching is used, a simple difference in
means between Y in the treated and control group provides an estimator of the causal effect. When
the match is not exact, a parametric model must be used to control for the differences in the covariates
across treated and control groups. This may be a linear regression, a maximum likelihood estimator
or some other estimator. Applying a matching method to the data before analysis can reduce the
degree of model dependence (Ho et al., 2007).

One wrinkle in the analysis of matched data occurs when there are not equal numbers of treated
and control units within strata. In this situation, estimators require weighting observations according
to the size of their strata (lacus, King, and Porro, 2011).

3 Coarsened Exact Matching

3.1 The Algorithm

The central motivation for CEM is that while exact matching provides perfect balance, it typically
produces few matches due to curse-of-dimensionality issues. For instance, adding one continuous
variable to a dataset effectively kills exact matching since two observations are unlikely to have iden-
tical values on a continuous measure. The idea of CEM is to temporarily coarsen each variable into



substantively meaningful groups, exact match on these coarsened data and then only retain the origi-
nal (uncoarsened) values of the matched data. As coarsening is a process at the heart of measurement,
many analysts know how to coarsen a variable into groups that preserve information. For instance,
education may be measured in years, but many would be comfortable grouping observations into
categories of high school, some college, college graduates, etc. This method works by exact matching
on distilled information in the covariates as chosen by the user.

The algorithm works as follows:

1. Begin with the covariates X and make a copy, which we denote X™.
2. Coarsen X* according to user-defined cutpoints, or CEM’s automatic binning algorithm.
3. Create one stratum per unique observation of X* and place each observation in a stratum.

4. Assign these strata to the original data, X and drop any observation whose stratum does not
contain at least one treated and one control unit.

Once completed, these strata are the foundations for calculating the treatment effect. The inher-
ent trade-off of matching is reflected in CEM too: larger bins (more coarsening) used to make X* will
result in fewer strata. Fewer strata will result in more diverse observations within the same strata
and, thus, higher imbalance.

It is important to note that CEM prunes both treated and control units. This process changes the
quantity of interest under study to the treatment effect in the post-matching subsample. This change
is reasonable so long as the decision is transparent (see e.g. Crump et al. (2006)).

3.2 The Benefits

Tacus, King, and Porro (2011) derive many of the properties of the CEM algorithm and we review
some of them here. The key property of CEM is that it is in a class of matching methods called
Monotonic Imbalance Bounding (MIB). MIB methods bound the maximum imbalance in some fea-
ture of the empirical distributions through an ex ante choice by the user. In CEM, this ex ante choice
is the coarsening. As the coarsening on any variable becomes finer (the bins become more narrow),
the bound on the maximum imbalance on the moments of that variable becomes tighter. This is also
true for the bound on differences in the empirical quantiles. Furthermore, this choice also bounds the
maximum imbalance on the full multivariate histogram of treated and control units, which includes
all interactions and non-linearities. By choosing the coarsening ex ante, users can control the amount
of imbalance in the matching solution. Iacus, King, and Porro (2011) also show that CEM bounds
both the error in estimating the average treatment effect and the amount of model dependence.

Aside from bounding the imbalance between the treated and control groups, CEM has a num-
ber of other beneficial properties. First, CEM meets the congruence principle, which states that the
data space and analysis space should be the same. Methods that fail to meet this principle often pro-
duce strange or counter-intuitive results. Methods that meet the principle allow analysts to leverage
their substantive knowledge of the data in order to find better matches. Second, CEM automatically
restricts the matched data to areas of common empirical support. This is necessary to remove the
possibility of difficult-to-justify extrapolations of the causal effect that end up being heavily model
dependent (King and Zeng, 2006). Finally, CEM is computationally very efficient even for large data
sets.



4 An Extended Example

We show here how to use CEM! through a simple running example: the National Supported Work
(NSW) Demonstration data, also known as the Lalonde data set (Lalonde, 1986). This program pro-
vided training to selected individuals for 12-18 months and help finding a job in the hopes of increas-
ing their earnings. The treatment variable, treated, is 1 for participants (the treatment group) and
0 for nonparticipants (the control group). The key outcome variable is earnings in 1978 (re78). The
statistical goal is to estimate a specific version of a causal effect: the sample average treatment effect
on the treated (the “SATT”).

