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Abstract
Time-	varying	treatments	are	prevalent	in	the	social	sci-
ences.	For	example,	a	political	campaign	might	decide	
to	air	attack	ads	against	an	opponent,	but	this	decision	
to	go	negative	will	impact	polling	and,	thus,	future	cam-
paign	strategy.	If	an	analyst	naively	applies	methods	for	
point	 exposures	 to	 estimate	 the	 effect	 of	 earlier	 treat-
ments,	 this	 would	 lead	 to	 post-	treatment	 bias.	 Several	
existing	methods	can	adjust	for	this	type	of	time-	varying	
confounding,	 but	 they	 typically	 rely	 on	 strong	 model-
ling	 assumptions.	 In	 this	 paper,	 we	 propose	 a	 novel	
two-	step	 matching	 procedure	 for	 estimating	 the	 effect	
of	two-	period	treatments.	This	method,	telescope match-
ing,	reduces	model	dependence	without	inducing	post-	
treatment	bias	by	using	matching	with	replacement	to	
impute	 missing	 counterfactual	 outcomes.	 It	 then	 em-
ploys	 flexible	 regression	 models	 to	 correct	 for	 bias	 in-
duced	by	imperfect	matches.	We	derive	the	asymptotic	
properties	of	the	telescope	matching	estimator	and	pro-
vide	a	consistent	estimator	for	its	variance.	We	illustrate	
telescope	matching	by	investigating	the	effect	of	nega-
tive	campaigning	in	US	Senate	and	gubernatorial	elec-
tions.	Using	the	method,	we	uncover	a	positive	effect	on	
turnout	of	negative	ads	early	in	a	campaign	and	a	nega-
tive	effect	of	early	negativity	on	vote	shares.
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1 |  INTRODUCTION

Political	campaigns	are	inherently	dynamic.	Candidates	develop	strategies	in	response	to	on-	the-	
ground	campaign	conditions,	which	in	turn	affect	strategies	as	races	move	closer	to	election	day.	
A	prominent	example	of	this	dynamic	structure	is	the	use	of	negative	advertising.	Candidates	
often	‘go	negative’	in	response	to	poor	polling	or	to	respond	to	attacks	made	by	their	opponents.	
But	 what	 effect	 does	 ‘going	 negative’	 actually	 have?	 From	 the	 perspective	 of	 statisticians	 and	
analysts,	estimating	the	time-	varying	effects	of	campaign	negativity	on	various	outcomes	such	
as	vote	shares	and	voter	turnout	is	challenging.	Polling,	for	example,	is	both	a	consequence	and	
cause	of	negativity	at	different	points	 in	 time.	And	 if	polling	 is	 related	 to	 the	outcome	 (voter	
turnout	or	vote	shares	in	favour	of	a	candidate),	then	controlling	for	polling	earlier	in	a	campaign	
cycle	can	lead	to	post-	treatment	bias	in	the	estimation	of	the	effect	of	early	campaign	negativity	
for	a	fixed	level	of	late	campaign	negativity	(Blackwell,	2013;	Robins,	1997).

What	can	analysts	do	in	these	situations?	Several	parametric	and	semi-	parametric	methods	
have	been	developed	for	estimating	such	time-	varying	effects,	including	the	parametric	g-	formula,	
structural	nested	models	and	marginal	structural	models	(Richardson	&	Rotnitzky,	2014;	Robins,	
1986).	Unfortunately,	these	extant	approaches	require	the	(correct)	specification	of	several	mod-
els,	meaning	that	any	inferences	are	heavily	dependent	on	those	modelling	choices.	Matching,	on	
the	other	hand,	is	a	popular	strategy	for	estimating	average	treatment	effects	for	a	single	binary	
treatment	and	is	known	to	reduce	model	dependence	(Abadie	&	Imbens,	2006;	Dehejia	&	Wahba,	
1999;	Ho	et al.,	2006;	Rosenbaum,	1995).	However,	although	it	has	been	widely	adopted	in	the	
social	and	biomedical	sciences	due	to	its	nonparametric	and	intuitive	nature,	its	application	has	
been	very	limited	in	situations	with	multiple	or	time-	varying	treatments.	Standard	matching	can	
be	used	to	estimate	the	effect	of	the	last	period	treatment	(since	that	can	be	formulated	as	a	point-	
exposure	problem),	but	it	will	fail	for	the	effect	of	earlier	exposure	due	to	post-	treatment	bias.

In	this	paper,	we	present	a	new	matching	method	for	estimating	the	effect	of	time-	varying	
treatments	 that	 helps	 reduce	 dependence	 on	 these	 modelling	 assumptions	 without	 inducing	
post-	treatment	bias.	We	focus	on	the	case	with	two	treatment	exposures—	in	our	example,	nega-
tivity	early	in	the	campaign	and	late	in	the	campaign.	Our	method	matches	in	two	steps,	first	for	
the	early	treatment	(going	negative	early	in	a	campaign)	and	then	for	the	late	treatment	(going	
negative	later),	using	different	covariate	sets	for	each	step.	This	two-	stage	approach,	which	we	
call	telescope matching,	adjusts	for	only	baseline	confounders	in	the	first	stage,	telescoping out	to	
adjust	for	both	the	baseline	and	intermediate	confounders	in	the	second	stage.	These	matching	
steps	help	impute	missing	counterfactual	outcomes	for	each	unit,	which	then	can	be	used	to	esti-
mate	the	effects	of	interest—	in	our	case,	the	effect	of	a	candidate	going	negative	on	voter	turnout	
and	the	vote	shares	of	the	respective	candidates.

Previous	 propensity	 score	 matching	 methods	 have	 been	 developed	 for	 time-	varying	 treat-
ments	(Lechner,	2004),	and	we	make	two	key	contributions	to	this	 literature.	First,	we	extend	
previous	matching	algorithms	to	handle	direct	matching	on	covariates	rather	than	simply	relying	
on	propensity	scores,	which	have	been	shown	to	have	poor	performance	in	matching	applica-
tions	 (King	 &	 Nielsen,	 2019).	 Second,	 we	 derive	 the	 large-	sample	 properties	 of	 the	 telescope	
matching	estimator,	which	can	encompass	both	direct	and	propensity	score	matching,	under	a	
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fixed	number	of	matches	and	show	that	while	it	is	consistent	for	the	effect	of	early	exposure,	it	
possesses	a	bias	due	to	inexact	matches	that	prevents	convergence	to	a	stable	asymptotic	distri-
bution,	as	is	the	case	with	point-	exposure	matching	(Abadie	&	Imbens,	2006).	This	bias	even	ex-
tends	to	propensity	score	matching	with	time-	varying	treatment,	unlike	in	the	single-	treatment	
setting	(Abadie	&	Imbens,	2016).	We	thus	develop	a	bias-	correction	method	that	uses	regression	
estimators	in	a	similar	manner	to	Abadie	and	Imbens	(2011)	and	show	that,	under	some	regular-
ity	conditions,	the	asymptotic	distribution	of	the	bias-	corrected	and	simple	matching	estimator	
are	the	same.	We	further	leverage	this	bias	correction	to	derive	a	consistent	variance	estimator	
for	our	matching	estimator.

