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Roadmap

1. The difficulty of direct effects

2. Our approach: telescope matching

3. Simulating misspecification

4. Application

5. Conclusion
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1/ The difficulty of direct
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Notation

Setting Effect of frame on immigration media accounts

𝐴𝑖 Binary treatment ∈ {negative frame, positive frame}

𝑀𝑖 Binary mediator ∈ {high anxiety, low anxiety}

𝑌𝑖 Outcome (support for immigration)

𝑌𝑖(𝑎, 𝑚) Potential outcome
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The Quantity of Interest

Definition (Average Controlled Direct Effect)

𝜏(𝑚) = 𝐸[𝑌𝑖(1, 𝑚) − 𝑌𝑖(0, 𝑚)]

• Average effect of manipulating 𝐴𝑖 while fixing 𝑀𝑖 to level 𝑚
• Easily identified if 𝐴𝑖 and 𝑀𝑖 are randomized but...
• Lots of studies are observational in 𝑀𝑖 or both.

7 / 35



The Quantity of Interest

Definition (Average Controlled Direct Effect)

𝜏(𝑚) = 𝐸[𝑌𝑖(1, 𝑚) − 𝑌𝑖(0, 𝑚)]

• Average effect of manipulating 𝐴𝑖 while fixing 𝑀𝑖 to level 𝑚

• Easily identified if 𝐴𝑖 and 𝑀𝑖 are randomized but...
• Lots of studies are observational in 𝑀𝑖 or both.

7 / 35



The Quantity of Interest

Definition (Average Controlled Direct Effect)

𝜏(𝑚) = 𝐸[𝑌𝑖(1, 𝑚) − 𝑌𝑖(0, 𝑚)]

• Average effect of manipulating 𝐴𝑖 while fixing 𝑀𝑖 to level 𝑚
• Easily identified if 𝐴𝑖 and 𝑀𝑖 are randomized but...

• Lots of studies are observational in 𝑀𝑖 or both.

7 / 35



The Quantity of Interest

Definition (Average Controlled Direct Effect)

𝜏(𝑚) = 𝐸[𝑌𝑖(1, 𝑚) − 𝑌𝑖(0, 𝑚)]

• Average effect of manipulating 𝐴𝑖 while fixing 𝑀𝑖 to level 𝑚
• Easily identified if 𝐴𝑖 and 𝑀𝑖 are randomized but...
• Lots of studies are observational in 𝑀𝑖 or both.

7 / 35



Confounders

𝐴𝑖
treatment

𝑌𝑖
outcome

𝑀𝑖
mediator

𝑋𝑖

baseline covariates

𝑍𝑖

intermediate
covariates

8 / 35



Confounders

𝐴𝑖
treatment

𝑌𝑖
outcome

𝑀𝑖
mediator

𝑋𝑖

baseline covariates

𝑍𝑖

intermediate
covariates

8 / 35



Confounders

𝐴𝑖
treatment

𝑌𝑖
outcome

𝑀𝑖
mediator

𝑋𝑖

baseline covariates

𝑍𝑖

intermediate
covariates

8 / 35



Confounders

𝐴𝑖
treatment

𝑌𝑖
outcome

𝑀𝑖
mediator

𝑋𝑖

baseline covariates

𝑍𝑖

intermediate
covariates

8 / 35



Assumptions

Assumption (Sequential Ignorability)

{𝑌𝑖(𝑎, 𝑚), 𝑀𝑖(𝑎), 𝑍𝑖(𝑎)} ⟂⟂ 𝐴𝑖|𝑋𝑖 = 𝑥
𝑌𝑖(𝑎, 𝑚) ⟂⟂ 𝑀𝑖|𝐴𝑖 = 𝑎, 𝑋𝑖 = 𝑥, 𝑍𝑖 = 𝑧

No omitted variables for 𝐴𝑖 given 𝑋𝑖.
No omitted variable for 𝑀𝑖 given 𝐴𝑖, 𝑋𝑖, 𝑍𝑖.