Since participation in the program was not assigned strictly at random, we must control for a set
of pretreatment variables by the CEM algorithm. These pre-treatment variables include age (age),
years of education (education), marital status (married), lack of a high school diploma (nodegree),
race (black, hispanic), indicator variables for unemployment in 1974 (u74) and 1975 (u75), and
real earnings in 1974 (re74) and 1975 (re75). Some of these are dichotomous (married, nodegree,
black, hispanic, u74, u75), some are categorical (age and education), and the earnings variables
are continuous and highly skewed with point masses at zero. You can load this data into Stata using
the command

use http://www.mattblackwell.org/files/stata/data/lalonde.dta, clear

Matching is not a method of estimation; it is a way to preprocess a data set so that estimation of
SATT based on the matched data set will be less “model-dependent” (i.e., less a function of apparently
small and indefensible modeling decisions) than when based on the original full data set. Matching
involves pruning observations that have no close matches on pre-treatment covariates in both the
treated and control groups. The result is typically less model-dependence, lower bias, and (by re-
moving heterogeneity) increased efficiency (King and Zeng, 2006; Ho et al., 2007; Tacus, King, and
Porro, 2011).

4.1 Basic Evaluation and Analysis of Unmatched Data

We begin the simple difference in means as a naive estimate of SATT; this estimator is useful only
when the in-sample distribution of pre-treatment covariates happens to be the same in the treatment
and control groups. First we compute the size of the treated and control groups:

. table treated

treated | Freq
__________ oo
0 | 425

1| 297

Thus, the data include 297 treated units and 425 control units. The (unadjusted and therefore
likely biased) difference in means can be found by a simple linear regression of outcome on treatment,

!1n addition to the Stata version of CEM, there is an R version in the package cem. The example presented here is also
used in that package as a vignette, and includes some obvious overlap in prose.



. regress re78 treated

Source | SS af MS Number of obs = 722
------------- b F( 1, 720) =  3.52
Model | 137332528 1 137332528 Prob > F = 0.0609
Residual | 2.8053e+10 720 38962865.4 R-squared = 0.0049
————————————— et Adj R-squared = 0.0035
Total | 2.8191e+10 721 39099300.5 Root MSE = 6242

re78 | Coef. Std. Err. t P>t [95% Conf. Intervall
_____________ o
treated | 886.3038 472.0863 1.88 0.061 -40.52625 1813.134
_cons | 5090.048 302.7826 16.81 0.000 4495.606 5684.491

Thus, our estimate of SATT is 886.3. Because the variable treated was not randomly assigned,
the pre-treatment covariates differ between the treated and control groups. To see this, we focus on

these pre-treatment covariates: age, education, black, nodegree, re74.

The overall imbalance is given by the L statistic, introduced in Iacus, King, and Porro (2011)

as a comprehensive measure of global imbalance. It is based on the L; difference between the mul-
tidimensional histogram of all pretreatment covariates in the treated group and that in the control
group. First, we coarsen the covariates into bins. To use this measure, we require a list of bin sizes for
the numerical variables. Our functions compute these automatically, or they can be set by the user.
Then, we cross-tabulate the discretized variables as X; X - - - X X}, for the treated and control groups
separately, and record the k-dimensional relative frequencies for the treated f¢, ..., and control gy, ...,
units. Finally, our measure of imbalance is the absolute difference over all the cell values:

1
Li(f.8) =5 ) Ifon — 8o (3)
ol

Perfect global balance (up to coarsening) is indicated by £ = 0, and larger values indicate larger
imbalance between the groups, with a maximum of £; = 1, which indicates complete separation. If
we denote the relative frequencies of a matched dataset by f™ and g™, then a good matching solution
would produce a reduction in the £; statistic; that is, we would hope to have £ (f™, g™) < Li(f, £)-

We compute L statistic, as well as several unidimensional measures of imbalance via our imb
function. In our running example:

imb age education black nodegree re74, treatment(treated)
Multivariate L1 distance: .50759358

Univariate imbalance:

L1 mean min 25% 50% 75% max
age .10119 L1792 0 1 0 -1 -6
education .10047 .19224 1 0 1 1 2

20f course, as with drawing histograms, the choice of bins affects the final result. The crucial point is to choose one
and keep it the same throughout to allow for fair comparisons. The particular choice is less crucial.



black  .00135 .00135 0 0 0 0 0
nodegree .08348 -.08348 0 -1 0 0 0
re74 .0622  -101.49 0 0 69.731 584.92 -2139