Although	we	present	the	regressions	here	as	bias	correction	for	simple	matching,	telescope	
matching	can	also	be	seen	as	a	way	to	make	regression	approaches	to	estimating	these	effects	
(such	as	structural	nested	mean	models)	more	robust	to	modelling	assumptions.	We	show	that	
this	is	the	case	in	our	simulations—	when	the	regression	models	are	correctly	specified,	telescope	
matching	shows	similarly	small	levels	of	bias	compared	to	these	other	methods	but	is	slightly	less	
efficient.	When	these	models	are	misspecified,	however,	our	procedure	shows	considerably	lower	
bias	even	in	a	setting	where	other	methods	that	attempt	to	reduce	model	dependence	such	as	co-
variate	balancing	propensity	scores	are	unstable	(Imai	&	Ratkovic,	2015).	While	these	results	are	
not	likely	to	hold	across	all	possible	data	generating	processes,	they	demonstrate	that	telescope	
matching	can	help	to	guard	against	misspecification	of	the	outcome	or	propensity	score	models	
at	the	expense	of	efficiency	when	those	models	are	correct.

Telescope	matching	has	additional	benefits	in	this	setting.	First,	both	matching	steps	can	be	
done	and	evaluated	without	access	to	the	outcome,	reducing	the	potential	for	biased	model	se-
lection.	Second,	the	matching	procedure	can	be	applied	to	any	type	of	outcome	variable,	whereas	
methods	like	structural	nested	mean	models	are	difficult	to	apply	to	binary	outcomes.

This	paper	proceeds	as	follows.	We	begin	with	a	description	of	the	applied	setting	of	a	can-
didate	going	negative	in	the	course	of	a	political	campaign	in	Section	2.	In	Section	3,	we	define	
the	relevant	quantities	of	 interest	and	 the	assumptions	necessary	 to	 identify	 these	effects—	in	
our	case,	the	effect	of	going	negative	on	election-	day	outcomes.	We	then	develop	our	telescope	
matching	approach	to	estimating	these	direct	effects,	discuss	its	large-	sample	properties,	describe	
the	bias-	correction	approach,	and	derive	variance	estimators.	In	addition,	we	discuss	how	this	
matching	estimator	compares	to	other	ways	of	estimating	time-	varying	effects,	with	special	at-
tention	to	previously	proposed	sequential	propensity	score	matching	estimators.	We	then	con-
duct	 a	 simulation	 study	 in	 Section	 4	 that	 shows	 how	 these	 various	 estimators	 perform	 when	
a	researcher	has	correct	and	incorrect	specifications	of	the	outcome	regression	and	propensity	
score	 models.	 In	 Section	 5	 we	 apply	 the	 method	 to	 our	 application	 of	 negative	 campaigning;	
using	this	technique,	we	find,	contrary	to	the	existing	work	in	this	area,	that	there	is	a	positive	
effect	of	an	incumbent	candidate	going	negative	early	in	the	campaign	on	voter	turnout.	We	also	
find	a	negative	effect	on	early	negativity	on	incumbent	vote	shares.	This	suggests	that	‘going	neg-
ative’	might	actually	create	a	backlash	effect	where	outpartisans	are	motivated	to	turnout	against	
a	candidate	who	runs	the	negative	ads.

2 |  MOTIVATING APPLICATION

A	substantial	literature	in	political	science	addresses	the	question	of	‘campaign	effects’—	that	is,	
how	the	course	of	political	campaigns	affect	various	electoral	outcomes	(see	Jacobson,	2015,	for	
a	review	of	this	literature).	Here,	scholars	have	studied	a	wide	variety	of	tools	that	campaigns	
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use	to	mobilize	(or	demobilize)	voters	and	to	persuade	voters	to	change	their	vote.	These	tools	
include	 door-	to-	door	 canvassing,	 rallies,	 speeches,	 news	 conferences,	 social	 media	 posts	 and	
advertisements.

One	particularly	important	campaign	tool	is	negative	campaigning—	or,	ads	that	directly	at-
tack	an	opponent.	 (This	 stands	 in	contrast	 to	ads	 that	 simply	promote	 the	candidate	herself.)	
Although	a	number	of	studies	using	experimental	and	observational	approaches	have	tried	to	
estimate	the	effect	of	negative	advertising	on	turnout	in	US	elections	(Lau	et al.,	2007),	the	di-
rection	of	the	effect	is	difficult	to	predict	a priori.	On	the	one	hand,	we	might	think	that	nega-
tivity	generates	more	media	attention,	leading	to	more	interest	in	the	campaign	and	thus	higher	
turnout.	On	the	other	hand,	negativity	might	cause	citizens	to	become	disenchanted	with	the	
political	process	and,	thus,	disengage,	leading	to	lower	voter	turnout.	Evidence	from	the	empir-
ical	 literature	 is	mixed.	One	meta-	analysis	concluded	that	 ‘the	research	 literature	provides	no	
general	support	for	the	hypothesis	that	negative	political	campaigning	depresses	voter	turnout.	If	
anything,	negative	campaigning	more	frequently	appears	to	have	a	slight	mobilizing	effect’	(Lau	
et al.,	2007).

A	problem	with	these	studies	 is,	however,	 that	 they	fail	 to	consider	 the	dynamic	nature	of	
campaigning.	Candidates	tend	to	‘go	on	the	attack’	in	response	to	something—	usually	something	
like	falling	behind	in	the	polls	or	being	on	the	receiving	end	of	attack	ads	from	their	own	oppo-
nents	(Blackwell,	2013).	Ignoring	the	dynamic	nature	of	negative	advertising	means	that	existing	
studies	tend	to	estimate	the	effect	of	‘going	negative’	at	just	one	point	in	time.	Not	only	does	this	
approach	ignore	how	effects	vary	over	time,	but	also	it	becomes	challenging	to	think	about	which	
variables	to	control	for	and	which	to	ignore.

Here,	we	 investigate	 the	effect	of	campaign	negativity	on	voter	 turnout	and	vote	 shares	 in	
US	Senate	and	gubernatorial	elections	from	2000	to	2016.	For	each	campaign,	we	have	collected	
data	on	the	types	of	television	ads	shown,	the	polling	of	the	candidates	in	the	race,	the	amount	
donated	to	each	candidate	in	the	race,	and	a	host	of	background	features	of	the	race	and	its	can-
didates.	Because	we	are	interested	in	the	effects	of	negativity	early	in	the	race	(from	the	primary	
until	 the	end	of	September),	we	need	a	method	that	can	adjust	 for	 time-	varying	confounding	
without	introducing	post-	treatment	bias.	Furthermore,	many	of	the	covariates	we	measure	are	
continuous	with	potentially	nonlinear	relationships	with	both	the	decision	to	go	negative	and	the	
outcomes.	Thus,	it	is	essential	to	have	a	method	that	is	robust	to	the	sometimes	ad-	hoc	modelling	
decisions	researchers	are	forced	to	make.

3 |  PROPOSED METHOD

3.1 | Notation and assumptions

We	focus	on	the	case	of	two	binary	treatment	exposures	over	time,	though	it	is	possible	to	extend	
the	approach	to	arbitrary	numbers	of	periods.	Let	Ai1 ∈ {0, 1}	and	Ai2 ∈ {0, 1}	denote	the	value	
of	early	and	late	treatment,	respectively,	for	unit	i.	The	goal	of	the	analysis	is	to	estimate	the	effect	
of	treatment	on	some	outcome,	Yi.	We	define	potential	outcomes	for	this	variable	under	the	vari-
ous	combinations	of	the	treatment	history,	Yi(a1, a2)	(Robins,	1986;	Rubin,	1974).	We	make	the	
usual	consistency	assumption,	Yi = Yi(a1, a2)	if	Ai1 = a1	and	Ai2 = a2,	which	states	that	the	ob-
served	outcome	for	unit	i	is	the	potential	outcome	for	that	unit	at	its	observed	level	of	Ai1	and	Ai2.