Assumption (Positivity)

0 < 𝑃(𝐴𝑖 = 1|𝑋𝑖 = 𝑥) < 1
0 < 𝑃(𝑀𝑖 = 1|𝑋𝑖 = 𝑥, 𝑍𝑖 = 𝑧, 𝐴𝑖 = 𝑎) < 1

Overlap in the covariate distributions across levels of 𝐴𝑖 and 𝑀𝑖

9 / 35



Assumptions

Assumption (Sequential Ignorability)

{𝑌𝑖(𝑎, 𝑚), 𝑀𝑖(𝑎), 𝑍𝑖(𝑎)} ⟂⟂ 𝐴𝑖|𝑋𝑖 = 𝑥
𝑌𝑖(𝑎, 𝑚) ⟂⟂ 𝑀𝑖|𝐴𝑖 = 𝑎, 𝑋𝑖 = 𝑥, 𝑍𝑖 = 𝑧

No omitted variables for 𝐴𝑖 given 𝑋𝑖.
No omitted variable for 𝑀𝑖 given 𝐴𝑖, 𝑋𝑖, 𝑍𝑖.

Assumption (Positivity)

0 < 𝑃(𝐴𝑖 = 1|𝑋𝑖 = 𝑥) < 1
0 < 𝑃(𝑀𝑖 = 1|𝑋𝑖 = 𝑥, 𝑍𝑖 = 𝑧, 𝐴𝑖 = 𝑎) < 1

Overlap in the covariate distributions across levels of 𝐴𝑖 and 𝑀𝑖

9 / 35



Assumptions

Assumption (Sequential Ignorability)

{𝑌𝑖(𝑎, 𝑚), 𝑀𝑖(𝑎), 𝑍𝑖(𝑎)} ⟂⟂ 𝐴𝑖|𝑋𝑖 = 𝑥
𝑌𝑖(𝑎, 𝑚) ⟂⟂ 𝑀𝑖|𝐴𝑖 = 𝑎, 𝑋𝑖 = 𝑥, 𝑍𝑖 = 𝑧

No omitted variables for 𝐴𝑖 given 𝑋𝑖.
No omitted variable for 𝑀𝑖 given 𝐴𝑖, 𝑋𝑖, 𝑍𝑖.

Assumption (Positivity)