Only the overall £ statistic measure includes imbalance with respect to the full joint distribution,
including all interactions, of the covariates; in the case of our example, £ = .5076. The £L; value is
not valuable on its own, but rather as a point of comparison between matching solutions. The value
.5076 is a baseline reference for the unmatched data. Once we have a matching solution, we will
compare its £; value to .5076 and gauge the increase in balance due to the matching solution from
that difference. Thus, £; works for imbalance as R? works for model fit: the absolute values mean
less than comparisons between matching solutions. The unidimensional measures in the table are all
computed for each variable separately. 4

The first column, labeled L1, reports the LJI measure, which is £; computed for the j-th variable
separately (which of course does not include interactions). The second column in the table of unidi-
mensional measures, labeled mean, reports the difference in means. The remaining columns in the
table report the difference in the empirical quantiles of the distributions of the two groups for the
Oth (min), 25th, 50th, 75th, and 100th (max) percentiles for each variable.

This particular table shows that variables re74 is imbalanced in the raw data in many ways and
variable age is balanced in means but not in the quantiles of the two distributions. This table also
illustrates the point that balancing only the means between the treated and control groups does not
necessarily guarantee balance in the rest of the distribution. Most important, of course, is the overall
L measure, since even if the marginal distribution of every variable is perfectly balanced, the joint
distribution can still be highly imbalanced.

4.2 Coarsened Exact Matching

We now apply the coarsened exact matching algorithm by calling the function cem. The CEM al-
gorithm performs exact matching on coarsened data to determine matches and then passes on the
uncoarsened data from observations that were matched to estimate the causal effect. Exact match-
ing works by first sorting all the observations into strata, each of which has identical values for all
the coarsened pre-treatment covariates, and then discarding all observations within any stratum that
does not have at least one observation for each unique value of the treatment variable.

To run this algorithm, we must choose a type of coarsening for each covariate. We show how
this is done this via a fully automated procedures in next section. Then we show how to use explicit
prior knowledge to choose the coarsening, which is normally preferable when feasible.

In CEM, the treatment variable may be dichotomous or multichotomous® . Alternatively, cem may
be used for randomized block experiments without specifying a treatment variable; in this case the
strata are simply returned without any pruning of observations.

4.2.1 Automated Coarsening

In our running example we have a dichotomous treatment variable. In the following code, we match
on our chosen pre-treatment variables, but not re78, which is the outcome variable and so should
never be included.

3While CEM can match for multichotomous treatments, analysis with these matched samples is somewhat difficult. For
instance, lacus, King, and Porro (2011) develop weights for two treatment groups and it is not obvious how to generalize
these weights for more treatment groups. We suggest users run CEM on each pair of treatment levels, get the correct
weights for each and calculate separate ATT.



The output contains useful information about the match, including a (small) table about the num-
ber of observations in total, matched, and unmatched by treatment group, as well as the results of a
call to the imb function for information about the quality of the matched data. Since cem bounds the
imbalance ex ante, the most important information is the number of observations matched. But the
results also give the imbalance in the matched data using the same measures as that in the original
data described in Section 4.1. Thus,

cem age education black nodegree re74, tr(treated)

Matching Summary:

Number of strata: 205
Number of matched strata: 67

A1l 425 297
Matched 324 228
Unmatched 101 69

Multivariate L1 distance: .46113967

Univariate imbalance:

L1 mean min 25% 50% 75%
age .13641  -.17634 0 0 0 0
education .00687 .00687 1 0 0 0
black 3.2e-16 -2.2e-16 0 0 0 0
nodegree 5.8e-16 4.4e-16 0 0 0 0
re74 .06787 34.438 0 0 492.23 39.425
max
age -1
education 0
black 0
nodegree 0

re74 96.881

We can see from these results the number of observations matched and thus retained, as well as
those which were pruned because they were not comparable. By comparing the imbalance results
to the original imbalance table given in the previous section, we can see that a good match can pro-
duce a substantial reduction in imbalance, not only in the means, but also in the marginal and joint
distributions of the data.

The function cem also generates weights for use in the evaluation of imbalance measures and
estimates of the causal effect (stored in cem_weights).

4.2.2 Coarsening by Explicit User Choice

The power and simplicity of CEM comes from choosing the coarsening yourself rather than using
the automated algorithm as in the previous section. Choosing the coarsening enables you to set the



maximum level of imbalance ex ante, which is a direct function of the coarsening you choose. By
controlling the coarsening, you also put an explicit bound on the degree of model dependence and
the SATT estimation error.