We	define	two	sets	of	relevant	covariates:	baseline	and	intermediate.	The	baseline	covariates,	
Xi,	are	causally	prior	to	both	treatments.	Thus,	researchers	can	adjust	for	these	covariates	using	
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typical	causal	inference	techniques	such	as	regression,	weighting	or	matching.	The	intermediate	
covariates,	Zi,	can	be	affected	by	Ai1,	but	are	causally	prior	to	Ai2	and	confound	the	relationship	
between	the	outcome	and	late	treatment.	These	covariates	pose	problems	for	standard	models	
when	trying	to	estimate	the	effect	of	the	entire	treatment	history	due	to	the	potential	for	post-	
treatment	bias	induced	by	conditioning	on	them	(Robins,	1997;	Rosenbaum,	1984).	An	example	
of	this	causal	structure	is	shown	in	Figure	1.

Our	goal	in	this	paper	is	to	estimate	the	effect	of	early	exposure	to	negative	ads	on	voter	turnout			
for	a	fixed	value	of	late	negativity:	�a2 = E{Yi(1, a2) − Yi(0, a2)}.	This	quantity	represents	the	aver-
age	effect	of	early	treatment	when	late	treatment	is	fixed	at	a	particular	value.	For	this	paper,	we	focus	
on	the	effect	when	a2 = 0	and	write	� ≡ �0,	but	it	is	straightforward	to	estimate	the	effects	at	any	level.	
We	can	also	define	the	conditional	effect	of	early	treatment:	�(x) = E{Yi(1, 0) − Yi(0, 0) |Xi = x}.			
This	is	the	direct	effect	of	early	treatment	within	levels	of	the	baseline	covariates.	We	can	recover	
the	 marginal	 effect	 from	 the	 conditional	 effects	 by	 averaging	 over	 the	 distribution	 of	 the	 data:	
� = E{�(Xi)}.	In	the	context	of	mediation	studies,	this	quantity	is	also	known	as	the	controlled	direct	
effect	(Robins	&	Greenland,	1992)	(see	the	dashed	lines	in	Figure	1).

We	make	the	following	sequential	ignorability	assumption	about	the	treatment	history:

Assumption 1	 (Sequential	Ignorability)	For	every	value,	a1, a2, x, z:	

	

The	 first	 part	 of	 this	 assumption	 states	 that	 early	 treatment	 is	 independent	 of	 the	 potential	
outcomes,	conditional	on	baseline	covariates.	The	second	part	states	that	the	late	treatment	is	
independent	 of	 the	 potential	 outcomes,	 conditional	 on	 early	 treatment	 and	 the	 baseline	 and	
intermediate	 covariates.	 This	 assumption	 essentially	 requires	 two	 ‘selection-	on-	observables’	
conditions,	 one	 for	 each	 treatment.	Thus,	 there	 must	 be	 no	 unmeasured	 confounders	 for	 the	
early-	treatment-	outcome	relationship	after	conditioning	on	Xi	and	no	unmeasured	confounders	
for	the	late-	treatment-	outcome	relationship	after	conditioning	on	{Xi, Ai1, Zi}.	Note	that	this	se-
quential	ignorability	assumption	is	considerably	weaker	than	a	version	of	sequential	ignorability	
used	in	mediation	analyses	that	requires	no	intermediate	confounders	(Imai	et al.,	2010).

We	further	assume	that	the	distributions	of	the	treatments	are	not	degenerate	at	any	values	
of	the	covariates.

(1)
{Yi(a1, a2),Zi(a1)}⊥⊥Ai1|Xi = x,

(2)Yi(a1, a2)⊥⊥Ai2|Xi = x, Zi = z, Ai1 = a1.

F I G U R E  1 	 Directed	acyclic	graph	showing	the	causal	relationships	in	the	present	setting.	Dashed	red	lines	
represent	the	effect	of	early	treatment	for	fixed	values	of	later	treatment.	Unobserved	errors	are	omitted
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Assumption 2	 (Positivity)	For	every	value,	a, x, z,	and	for	some	values	η > 0	and	ν > 0:	

	

The	first	part	of	this	assumption	requires	that	the	treated	and	control	distributions	of	the	base-
line	covariates	have	the	same	support.	The	second	part	extends	this	assumption	to	the	Ai2 = 1	
and	Ai2 = 0	covariate	distributions.	These	are	straightforward	generalizations	of	 the	common	
support	assumptions	in	the	matching	literature	to	this	settings.

A	 few	 other	 pieces	 of	 notation	 will	 be	 useful.	 First,	 we	 define	 a	 series	 of	 conditional	 ex-
pectation	 functions	 (CEF)	 of	 the	 potential	 outcomes,	 conditional	 on	 different	 sets	 of	 covari-
ates.	 In	 particular,	 we	 define	 �a1a2 (x, z, a1) = E{Y (a1, a2) |Xi = x, Zi = z, Ai1 = a1}	 and		
�a1a2 (x, a1) = E{Yi(a1, a2) |Xi = x, Ai1 = a1}.	 Let	 �(x, z, a1, a2) = E(Yi |Xi = x, Zi = z, Ai1 = a1, Ai2 = a2)	 	 	
be	 the	 CEF	 of	 the	 observed	 outcome,	 noting	 that	 under	 Assumption	 1,	
�a1a2 (x, z, a1) = �(x, z, a1, a2).	We	also	define	two	types	of	residuals,	�i = Yi − �(Xi, Zi, Ai1, Ai2)	
and	 �i = �Ai10(Xi, Zi, Ai1) − �Ai10(Xi, Ai1).	 The	 first	 is	 the	 CEF	 error	 for	Yi	 and	 the	 second	
captures	 the	 variation	 in	 the	 CEF	 of	 the	 potential	 outcomes	 that	 is	 due	 to	 Zi.	 Given	 these	
definitions,	 we	 have	 E(�i |X, A1) = 0	 and	 E(�i |X, Z, A1, A2) = 0,	 where	 X	 and	 Z	 are	 the	
entire	 N × kx	 and	 N × kz	 matrices	 of	 baseline	 and	 intermediate	 covariates,	 and	 A1	 and	 A2	
are	 the	 N	 vectors	 of	 the	 early	 and	 late	 treatments.	 Finally,	 we	 define	 various	 conditional	
variance	 functions.	 Let	 �2(x, z, a1, a2) = var(Yi |Xi = x, Zi = z, Ai1 = a1, Ai2 = a2)	 and	
�2�(x, a1) = var[E{Yi(a1, 0)|Xi = x, Zi, Ai1 = a1} |Xi = x, Ai1 = a1] = E(�2

i
|Xi = x, Ai1 = a1)	.	

Again,	under	Assumption	1,	�2(x, z, a1, a2) = var{Yi(a1, a2) |Xi = x, Zi = z, Ai1 = a1}.