0 < 𝑃(𝐴𝑖 = 1|𝑋𝑖 = 𝑥) < 1
0 < 𝑃(𝑀𝑖 = 1|𝑋𝑖 = 𝑥, 𝑍𝑖 = 𝑧, 𝐴𝑖 = 𝑎) < 1

Overlap in the covariate distributions across levels of 𝐴𝑖 and 𝑀𝑖

9 / 35



The Problem

𝐴𝑖
treatment

𝑌𝑖
outcome

𝑀𝑖
mediator

𝑋𝑖

baseline covariates

𝑍𝑖

intermediate
covariates

naive regression/matching of 𝑌𝑖 on 𝑋𝑖, 𝐴𝑖, 𝑀𝑖, and…

Omit 𝑍𝑖

omitted variable bias
for 𝑀𝑖

Control for 𝑍𝑖

post-treatment bias
for 𝐴𝑖

10 / 35



The Problem

𝐴𝑖
treatment

𝑌𝑖
outcome

𝑀𝑖
mediator

𝑋𝑖

baseline covariates

𝑍𝑖

intermediate
covariates

naive regression/matching of 𝑌𝑖 on 𝑋𝑖, 𝐴𝑖, 𝑀𝑖, and…

Omit 𝑍𝑖

omitted variable bias
for 𝑀𝑖

Control for 𝑍𝑖

post-treatment bias
for 𝐴𝑖

10 / 35



The Problem

𝐴𝑖
treatment

𝑌𝑖
outcome

𝑀𝑖
mediator

𝑋𝑖

baseline covariates

𝑍𝑖

intermediate
covariates

naive regression/matching of 𝑌𝑖 on 𝑋𝑖, 𝐴𝑖, 𝑀𝑖, and…

Omit 𝑍𝑖

omitted variable bias
for 𝑀𝑖

Control for 𝑍𝑖

post-treatment bias
for 𝐴𝑖

10 / 35



The Problem

𝐴𝑖
treatment

𝑌𝑖
outcome

𝑀𝑖
mediator

𝑋𝑖

baseline covariates

𝑍𝑖

intermediate
covariates

naive regression/matching of 𝑌𝑖 on 𝑋𝑖, 𝐴𝑖, 𝑀𝑖, and…

Omit 𝑍𝑖

omitted variable bias
for 𝑀𝑖

Control for 𝑍𝑖

post-treatment bias
for 𝐴𝑖

10 / 35



The Problem

𝐴𝑖
treatment

𝑌𝑖
outcome

𝑀𝑖
mediator

𝑋𝑖

baseline covariates

𝑍𝑖

intermediate
covariates

naive regression/matching of 𝑌𝑖 on 𝑋𝑖, 𝐴𝑖, 𝑀𝑖, and…

Omit 𝑍𝑖

omitted variable bias
for 𝑀𝑖

Control for 𝑍𝑖

post-treatment bias
for 𝐴𝑖

10 / 35



The Problem

𝐴𝑖
treatment

𝑌𝑖
outcome

𝑀𝑖
mediator

𝑋𝑖

baseline covariates

𝑍𝑖

intermediate
covariates

naive regression/matching of 𝑌𝑖 on 𝑋𝑖, 𝐴𝑖, 𝑀𝑖, and…

Omit 𝑍𝑖

omitted variable bias
for 𝑀𝑖

Control for 𝑍𝑖

post-treatment bias
for 𝐴𝑖

10 / 35



Extant solutions are model dependent

Structural
Nested Mean
Models
(SNMMs)

Need the correct model for 𝔼[𝑌𝑖|𝑋𝑖, 𝐴𝑖, 𝑍𝑖, 𝑀𝑖]
and 𝔼[𝑌𝑖|𝑋𝑖, 𝐴𝑖]

Inverse
probability of
treatment
weighting
(IPTW)

Need the correct model for ℙ[𝑀𝑖|𝑋𝑖, 𝐴𝑖, 𝑍𝑖]
and ℙ[𝐴𝑖|𝑋𝑖]
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2/ Our approach: telescope
matching
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Telescope matching

Two-stage matching procedure

Match 𝑀𝑖
on 𝑍𝑖, 𝐴𝑖, and 𝑋𝑖

Use matches to
impute missing
counterfactual

𝑌𝑖(𝐴𝑖, 0)

Match 𝐴𝑖
on 𝑋𝑖

Use matches to
estimate

𝑌𝑖(1, 0) − 𝑌𝑖(0, 0)
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An imputation problem

Unit Observed Potential Outcomes
𝐴𝑖 𝑀𝑖 𝑋𝑖 𝑍𝑖 𝑌𝑖(1, 1) 𝑌𝑖(1, 0) 𝑌𝑖(0, 1) 𝑌𝑖(0, 0)

1 1 1 10 3 𝑌1 ? ? ?
2 1 0 9 2 ? 𝑌2 ? ?
3 1 0 8 1 ? 𝑌3 ? ?
4 0 1 8 3 ? ? 𝑌4 ?
5 0 0 9 2 ? ? ? 𝑌5
6 0 0 10 1 ? ? ? 𝑌6
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First stage

𝐴𝑖 = 0
𝑀𝑖 = 1

𝑌1

𝑌3

𝑌5

𝐴𝑖 = 0
𝑀𝑖 = 0

𝑌2

𝑌4

𝑌6

1. Subset to a
particular level of

𝐴𝑖

2. Match each
𝑀𝑖 = 1 to closest

𝑀𝑖 = 0 unit in
{𝑋𝑖, 𝑍𝑖}

𝑌1,0 = 𝑌2 ≈ 𝑌1(0, 0)

𝑌3,0 = 𝑌4 ≈ 𝑌3(0, 0)