Fortunately, the coarsening is a fundamentally substantive act, almost synonymous with the mea-
surement of the original variables. In other words, if you know something about the data you are
analyzing, you almost surely have enough information to choose the coarsening. (And if you don’t
know something about the data, you might ask why you are analyzing it in the first place!)

In general, we want to set the coarsening for each variable so that substantively indistinguish-
able values are grouped and assigned the same numerical value. Groups may be of different sizes if
appropriate. Recall that any coarsening during CEM is used only for matching; the original values
of the variables are passed on to the analysis stage for all matched observations.

For numerical variables, we can use the cutpoints syntax in cem. Thus, for example, in the US
educational system, the following discretization of years of education corresponds to different levels
of school

Grade school 0-6
Middle school 7-8
High school 9-12
College 13-16
Graduate school >16

Using these natural breaks in the data to create the coarsening is generally a good approach and
certainly better than using fixed bin sizes (as in caliper matching) that disregard these meaningful
breaks. In our data, no respondents fall in the last category,

. table education

education | Freq
__________ o
3| 1
4 | 6
5 | 5
6 | 7
71 15
8 | 62
9 | 110
10 | 162
11 | 195
12 | 122
13 | 23
14 | 11
15 | 2
16 | 1

We can use the cutpoints above using parentheses after the education variable:

. cem age education (0 6.5 8.5 12.5 17.5) black nodegree re74, tr(treated)



Matching Summary:

Number of strata: 155
Number of matched strata: 53

0 1

A1l 425 297
Matched 349 245
Unmatched 76 52

Multivariate L1 distance: .43604654

Univariate imbalance:

L1 mean min 25% 50% 75% max

age .05034 -.15556 0 0 0 1 -1
education .0309 .00362 1 -1 0 0 2
black 8.2e-16 1.0e-15 0 0 0 0 0
nodegree 1.2e-15 1.9e-15 0 0 0 0 0
re74 .04975  2.5048 0 0 161.28 -17.37 1198.1

As we can see, this matching solution differs from that resulting from our automated approach in
the previous section. In fact, it has actually increased the balance in matching solution while giving
us a higher number of matched units.

4.2.3 Coarsening categorical variables

For categorical variables that do not have a natural ordering, some recoding might be necessary
before inputing to CEM. For instance, if we have a variable that is

Strongly Agree 1
Agree 2
Neutral 3
Disagree 4
Strongly Disagree 5
No Opinion 6

there is a category (“No Opinion”) that does not fit on the ordinal scale of the variable. In our example
dataset, we have such a variable, q1,

. table q1
ql | Freq
__________________ e
strongly agree | 121
agree | 111
neutral | 129

10



disagree | 121
strongly disagree | 118
no opinion | 122

In order to coarsen this variable, first create a new coarsened variable using the recode com-
mand*:

. recode q1 (1 2 = 1 "agree") (3 6 = 2 "neutral") (4 5 = 3 "disagree"), gen(cem_ql)
(601 differences between ql and cem_ql)

. table cem_ql

RECODE of |
ql | Freq
__________ el __
agree | 232
neutral | 251
disagree | 239

Here we have collapsed the opinions into the direction of opinion, also grouping “No Opinion”
with “Neutral” Once the coarsened variable is created, you can pass this variable to CEM with the
(#0) cutpoints command after it to ensure that CEM does not coarsen further:

cem age education black nodegree re74 cem_ql (#0), tr(treated)

Matching Summary:

Number of strata: 315
Number of matched strata: 81

0 1

All 425 297
Matched 260 190
Unmatched 165 107

Multivariate L1 distance: .5904067
Univariate imbalance:

L1 mean min 25% 50% 75% max
age .14574 -.1994 0 0 0 1 -1

4For variables that are strictly string (non-numeric) variables, users will need to first use the encode command to
convert the strings to numeric, then use recode.

11



education .00263 .00263 1 0 0 0 0
black 3.6e-16 6.7e-16 0 0 0 0 0
nodegree 3.b5e-16 6.7e-16 0 0 0 0 0
re74 .09854 70.061 0 0 375.1 -383.76 96.881
cem_ql 3.le-16 3.1le-15 0 0 0 0 0

When calculating treatment effects after running CEM, be sure to use the original, uncoarsened
variables for analysis. Coarsened variable should only be used to produce matches. After this, they
can be discarded.