3.2 | The telescope matching procedure

How	can	we	estimate	the	effect	of	early	treatment	fixing	late	treatment?	If	Ai1	and	Ai2	are	jointly	
randomized,	then	standard	tools	for	multileveled	treatments	can	be	used	to	estimate	the	direct	
effect	of	a	treatment	since	there	are	no	covariates	for	which	to	adjust.	When	there	are	only	base-
line	 confounders,	 then	 standard	 selection-	on-	observable	 methods	 for	 multileveled	 treatments	
can	 be	 applied	 (Imbens,	 2004).	 However,	 when	 there	 are	 post-	treatment	 confounders	 for	 the	
relationship	between	Ai2	and	Yi,	we	must	turn	to	other	methods	to	adjust	for	this	form	of	con-
founding.	Our	proposed	approach,	which	we	call	telescope matching,	imputes	values	of	the	miss-
ing	 potential	 outcomes	 in	 a	 flexible	 manner.	 For	 any	 particular	 unit,	 we	 only	 observe	 one	 of	
four	possible	potential	outcomes,	an	issue	sometimes	called	the	fundamental	problem	of	causal	
inference.	To	estimate	the	effect	of	Ai1	when	Ai2 = 0,	we	would	like	to	observe	values	for	Yi(1, 0)	
and	Yi(0, 0)	for	all	units.	The	goal	of	telescope	matching	is	to	use	matching	methods	in	order	to	
obtain	reasonable	imputations	of	these	values	for	all	units.	We	describe	the	technical	details	of	
the	matching	and	imputation	procedure	here,	but	we	also	provide	a	simple	example	of	the	pro-
cedure	with	N = 6	in	Supplemental	Materials	Section	A.

The	broad	approach	to	sequential	matching	for	time-	varying	treatments	we	describe	below	
was	first	proposed	by	Lechner	(2004)	and	focused	on	creating	pair	matches	using	the	propensity	
scores	for	Ai1	and	Ai2	(see	Huber	et al.,	2018;	Lechner	&	Miquel,	2010,	for	applications	of	this	
method).	Our	proposed	matching	approach	generalizes	this	algorithm	to	allow	for	using	more	
than	a	single	match	and	to	allow	for	matching	directly	on	covariates	in	addition	to	propensity	

(3)𝜂 < pr(Ai1 = 1|Xi = x) < 1 − 𝜂,

(4)𝜈 < pr(Ai2 = 1|Xi = x, Zi = z, Ai1 = a) < 1 − 𝜈.
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scores.	Generalizing	beyond	a	single	match	 is	 important	 for	 trading	off	bias	and	efficiency	of	
our	estimators,	while	allowing	direct	matching	provides	robustness	against	misspecification	of	
the	propensity	score	models.	Below	we	discuss	more	fully	the	advantages	and	disadvantages	of	
working	with	direct	matching	versus	propensity	score	matching.	Finally,	we	extend	the	proposal	
of	Lechner	(2004)	by	deriving	the	large-	sample	properties	of	telescope	matching	in	the	following	
sections	and	show	that	all	of	these	matching	methods	require	bias	correction.

In	the	first	step	of	telescope	matching,	we	match	each	unit	to	L	units	of	the	opposite	early	
treatment	status	with	similar	values	of	the	baseline	covariates	as	if	we	were	attempting	to	esti-
mate	the	average	treatment	effect	of	Ai1	adjusting	for	Xi.	We	follow	Abadie	and	Imbens	(2006)	
in	 much	 of	 our	 discussion	 of	 matching	 estimators.	 Given	 a	 particular	 distance	 metric	 on	 the	
support	of	Xi	(such	as	the	Euclidean	norm	or	the	Mahalanobis	distance)	and	given	a	particular	
unit	 i,	we	choose	L	units,	here	indexed	by	 j,	 that	are	the	closest	to	 i	 in	terms	of	covariate	dis-
tance	that	have	Aj1 = 1 − Ai1.	Let	1L(i)	denote	this	set	of	units	that	are	matched	to	some	unit	
i.	Matching	is	done	with	replacement	so	each	unit	might	be	matched	to	multiple	times,	and	we	
let	K1L(i) =

∑N
k=1 �{i ∈ 1L(k)}	be	the	number	of	times	that	unit	i	is	used	as	a	match	in	the	first	

stage,	where	�{ ⋅}	is	the	indicator	function.	As	in	Abadie	and	Imbens	(2006),	this	quantity	is	im-
portant	to	the	asymptotic	distribution	of	the	matching	estimator.

In	the	second	stage,	we	match	across	levels	of	late	treatment	to	minimize	the	imbalance	in	
terms	of	both	baseline	and	intermediate	confounders.	Letting	Vi = (Xi, Zi),	the	second	step	of	
telescope	 matching	 is	 to	 match	 each	 unit	 with	Ai2 = 1	 to	 some	 number	 of	 units,	 indexed	 by	
ℓ,	 with	A�2 = 0	 that	 have	 similar	 values	 of	 covariates	Vi	 and	 identical	 early	 treatment	 status	
Ai1 = A�1.	Let	2L(i)	denote	this	set	of	units	that	are	matched	to	some	unit	i	with	Ai2 = 1,	with	
K2L(i) =

∑N
k=1 �{i ∈ 2L(k)}	being	the	number	of	times	that	unit	i	is	used	as	a	match	in	the	sec-

ond	stage.
Typically,	each	of	these	steps	would	be	used	to	estimate	the	average	effect	of	treatment	given	

the	past,	but	here	we	are	actually	more	interested	in	obtaining	a	good	imputation	of	the	potential	
outcome	for	different	treatment	histories.	We	do	so	by	moving	backward	through	the	treatment	
history.	Let	Yi(Ai1, 0)	be	 the	composite	potential	outcome	under	 the	observed	early	 treatment	
status	for	i,	but	with	late	treatment	set	to	0,	which	is	unobserved	for	any	unit	with	Ai2 = 1.	We	
define	the	following	imputation:	

For	units	observed	with	Ai2 = 0,	we	observe	Yi(Ai1, 0) = Yi	by	consistency.	However,	for	units	with	
Ai2 = 1,	we	need	to	impute	the	missing	counterfactual	outcome	and	do	so	by	averaging	the	outcome	
among	those	units	with	Ai2 = 0	which	were	matched	to	unit	i.	These	units	have	identical	early	treat-
ment	levels	Ai1	and	are	the	closest	to	i	in	terms	of	the	baseline	and	intermediate	covariates.	Using	the	
first-	stage	matching,	we	can	now	generate	imputations	of	the	base	potential	outcomes	with	Ai2 = 0:	

Ŷ i(Ai1, 0) =

⎧⎪⎨⎪⎩

Yi if Ai2=0
1

L

�
�∈2L(i)

Y� if Ai2=1

Ŷ i(a1, 0) =

⎧⎪⎨⎪⎩

Ŷ i(Ai1, 0) if Ai1=a1
1

L

�
j∈1L(i)

Ŷ j(Aj1, 0) if Ai1=1−a1
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With	these	definitions	in	hand,	we	can	then	apply	a	standard	difference	in	means	matching	estima-
tor.	 In	 particular,	 the	 simple	 telescope	 matching	 estimate	 of	 the	 effect	 of	 early	 treatment	 then	
becomes	

In	general,	this	estimator	will	perform	well	when	the	matching	discrepancies	in	the	covariates	are	
small.	One	can	assess	the	matching	quality	of	each	step	using	standard	matching	diagnostics	applied	
to	the	appropriate	covariate	set.	For	instance,	for	the	second	step,	we	would	check	the	balance	of	the	
matched	Ai2 = 1	units	to	the	Ai2 = 0	units	in	terms	of	both	Xi	and	Zi.