𝑌5,0 = 𝑌6 ≈ 𝑌5(0, 0)
3. Impute missing
counterfactual
with matched 𝑌𝑖0

𝑌𝑖0 = {𝑌𝑖 if 𝑀𝑖 = 0
𝑌ℓ if 𝑀𝑖 = 1, 𝑀ℓ = 0 and ℓ is matched to 𝑖
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1:1 matching example

Unit Observed Potential Outcomes
𝐴𝑖 𝑀𝑖 𝑋𝑖 𝑍𝑖 𝑌𝑖(1, 1) 𝑌𝑖(1, 0) 𝑌𝑖(0, 1) 𝑌𝑖(0, 0)

1 1 1 10 3 𝑌1 ? ? ?
2 1 0 9 2 ? 𝑌2 ? ?
3 1 0 8 1 ? 𝑌3 ? ?
4 0 1 8 3 ? ? 𝑌4 ?
5 0 0 9 2 ? ? ? 𝑌5
6 0 0 10 1 ? ? ? 𝑌6
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Second stage
Standard matching using 𝑌𝑖0 as outcome

completely ignoring 𝑀𝑖 and 𝑍𝑖

1. Match each 𝐴𝑖 = 0 to
closest 𝐴𝑗 = 1 unit in 𝑋

𝑌𝑖(1, 0) = {𝑌𝑗0 if 𝐴𝑖 = 0 & 𝑗 is match for 𝑖
𝑌𝑖0 if 𝐴𝑖 = 1

2. Match each 𝐴𝑖 = 1 to
closest 𝐴𝑗 = 0 unit in 𝑋

𝑌𝑖(0, 0) = {𝑌𝑖0 if 𝐴𝑖 = 0
𝑌𝑗0 if 𝐴𝑖 = 1 & 𝑗 is match for 𝑖

3. Take difference in
means to estimate ACDE

𝜏 = 1
𝑁 ∑𝑁

𝑖=1 𝑌𝑖(1, 0) − 𝑌𝑖(0, 0)
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1:1 matching, second stage

Unit Observed Potential Outcomes
𝐴𝑖 𝑀𝑖 𝑋𝑖 𝑍𝑖 𝑌𝑖(1, 1) 𝑌𝑖(1, 0) 𝑌𝑖(0, 1) 𝑌𝑖(0, 0)

1 1 1 10 3 𝑌1 𝑌2 ? ?
2 1 0 9 2 ? 𝑌2 ? ?
3 1 0 8 1 ? 𝑌3 ? ?
4 0 1 8 3 ? ? 𝑌4 ?
5 0 0 9 2 ? ? ? 𝑌5
6 0 0 10 1 ? ? ? 𝑌6

𝜏 = 1
6[(𝑌2 − 𝑌6) + (𝑌2 − 𝑌5) + (𝑌3 − 𝑌5)

+ (𝑌3 − 𝑌5) + (𝑌2 − 𝑌5) + (𝑌2 − 𝑌6)]
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Properties of estimator

Simple •two standard matching steps
•both can be done without 𝑌𝑖 (avoid p-
hacking)

Consistent •analysis similar to Abadie & Imbens (2006)
•under regularity conditions, 𝜏 converges to
ACDE

Biased
•Bias converges to 0 very slowly
•⇝ doesn’t converge to normal
•follow Abadie and Imbens (2011) and de-
velop bias correction

Robust •more robust to model misspecification
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Matching and the bootstrap

Variance of 𝜏 is
*complicated*

•each 𝑖 could be matched multiple times at
each stage
•⇝ 𝜏 is not a sum of i.i.d. variables.

Nonparametric
bootstrap?