4.3 Restricting the matching solution to a k-to-k match

By default, CEM uses maximal information, resulting in strata that may include different numbers
of treated and control units. To compensate for the differential strata sizes, cem also returns weights
to be used in subsequent analyses. Although this is generally the best option, a user with enough data
may opt for a k-to-k solution to avoid the slight inconvenience of needing to use weights.

The argument k2k accomplishes this by pruning observations from a cem solution within each
stratum until the solution contains the same number of treated and control units within all strata.
Pruning occurs within a stratum (for which observations are indistinguishable to cem proper) by
random matching inside cem strata®.

Here is an example of this approach. Running the earlier call with the k2k options yields:

. cem age education black nodegree re74, tr(treated) k2k

Matching Summary:

Number of strata: 205
Number of matched strata: 67

0 1
A1l 425 297

Matched 205 205
Unmatched 220 92

Multivariate L1 distance: .37560976

Univariate imbalance:

L1 mean min 25% 50% 75% max

age .07805 -.10732 0 0 0 0 -1
education 0 0 1 0 0 0 0
black 0 0 0 0 0 0 0
nodegree 0 0 0 0 0 0 0
re74 .0439 -34.547 0 0 -120.7 -214.55 96.881

It is clear that the number of matched units has decreased after using the k2k option.

>Note that in the R version of this software pruning within strata can be done using a distance metric.

12



4.4 Estimating the Causal Effect from cem output

Using the output from cem, we can estimate the SATT by the regular Stata methods, by simply in-
cluding the cem_weights. For example,

. reg re78 treated [iweight=cem_weights]

Source | SS daf MS Number of obs = 552
------------- b F( 1, 550) = 3.15
Model | 128314324 1 128314324 Prob > F = 0.0766
Residual | 2.2420e+10 550 40764521.6 R-squared = 0.0057
————————————— et Adj R-squared = 0.0039
Total | 2.2549e+10 551 40923414.2 Root MSE = 6384.7

re78 | Coef Std. Err t P>t [95% Conf. Intervall
_____________ F oo e
treated | 979.1905 551.9132 1.77 0.077 -104.9252 2063.306
_cons | 4919.49 354.7061 13.87 0.000 4222.745 5616.234

For convenience, we compute this as a regression of the outcome variable on a constant and the
treatment variable, where the SATT estimate is the coefficient on the treated variable, in our case
979.19. Any Stata command that accepts weights (aweight or iweight) can be used.

If exact matching (i.e., without coarsening) was chosen this procedure is appropriate as is. In

other situations, with some coarsening, some imbalance remains in the matched data. The remain-
ing imbalance is strictly bounded by the level of coarsening, which can be seen by any remaining
variation within the coarsened bins. Thus, a reasonable approach in this common situation is to
attempt to adjust for the remaining imbalance via a statistical model. (Modeling assumptions for
models applied to the matched data are much less consequential than they would otherwise be be-
cause CEM is known to strictly bound the level of model dependence.) To apply a statistical model
to control for the remaining imbalance, we simply add variables to the regression command. For
example:

. reg re78 treated re74 re75 [iweight=cem_weights]

Source | SS df MS Number of obs = 562
————————————— B e e B e P F( 3, 548) = 5.42
Model | 649651702 3 216550567 Prob > F = 0.0011
Residual | 2.1899e+10 548 39961951.7 R-squared = 0.0288
————————————— Ao Adj R-squared = 0.0235
Total | 2.2549e+10 551 40923414.2 Root MSE = 6321.5

re78 | Coef Std. Err t P>t [95% Conf. Intervall
_____________ A o e
treated | 988.083  546.5395 1.81 0.071 -85.48584 2061.652
re74 | -.0174322 .1593346 -0.11  0.913 -.3304134 .2955491

re75 | .3190651 .1744905 1.83 0.068 -.023687 .6618172
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_cons | 4287.523  393.0883 10.91  0.000 3515.378 5059.667

The user can also specify glm modeling in the case of binary, count, or other noncontinuous
outcome variables by utilizing their commands in Stata (logit, poisson, etc) combined with the
iweight syntax.