Both	K1L(i)	and	K2L(i)	tell	us	how	much	unit	i	is	contributing	to	the	overall	estimate	through	
being	matched	in	the	first	and	second	stages	respectively.	Of	course,	units	with	Ai2 = 0	might	
also	 contribute	 indirectly	 if	 they	 are	 matched	 to	 a	 Ai2 = 1	 unit	 in	 the	 second	 stage	 and	 that	
Ai2 = 1	unit	is	used	as	a	match	in	the	first	stage.	To	account	for	such	indirect	contributions	of	a	
unit,	 let	K∗L(i) =

∑N
j=1 �{i ∈ 2L(j)}K1L(j)	be	 the	number	of	 times	a	second-	stage	match	with	

Ai2 = 0	is	implicitly	used	as	a	match	in	the	first	stage	because	the	unit	to	which	it	was	matched	
is	selected	as	a	match	in	the	first	stage.	We	can	rewrite	the	simple	telescope	matching	estimator	
as	a	weighted	average	of	units	with	Ai2 = 0,	�̂ = N−1 ∑N

i=1 (2Ai1 − 1)(1 − Ai2)WiYi,	where:	

This	weighted-	average	version	of	the	estimator	highlights	how	the	K	terms	might	affect	the	variance	
of	our	estimators—	units	that	are	used	as	matches	many	times	can	lead	to	large	weights	and	thus	
higher	variances.	This	provides	one	reason	to	keep	the	number	of	matches	L	relatively	low.	One	
data-	driven	approach	to	selecting	L	would	be	to	start	at	some	modest	number	such	as	L = 5	or	L = 10	
and	then	decrease	the	matching	ratio	until	some	pre-	specified	balance	criteria	is	met.	Unfortunately,	
given	the	variety	of	possible	balance	criteria,	it	is	beyond	the	scope	of	this	paper	to	develop	a	general	
way	to	find	the	optimal	matching	ratio.

3.3 | Bias and consistency

Abadie	and	Imbens	(2006)	showed	that	in	the	context	of	estimating	the	overall	ATE	of	a	point	
exposure,	 the	 equivalent	 simple	 matching	 procedure	 was	 biased	 due	 to	 imperfect	 matches.	
Furthermore,	they	showed	that	with	a	fixed	size	for	the	matched	set,	L,	this	bias	converges	to	0	
as	the	sample	size	increases,	but	at	a	rate	slow	enough	to	affect	the	asymptotic	distribution	of	the	
matching	estimator.	In	this	section,	we	show	that	a	similar	account	holds	in	the	present	setting.

In	the	Supplemental	Materials,	we	show	that	one	can	decompose	the	estimation	error	of	�̂ 	as	
follows:	

�̂ ≡
1

N

N∑
i=1

(
Ŷ i(1, 0) − Ŷ i(0, 0)

)
.

(5)Wi = 1 +
K1L(i)

L
+
K2L(i)

L
+
K∗L(i)

L2
.

(6)�̂ − � =

(
1

N

N∑
i=1

�(Xi) − �

)
+U1L +U2L + B1L + B2L.
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	The	first	term	in	the	decomposition,	(1∕N)
∑N

i=1 �(Xi) − �,	is	the	difference	between	the	sample	
average	of	the	conditional	effects	and	the	marginal	effect,	which	converges	to	0	under	a	standard	law	
of	large	numbers.	Next	in	the	decomposition	are	two	weighted	sums	of	the	residuals:	

	The	error	due	to	the	second-	stage	is	mean-	zero	conditional	on	all	variables,	E(U2L |X, A1, Z, A2) = 0	,	
and	the	error	due	to	the	first-	stage	is	mean-	zero	conditional	on	the	baseline	covariates	and	the	treat-
ment,	E(U1L |X, A1) = 0.	Thus,	the	first	three	terms	impose	no	bias	on	the	matching	estimator.

Finally,	 the	 last	 two	terms	capture	 the	bias	of	 the	matching	procedure	due	to	 the	 first	and	
second-	stages	of	matching:	

These	bias	terms	reflect	the	matching	discrepancy	at	each	stage	of	matching.	For	instance,	the	last	
term	in	the	definition	of	B2L	is	the	difference	in	the	expectation	of	the	outcome	for	the	covariates	
for	unit	 i	and	for	the	units	matched	to	 i.	This	bias	 is	amplified	by	the	number	of	 times	that	this	
Ai2 = 1	unit	is	matched	in	the	first	stage.	If	the	matches	were	perfect,	then	we	would	have	Xi = X�	
and	Zi = Z�	for	all	� ∈ 2L(i)	and	Xi = Xj	for	all	 j ∈ 1L(i),	and	both	of	these	bias	terms	would	
be	equal	to	0.	In	general,	however,	matches	are	imperfect	when	we	have	any	continuous	covariates	
and	so	these	bias	terms	will	not	be	mean-	zero	(Abadie	&	Imbens,	2006).	Importantly	for	the	results	
below,	though,	these	values	do	converge	to	0	as	N	increases.

To	establish	the	large-	sample	properties	of	 the	matching	estimator,	we	make	the	following	
regularity	conditions,	which	mostly	generalize	those	of	Abadie	and	Imbens	(2006)	to	the	current	
setting.

Assumption 3	 (Regularity	conditions)	We	assume	the	following:

1.	 Let	Vi = (Zi, Xi)	be	a	random	vector	of	k = kz + kx	continuous	covariates	distributed	on	ℝk	
with	compact	and	convex	support	� ,	with	its	density	bounded	and	bounded	away	from	zero.

2.	{(Yi, Ai2, Zi, Ai1, Xi)}Ni=1	are	independent	and	identically	distributed.
3.	 The	functions	�(x, z, a1, a2),	�2(x, z, a1, a2),	and	�2�(x, a1)	are	Lipschtiz	on	� .
4.	 E(Y 4

i
|Vi = v,Ai1 = a1, Ai2 = a2)	exists	and	is	uniformly	bounded	in	� 	for	all	a1	and	a2.

5.	 �2(x, z, a1, a2)	and	�2�(x, a1)	are	bounded	away	from	0.

U2L=
1

N

N∑
i=1

(2Ai1−1)(1−Ai2)

(
1+

K1L(i)

L
+
K2L(i)

L
+
K∗L(i)

L2

)
�i,

U1L=
1

N

N∑
i=1

(2Ai1−1)

(
1+

K1L(i)

L

)
�i.

B2L=
1

N

N�
i=1

(2Ai1−1)Ai2

�
1+

K1L(i)

L

�⎛
⎜⎜⎝
1

L

�
�∈J2L(i)

�Ai10(X� ,Z� ,Ai1)−�Ai10(Xi,Zi,Ai1)
⎞
⎟⎟⎠
,

B1L=
1

N

N�
i=1

(2Ai1−1)
⎡⎢⎢⎣
1

L

�
j∈J1L(i)

�1−Ai1,0(Xi, 1−Ai1)−�1−Ai1,0(Xj, 1−Ai1)
⎤⎥⎥⎦
.
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These	assumptions	 impose	smoothness	on	conditional	expectations	and	variances	as	 func-
tions	 of	 the	 covariates	 and	 ensure	 that	 sufficient	 moments	 of	 the	 outcome	 exist	 to	 allow	 for	
convergence	in	distribution.	These	conditions	ensure	that	even	though	the	simple	matching	esti-
mator	is	biased,	it	is	consistent	for	the	true	effect	of	early	treatment.