•Abadie and Imbens (2008) show naively
resampling rows is invalid for matching es-
timators

Weighted
bootstrap

•we follow Otsu and Rai (2017) and resam-
ple each contribution to the estimator
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3/ Simulating
misspecification
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Simulation set-up

𝑀𝐴

𝑋1, 𝑋2 𝑍

𝑌

𝑈𝛿

• All variables observed except 𝑈 ⇝ sequential ignorability
holds

• Effect of 𝐴 only through 𝑀 so true ACDE: 𝜏(0) = 0
• 𝛿 controls magnitude of post-treatment confounding

▶ when 𝛿 ≠ 0, controlling for 𝑍 in a naive regression will induce
post-treatment bias.
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Simulation set-up

• Model misspecification as mismeasured confounders (Kang
and Schafer, 2007)

▶ 𝑋 ∗
1 = exp(𝑋1/2)

▶ 𝑋 ∗
2 = 1/(1 + exp(𝑋2)) + 10

▶ 𝑍 ∗
1 = (𝑍1/25 + 6)3

• Comparison methods:
▶ Naive regression conditioning on everything
▶ Sequential g-estimation (SNMM with all linear CEFs)
▶ Telescope matching with bias correction

Number of matches per stage = 3
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Simulation results: Bias
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Simulation results: Root Mean Square Error
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Brader, Suhay, Valentino (2008)

• Experiment on effect of media messages on support for
immigration.

• Main effect: Story w/ negative tone + non-white immigrant
reduced support for immigration.

• Question: Treatment also affected levels of anxiety (𝑀𝑖). Is
there an effect of treatment that remains if the anxiety
mediator is held fixed?

▶ Mediation assumption might be suspect.
• Pre-treatment confounders (𝑋𝑖): Education, Gender, Income,
Age.

• Post-treatment confounder (𝑍𝑖): Perceived harm due to
immigration.
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Brader, Suhay, Valentino (2008)

●

ACDE: Telescope Matching

ACDE: Sequential g−estimation

ACDE: Naive Regression

Average Treatment Effect

−1.0 −0.5 0.0 0.5 1.0
Estimated Effect

• Sequential g-estimation suggests a non-zero ACDE—there
exists an effect even if we fix anxiety.

• Telescope matching shows ACDE closer to zero, high
uncertainty.

• ⇝ Fixing the mediator eliminates most of the treatment
effect.
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Conclusion

• Standard matching doesn’t work for direct effects.

• Direct effects models such as SNMMs and IPTW are model
dependent.

• We introduce two-stage matching procedure to close this
gap.

▶ Estimator is consistent, but biased, so we use bias correction.
▶ Weighted bootstrap for uncertainty estimates.
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Next steps

• Better variance estimators to handle undercoverage in
smaller samples.

• Apply ideas to mediation analysis where there are no 𝑍𝑖.
• How to handle dropping units in the first stage since it
induces post-treatment bias?
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Thanks!

• For more information, see:
•

http://www.mattblackwell.org/files/papers/telescope_matching.pdf
• http://www.mattblackwell.org
• https://www.antonstrezhnev.com/
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SNMMs as imputation estimators

1. Estimate the conditional effect of 𝑀𝑖

𝛾𝑚(𝑥, 𝑧, 𝑎) = 𝔼[𝑌𝑖(𝑎, 1) − 𝑌𝑖(𝑎, 0)|𝑋𝑖 = 𝑥, 𝐴𝑖 = 𝑎, 𝑍𝑖 = 𝑧, 𝑀𝑖 = 1]

2. Impute 𝑌𝑖(𝐴𝑖, 0) by subtracting effect of 𝑀𝑖

𝑌𝑖(𝐴𝑖, 0) = 𝑌𝑖 − 𝑀𝑖 × 𝛾𝑚(𝑋𝑖, 𝑍𝑖, 𝐴𝑖)

3. Regress imputations on treatment and
baseline covariates to get ACDE

𝔼[𝑌𝑖(𝐴𝑖, 0)|𝑋𝑖, 𝐴𝑖]

Depends on
correct model

for
𝐸[𝑌𝑖|𝑋𝑖, 𝑍𝑖, 𝐴𝑖, 𝑀𝑖]

Depends on
correct model

for
𝐸[𝑌𝑖|𝑋𝑖, 𝑍𝑖, 𝐴𝑖, 𝑀𝑖]

Depends on
correct model

for
𝐸[𝑌𝑖|𝑋𝑖, 𝑍𝑖, 𝐴𝑖, 𝑀𝑖]
and 𝐸[𝑌𝑖|𝑋𝑖, 𝐴𝑖]
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