4.5 Multileveled Treatments

CEM can handle treatments with more than two categories. The procedure is essentially the same as
with two categories except that now a matched strata is a strata that contains at least one of each of
the treatment levels. Note that the cem_weights provided by CEM will be calculated in reference
to the baseline category set with the baseline options as in

cem age education black nodegree re74, tr(treated) baseline(0)

which changes the baseline to 0. The cem_weights will ensure that each treatment category will have
the same distribution of the strata as the baseline category after matching. The default for baseline
is to use the value 1 or the first value observed in the treatment variable if 1 is not a valid value of the
treatment variable.

There are a few restrictions when using multileved treatments. First, univariate measures of
imbalance will not be calculated. The multivariate £; measure is still reported and will now take
the maximum difference between treatment groups within a strata as that strata’s contribution to the
overall measure. Second, the k2k option cannot be combined with a multileveled treatment.

4.6 Matching and Missing Data

Almost all previous methods of matching assume the absence of any missing values. In contrast, CEM
offers two approaches to dealing with missing values (item nonresponse). In the first, where we treat
missing values as one of the values of the variables, is appropriate when “.” is a valid value that is not
really missing (such as when “no opinion” really means no opinion). The other is a special procedure
to allow for multiply imputed data in CEM.

4.6.1 Matching on Missingness

« »

If users leave missing values in the data, cem will coarsen the variables as normal, but use “.” as a
separate category for each variable. Thus, cem will match on missingness.

4.6.2 Matching Multiply Imputed Data in a Single File

Consider a data set to be matched, some of which is missing. One approach to analyzing data with
missing values is multiple imputation, which involves creating m (usually about m = 5) data sets,
each of which is the same as the original except that the missing values have been imputed in each.
Uncertainty in the values of the missing cells is represented by variation in the imputations across
the different imputed data sets (King et al., 2001).

When one uses the mi commands in Stata to impute missing data, the program can return the
data in a stacked or flong format. The cem command can take advantage of this format to easily
match multiply imputed datasets. Note that the data must be in the f1long format: one dataset with
i = n + m X n observations, where m is the number of imputed datasets and » is the number of
observations in the original dataset. The first n rows of the data are the original dataset and the
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following m X n rows are each of the imputed datasets. When using the mi commands in Stata, you
can ensure the data are in this format by usingmi set flongormi convert flong.

Once you have your imputed data in f1ong format, you can pass the data to cem along with the
imputation variable and cem will match the multiple imputations. The CEM algorithm first runs
on the entire stacked dataset of imputations, with possibly different strata for each imputation. To
combine strata across imputation, CEM chooses the strata most often assigned to an observation.
This strata assignment is given to each of the imputed datasets (that is, the cem_weights variable is
added to each of the datasets).

To run this command simply add the impvar option:

. use "http://www.mattblackwell.org/files/stata/data/imp-lelonde.dta", clear
(Written by R.

. mi import flong, m(imp) id(mi_id)

. cem age education black nodegree re74, tr(treated) impvar (imp)

(using the scott break method for imbalance)

Matching Summary:

Number of strata: 244

Number of matched strata: 85

A1l 425 297
Matched 299 229
Unmatched 126

Multivariate L1 distance:

0

68

Univariate imbalance:

age
education
black
nodegree
re74

L1

.08093
.01276
.00218
.00437
.056257

mean
-.056183
-.00457
.00063
-.00092
1.1624

.37560605

min

O O O O O

104 .2

75%

0
0
0
232.05

max

1401.7

Now that we have run cem, we can then use mi estimate to easily combine regressions from the
imputed datasets to estimate the SATT (King et al., 2001), being sure to weight by the cem_weights:

. mi estimate: reg re78 treated [iweight=cem_weights]

Multiple-imputation estimates

Linear regression

15

Imputations
Number of obs

Average RVI
Largest FMI
Complete DF

528
0.0353
0.0308
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DF adjustment: Small sample DF: min = 455.20

avg = 472.43

max = 489.65

Model F test: Equal FMI F( 1, 455.2) = 4.04
Within VCE type: OLS Prob > F = 0.0450
re78 | Coef. Std. Err. t P>t [95% Conf. Interval]
_____________ o el
treated | 1112.818  553.5378 2.01 0.045 25.01139 2200.624

cons | 4867.038  362.5507 13.42  0.000 4154 .691 5579.385

In addition to the built-in multiple imputation tools, there are several user-written tools for com-
bining multiple regression output such as miest written by Ken Scheve® and clarify’.