Theorem 1 Suppose that Assumptions 1, 2, and 3 hold. Then, (i) �̂ − �
p
→ 0 and (ii) √

N
�
�̂ − B1L − B2L

� d
→ N(0, �2), where �2 = V �(X ) + V � + V �, and 

Proofs	 for	all	 results	are	 in	 the	Supplemental	Materials.	The	crux	of	part	 (i)	of	 this	result	
comes	from	the	fact	that	the	terms	in	the	decomposition	in	Equation	(6)	all	converge	to	0	in	
probability.	 Unfortunately,	 without	 further	 assumptions,	 the	 bias	 terms	 dominate	 the	 distri-
bution	of	the	estimator	as	N → ∞,	so	that	the	simple	matching	estimator	will	not	converge	in	
distribution	at	the	

√
N 	rate	(Abadie	&	Imbens,	2006).	The	second	part	of	this	theorem	shows	

that	when	the	bias	terms	are	removed,	the	matching	estimator	is	asymptotically	normal	with	a	
variance	that	depends	on	the	distribution	of	the	number	of	times	a	unit	is	used	as	a	match.	Even	
though	these	results	ignore	the	bias	terms,	they	are	still	useful	because	the	bias	correction	that	
we	describe	next	will	converge	at	a	fast	enough	rate	so	it	can	be	ignored	asymptotically	(Abadie	
&	Imbens,	2011).

There	are	several	tuning	parameters	for	matching	that	deserve	attention	in	our	setting.	It	is	
important	to	note	that	our	approach	does	not	prune	observations	for	which	the	matching	dis-
crepancy	on	the	covariates	is	large	as	does	radius	or	kernel	matching.	While	it	is	possible	to	prune	
based	on	baseline	covariates,	any	pruning	based	on	intermediate	confounders	has	the	potential	
to	induce	post-	treatment	bias	and	so	we	avoid	this.	For	the	sake	of	efficiency,	it	is	possible	to	ex-
tend	the	theoretical	results	here	to	allow	for	a	variable	number	of	matches	for	each	unit,	so	long	
as	the	minimum	number	of	matches	is	one	and	therefore	no	pruning	occurs	(Abadie	&	Imbens,	
2012).	Of	course,	allowing	for	a	large	number	of	matches	for	a	particular	unit	could	increase	the	
number	of	indirect	matches,	K∗L(i),	make	the	implied	matching	weights	more	variable	and	actu-
ally	reduce	efficiency.	The	additional	benefit	of	a	variable	matching	ratio	in	this	setting	would	be	
a	fruitful	avenue	for	future	research.

3.4 | Bias correction

Due	to	the	large-	sample	bias	of	a	simple	matching	estimator,	Abadie	and	Imbens	(2011)	proposed	
a	bias-	corrected	estimator	that	estimates	and	removes	this	bias.	In	this	section,	we	extend	this	
idea	to	the	present	two-	stage	setting.	In	particular,	we	propose	estimating	the	two	bias	terms	with	
regression	estimators	of	the	two	relevant	conditional	expectations,	̂�(x, z, a1, a2)	and	�̂a10(x, a1).	
As	in	Abadie	and	Imbens	(2011),	we	leverage	a	flexible	series	estimator	that	grows	more	complex	
with	the	sample	size,	which	we	describe	in	more	technical	detail	in	the	Supplemental	Material	
Section	B.	We	can	then	use	these	regressions	to	obtain	estimates	of	the	bias	terms	themselves:	

(7)
V �(X )=E

{
(�(Xi)−�)2

}
, V � =E

{(
1+

K1L(i)

L

)2

�2�(Xi,Ai1)

}
,

V �=E

{
(1−Ai2)

(
1+

K1L(i)

L
+
K2L(i)

L
+
K∗L(i)

L2

)2

�2(Xi,Zi,Ai1, 0)

}
.
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	If	the	regression	estimators	are	consistent	for	their	respective	conditional	expectations	(as	they	are	
under	our	regularity	conditions),	 then	 B̂2L	and	 B̂1L	 converge	 in	probability	 to	 the	bias	 terms	B2L	
and	B1L	respectively.	With	these	estimates	in	hand,	we	define	the	following	bias-	corrected	telescope	
matching	estimator:	�̃ ≡ �̂ − B̂2L − B̂1L.	We	establish	the	asymptotic	distribution	of	this	estimator	
in	Theorem	2.

Theorem 2 (Bias-	corrected	 matching)	 Suppose that Assumptions 1– 3 hold along with 
Assumption 1 in the Supplemental Material. Then, 

√
N(B2L + B1L − (B̂2L + B̂1L)) converges 

in probability to 0 and 
√
N(�̃ − �) converges in distribution to N(0, �2).

Theorem	2	shows	 that,	under	some	smoothness	conditions,	 the	bias-	correction	 terms	con-
verge	at	a	rate	faster	than	

√
N 	and	that	using	the	estimated	bias	rather	than	the	true	bias	does	not	

affect	the	large-	sample	distribution	of	the	matching	estimator.	Of	course,	this	might	understate	
the	sampling	variance	in	finite	samples	where	the	variance	of	 the	bias	correction	estimator	is	
non-	negligible.	In	particular,	the	bias	terms	may	converge	more	slowly	when	there	are	relatively	
many	Ai2 = 1	units,	since,	intuitively,	there	is	more	bias	to	correct	in	that	setting.	In	these	situa-
tions	�2	might	not	be	a	good	approximation	to	the	finite	sample	variance	of	�̃ .

3.5 | Inference

Conducting	inference	for	telescope	matching	requires	a	valid	method	for	estimating	standard	er-
rors.	Matching	with	replacement,	as	we	propose	here,	complicates	variance	estimation	because	
it	creates	dependence	across	 the	 imputed	counterfactuals,	 leading	 to	 the	complicated	 form	of	
the	variance	of	the	matching	estimator	in	Equation	(7).	One	approach	to	estimating	the	variance	
of	the	matching	estimator	is	to	directly	estimate	the	components	of	Equation	(7),	which	are	the	
variance	of	�(Xi)	and	weighted	averages	of	the	conditional	variances	of	the	outcomes.	A	straight-
forward	way	to	implement	such	an	estimator	is	to	replace	the	population	quantities	with	their	
sample	 counterparts,	 with	 estimators	 for	 the	 conditional	 variances:	 �̂2 = V̂

�(X )
+ V̂

�
+ V̂

�
	,	

where:	

B̂2L=
1

N

N�
i=1

(2Ai1−1)

�
1+

K1L(i)

L

�
Ai2

⎛
⎜⎜⎝
1

L

�
�∈J2L(i)

�̂(X� ,Z� ,Ai1, 0)− �̂(Xi,Zi,Ai1, 0)
⎞
⎟⎟⎠
,

B̂1L=
1

N

N�
i=1

(2Ai1−1)
⎡
⎢⎢⎣
1

L

�
j∈J1L(i)

�̂1−Ai1,0(Xi, 1−Ai1)− �̂1−Ai1,0(Xj, 1−Ai1)
⎤
⎥⎥⎦
.

(8)

V̂
�(X )

=
1

N

N∑
i=1

(
�̂10(Xi)− �̂00(Xi)− �̃

)2
,

V̂
�
=
1

N

N∑
i=1

(
1+

K1L(i)

L

)2 (
�̂(Xi,Zi,Ai1, 0)− �̂Ai10(Xi,Ai1)

)2
,

V̂
�
=
1

N

N∑
i=1

(
1−Ai2

)
W 2

i

(
Yi− �̂(Xi,Zi,Ai1, 0)

)2
.
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	This	estimator	relies	on	the	estimators	for	the	conditional	expectations	that	we	also	use	for	the	bias-	
correction.	Alternatively,	one	could	use	a	matching	approach	to	estimate	these	conditional	variances	
as	in	Abadie	and	Imbens	(2006),	though	these	matching	estimators	can	often	be	improved	using	
bias	correction	techniques	that	lead	to	an	estimator	similar	to	the	one	presented	here.	In	the	next	
theorem,	we	show	that	the	same	assumptions	that	justify	the	bias	correction	also	imply	this	variance	
estimator	will	be	consistent	for	the	asymptotic	variance	of	the	matching	estimator.

Theorem 3 (Variance	estimator) Under the conditions of Theorem 2, �̂2
p
→ �2.

While	 the	 bootstrap	 is	 a	 popular	 approach	 for	 many	 methods,	 it	 is	 well	 known	 that	 conven-
tional	non-	parametric	bootstrapping,	resampling	observations	{Yi, Xi, Zi, Ai1, Ai2},	is	invalid	for	
matching	estimators	(Abadie	&	Imbens,	2008).	This	is	due	to	the	inability	of	the	naive	boostrap	
to	preserve	the	distributions	of	K1L(i),	the	counts	of	the	number	of	times	unit	i	is	used	as	a	match,	
across	resamples.	In	the	case	of	telescope	matching,	the	same	issue	persists	for	the	other	match	
counts:	K2L(i)	and	K∗L(i).	Recently,	Otsu	and	Rai	(2017)	proposed	a	method	for	using	a	variety	of	
bootstrap	techniques	in	the	matching	setting.	They	show	that	when	the	bias-	corrected	matching	
estimator	is	written	in	a	linearized	form	such	that	 �̃ =

∑N
i=1 �̃ i	where	 �̃ i	consists	only	of	func-

tions	of	observation	i,	one	could	use	a	weighted	bootstrap	of	the	residuals,	�̃ i − �̃ ,	to	obtain	valid	
confidence	intervals	for	matching	estimators.	This	‘weighted’	boostrap	resamples	the	ith	contri-
bution	to	the	overall	estimate	rather	than	resampling	units	and	matching	again	in	the	resampled	
units.	As	discussed	by	Otsu	and	Rai	(2017),	this	approach	avoids	the	issues	with	the	naive	row-	
resampling	bootstrap	method	that	is	commonly	used	and	analysed	by	Abadie	and	Imbens	(2008)	
in	the	matching	context.	We	extend	their	procedure	to	our	setting	in	the	Supplemental	Materials.

Finally,	 we	 note	 that	 both	 the	 weighted	 bootstrap	 and	 our	 asymptotic	 variance	 estimator	
target	�2,	the	variance	of	the	simple	matching	estimator.	This	is	justified	by	Theorem	2,	which	
shows	that	 the	bias-	corrected	estimator	will	have	 the	same	asymptotic	variance	as	 the	simple	
matching	estimator.	However,	in	small	samples,	the	variation	in	�̃ 	due	to	the	bias	correction	esti-
mation	would	be	non-	negligible,	but	will	be	ignored	by	both	of	these	approaches.	One	advantage	
of	the	naive	bootstrap	in	this	case	is	that	it	will	account	for	both	the	matching	and	bias-	correction	
estimation	uncertainty.

To	assess	how	 these	 three	methods	perform	 in	practice,	we	evaluate	 them	 in	a	 simulation	
study	with	varying	sample	sizes	and	numbers	of	covariates	 in	Supplemental	Material	Section	
C.	Overall,	we	 find	 that	 for	 reasonable	sample	sizes	and	small	numbers	of	covariates,	our	as-
ymptotic	variance	estimator	and	the	weighted	bootstrapping	provide	a	reliable	method	for	con-
structing	confidence	intervals	when	using	telescope	matching.	In	contexts	with	more	covariates,	
however,	coverage	drops	for	both	methods,	though	the	effect	is	much	more	pronounced	for	the	
weighted	bootstrap.	Coverage	for	our	asymptotic	variance	estimator	is	very	similar	to	the	vari-
ance	estimators	of	single-	treatment,	bias-	corrected	matching	estimators	of	Abadie	and	Imbens	
(2006),	suggesting	this	drop	is	broader	feature	of	matching	estimators	rather	than	sometime	spe-
cific	to	telescope	matching.

3.6 | Matching on the propensity scores

When	 there	 are	 a	 large	 number	 of	 covariates,	 direct	 matching	 in	 the	 manner	 described	 here	
can	be	difficult.	A	widely	used	alternative	to	direct	matching	is	matching	on	the	estimated	pro-
pensity	score,	or	 the	probability	of	 treatment	given	the	covariates.	This	has	 the	advantages	of	
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being	a	simpler	univariate	matching	problem	while	ensuring	balance	on	the	covariates	when	the	
propensity	score	model	is	correctly	specified	(Rosenbaum	&	Rubin,	1983).	Abadie	and	Imbens	
(2016)	studied	the	asymptotic	properties	of	propensity	score	matching	and	derived	asymptotic	
variance	estimators	under	both	known	and	estimated	propensity	scores.

Versions	of	the	propensity	score	matching	approach	have	been	applied	to	the	time-	varying	
treatment	setting.	Lechner	(2004)	first	proposed	a	sequential	matching	algorithm	based	on	the	
propensity	scores	for	Ai1	and	Ai2,	but	did	not	derive	the	formal	properties	of	that	estimator.	More	
recently,	Huber	et al.	(2018)	use	a	matching	approach	to	estimate	controlled	direct	effects	in	a	set-
ting	where	there	are	no	intermediate	confounders.	These	sequential	propensity	score	approaches	
are	attractive	because	they	reduce	the	dimensionality	of	the	matching	problem	considerably,	but	
they	have	four	drawbacks	in	this	setting.	First,	the	Lechner	(2004)	algorithm	is	limited	to	one-	to-	
one	matching,	which	could	lead	to	a	loss	in	efficiency	relative	to	matching	algorithms	that	allow	
for	multiple	matches.

Second,	the	sequential	matching	of	Lechner	(2004)	prunes	observations	based	on	propensity	
scores	for	Ai2,	which	can	induce	post-	treatment	bias	since	that	is	implicitly	conditioning	the	analy-
sis	on	a	post-	treatment	variable	Zi.	In	particular,	let	�1(x) = pr(Ai1 = 1 |Xi = x)	be	the	propensity	
score	function	for	t = 1	and	�i(x, z, a) = pr(Ai2 = 1 |Xi = x, Zi = z, Ai1 = a)	be	the	propensity	
score	function	for	t = 2.	Then,	this	sequential	matching	approach	will	restrict	estimation	of	the	di-
rect	effects	to	units	in	a	particular	range	of	�i2 = �i(Xi, Zi, Ai1),	which	implicitly	conditions	on	Zi.	
While	conditioning	on	these	intermediate	covariates	is	valid	within	an	adjustment	step	(matching	
in	our	case,	or	conditional	expectations	for	structural	nested	mean	models),	the	final	estimation	of	
the	direct	effect	should	only	be	conditional	on	baseline	covariates	(Robins,	1997).

Third,	as	we	discuss	below,	these	previous	methods	did	not	 incorporate	bias	correction	for	
the	asymptotic	bias	that	comes	from	imperfect	matches.	As	we	show	in	the	simulations,	this	bias	
can	be	substantial	when	the	propensity	score	model	is	incorrectly	specified.	Direct	matching,	on	
the	other	hand,	can	still	recover	decent	matches	because	the	validity	and	quality	of	the	match	
depends	less	on	functional	form	assumptions.	Finally,	recent	work	has	shown	that	the	dimension	
reduction	inherent	in	propensity	score	matching	can	actually	increase	imbalance	and	bias	com-
pared	to	direct	matching	methods	(King	&	Nielsen,	2019).	This	last	drawback	urges	caution	and	
careful	checking	when	deciding	between	propensity	score	and	direct	matching	methods.