4.6.3 Matching Multiply Imputed Data in Separate Files

Suppose that we have used some imputation program (such as (Honaker, King, and Blackwell, 2010))
to produce 5 imputed datasets, saved as:

impl.dta
imp2.dta
imp3.dta
imp4.dta
impb.dta

As an example we added missingness to the example dataset and imputed it using Honaker, King,
and Blackwell (2010)®. If we place all of the imputed datasets in the same directory and open the first,
we canrun cem with theminame and misets arguments to specify the root of the imputed datasets’
filename and the number of datasets, respectively. In our example, this would be:

. use impl.dta, clear

cem age education black nodegree re74, tr(treated) miname(imp) misets(5)

Matching Summary:

Number of strata: 235
Number of matched strata: 76

0 1

A1l 425 297
Matched 312 217
6

miest is available at http://gking.harvard.edu/amelia/amelial/docs/mi.zip.

7Clarify is available at http: //gking.harvard.edu/stats.shtml#clarify

81f users are interested in working with this example, they can access these sample files at http: // gking.harvard.
edu/cem/impl.dta, etc. Once all five are downloaded, users can generate the following output. The original data file
with missingness added is at http://gking.harvard.edu/cem/lelonde.dta
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http://gking.harvard.edu/amelia/amelia1/docs/mi.zip
http://gking.harvard.edu/stats.shtml#clarify
http://gking.harvard.edu/cem/imp1.dta
http://gking.harvard.edu/cem/imp1.dta
http://gking.harvard.edu/cem/lelonde.dta

Unmatched 113 80

Multivariate L1 distance: .38286064

Univariate imbalance:

L1 mean min 25% 50% 75% max

age .02132 -.07344 .19196 0 1 0 -1
education .01173 -.0121 1 0 0 0 0
black .00207 .00041 0 0 0 0 0
nodegree .00461 -.00092 0 0 0 0 0
re74 .04987 -4.1404 -398.68 0 375.1 -236.7 96.881

Note that after running cem, the data will now contain all imputed datasets in a single, stacked
format so that we can use the estimation procedure as with a single file above.

4.7 Blocking in Randomized Experiments

CEM can produce strata for a block randomized design for a set of pre-treatment covariates. As
block randomized designs outperform complete randomization on bias, efficiency, power and ro-
bustness, it should be used whenever possible (Imai, King, and Nall, 2009; Imai, King, and Stuart,
2008). To create a set of strata for a block randomized design, simply run CEM without passing a
treatment variable. This will assign observations to strata based on their coarsened values and create
a cem_strata variable, indicating this assignment. Once this is complete, simply randomly assign
treatment within these strata to complete the block randomized design.

4.8 Using cem to Improve Other Matching Methods

Even if you plan to use a different matching method, you can still use the CEM algorithm to improve
that matching solution. An important step before matching is restricting the data to areas of com-
mon empirical support. This avoids making inference based on extrapolation as such inferences are
known to be extremely model dependent. Traditional matching methods, however, are not equipped
to handle this situation. For example, the propensity score can be used to find the area of extrap-
olation only after we know that the correct propensity score model has been used. However, the
only way to verify that the correct propensity score model has been specified is to check whether
matching on it produces balance between the treated and control groups on the relevant covariates.
But balance cannot be reliably checked until the region of extrapolation has been removed. To avoid
this type of infinite regress, researchers use entirely different technologies for the first step, such as
kernel density estimation (Heckman, Ichimura, and Todd, 1998) or dropping control units outside
the hyper-rectangle (Iacus and Porro, 2009) or convex hull (King and Zeng, 2006) of the treated units.

The matching methods currently in Stata all rely on propensity score methods for restricting the
data to common empirical support. For CEM, on the other hand, this restriction is a natural con-
sequence of the algorithm. All observations within a stratum containing both a treated and control
unit are by definition inside of the common support. In light of this, a good use of CEM would be to
reduce the data to common support before applying another matching solution such as psmatch2,
nnmatch, or pscore. This will improve the quality of the inferences drawn from these methods.
Once you have run cem, all you must do is run the following command to restrict the data to com-
mon support:
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. drop if cem_matched ==

Alternatively, you can use any of the matching methods with an if cem_matched==1 option.
This will force the other matching methods to only match in the region of common support. As an
example using nnmatch, this would be

. nnmatch re78 treated age education black nodegree re74 if cem_matched ==

Of course you can apply this idea to any matching method in Stata, not just the ones listed here.
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