If	propensity	score	matching	is	a	better	fit	for	a	particular	application,	there	is	a	straightforward	
way	to	incorporate	propensity	scores	into	telescope	matching:	simply	include	them	as	the	sole	
baseline	and	intermediate	covariates	in	the	above	method.	The	propensity	score	telescope	match-
ing	procedure	would	take	�i1 = �i(Xi)	as	the	sole	baseline	covariate	and	�i2 = �i(Xi, Zi, Ai1)	to	
be	the	sole	intermediate	covariate.	With	L = 1	and	no	bias	correction,	this	procedure	is	essentially	
what	is	proposed	by	Lechner	(2004).	If	the	propensity	score	functions	were	known,	this	approach	
is	valid	since	the	balancing	property	of	the	propensity	score	ensures	Assumption	1	holds.	With	
mild	restrictions	on	the	propensity	score,	such	as	those	in	Abadie	and	Imbens	(2016),	the	pro-
pensity	scores	will	also	satisfy	Assumptions	2	and	3.	Finally,	we	note	that,	because	we	have	two	
propensity	scores	in	matching	for	Ai2,	there	will	be	asymptotic	bias	in	the	estimator	as	described	
above	and	bias	correction	will	be	required	as	in	the	direct	matching	case.	Theorem	1	of	Abadie	
and	Imbens	(2006)	showed	that	the	conditional	bias	term	will	be	B1L = Op(N

−1∕2)	and	it	will	
cause	bias	unless	the	conditional	mean	of	the	potential	outcomes	do	not	vary	with	the	propensity	
scores,	a	very	unrealistic	assumption.

Accounting	for	the	estimation	of	the	propensity	scores	in	the	variance	of	the	telescope	match-
ing	procedure	is	much	more	difficult.	Abadie	and	Imbens	(2016)	are	able	to	derive	these	in	the	
single-	treatment	setting,	but	unfortunately,	those	results	of	are	not	applicable	with	two	treatments	
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because	they	rely	on	propensity	score	matching	being	univariate.	This	allows	a	simpler	statement	
of	the	variance	of	the	matching	estimator	in	terms	of	the	true	propensity	score	and	the	variance	
when	the	propensity	score	is	estimated.	The	telescoping	nature	of	the	confounding	and	the	non-
collapsibility	of	the	propensity	score	means	that	the	matching	for	Ai2	must	be	matched	on	the	
propensity	scores	for	both	Ai2	and	Ai2,	ensuring	that	the	resulting	estimator	will	be	asymptoti-
cally	biased.	Because	of	this,	it	is	not	clear	how	to	derive	the	variance	of	the	telescope	matching	
estimator	when	the	propensity	scores	are	estimated	and	bias	correction	is	employed.	However,	
Abadie	and	Imbens	(2016)	show	that,	when	targeting	average	rather	than	conditional	effects,	the	
standard	variance	formulas	will	tend	to	be	conservative—	that	is,	they	will	overestimate	the	vari-
ance.	A	similar	argument	can	be	used	to	show	that	the	propensity	score-	based	telescope	match-
ing	will	have	the	same	property	since	the	average	effects	of	interest	here	do	not	depend	on	the	
propensity	score	as	with	the	ATE	in	Abadie	and	Imbens	(2016).	Alternatively,	one	could	use	the	
nonparametric	bootstrap	for	both	the	estimation	of	the	propensity	score	and	matching	analysis	
similar	to	how	one	could	use	it	to	account	for	bias	correction	above.	Given	the	known	theoretical	
shortcomings	of	the	bootstrap,	its	performance	will	depend	on	the	particular	empirical	setting.

3.7 | Relationship to other approaches

Time-	varying	treatments	have	been	the	focus	of	a	great	deal	of	statistical	and	empirical	studies	
over	the	last	few	decades.	As	pointed	out	by	Robins	(1986)	and	Rosenbaum	(1984),	these	direct	
effects	are	not	identified	from	standard	approaches	that	condition	on	Ai2	and	Zi	due	to	the	poten-
tial	post-	treatment	bias,	which	is	sometimes	called	collider	bias.	The	estimation	of	these	effects	
has	focused	on	two	general	approaches.	First,	structural	nested	mean	models	estimate	τ	by	first	
modelling	the	(conditional)	effect	of	Ai2	on	Yi,	and	then	removing	that	effect	from	the	outcome	
(Robins,	1997).	This	‘blipped-	down’	outcome	is	similar	to	our	imputed	potential	outcomes	above,	
but	 this	approach	requires	 the	correct	parametric	specification	of	�(x, z, a1, a2)	 to	consistently	
estimate	τ.	Telescope	matching	leverages	estimates	of	this	same	conditional	expectation,	but	the	
nonparametric	matching	feature	of	the	approach	should	make	it	less	sensitive	to	minor	misspeci-
fication.	Our	simulations	below	bear	out	this	conjecture.	Structural	nested	mean	models	have	two	
other	limitations	that	make	it	difficult	to	use	in	all	settings.	First,	if	the	effect	of	Ai2	varies	by	Zi,	the	
approach	requires	the	integration	of	the	regression	functions	over	the	distribution	of	Zi	.	This	inte-
gration,	though,	requires	parametric	models	for	the	outcome	and	for	the	joint	distribution	of	the	
covariates,	which	can	be	very	demanding	when	there	are	more	than	a	handful	of	covariates.	The	
telescoping	nature	of	our	matching	approach	sidesteps	this	integration.	Second,	structural	nested	
mean	models	are	difficult	to	apply	to	binary	outcomes	(Robins,	2000;	Robins	&	Rotnitzky,	2004;	
Vansteelandt,	2010),	whereas	the	matching	approach	here	does	not	depend	on	the	support	of	the	
outcome,	though	the	bias	correction	may	perform	better	on	continuous	outcomes.

The	second	approach,	inverse	probability	of	treatment	weighting,	leverages	correctly	speci-
fied	models	for	the	propensity	score	of	Ai1	and	Ai2	to	estimate	the	(direct)	effect	of	Ai1	(Murphy	
et  al.,	 2001;	 Robins,	 1998;	 Robins	 et  al.,	 2000).	 Unfortunately,	 in	 practice,	 this	 approach	 can	
have	poor	performance	due	to	unstable	weights	when	the	probability	of	Ai1 = 1	is	close	to	0	or	
1,	which	can	be	compounded	by	model	misspecification	(Goetgeluk	et al.,	2008).	In	these	situa-
tions,	matching	will	also	lead	to	poor	matches	(in	terms	of	covariate	balance),	but	our	bias	cor-
rection	approach	may	help	mitigate	this	issue.	Covariate-	balancing	propensity	scores,	which	we	
include	in	our	simulations	below,	were	developed	to	improve	the	performance	of	inverse	proba-
bility	weighting	under	model	misspecification	and	provide	a	good	comparison	to	our	approach	
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here	(Imai	&	Ratkovic,	2015).	In	addition,	a	host	of	doubly robust	methods	have	been	developed	
that	combine	features	of	the	structural	nested	and	weighting	approaches	(Bang	&	Robins,	2005;	
van	der	Laan	&	Gruber,	2012).	These	methods	require	models	for	both	(a)	the	outcome-	covariate	
relationship	and	(b)	the	propensity	scores.	These	methods	are	doubly	robust	in	the	sense	that	
they	 are	 consistent	 for	 direct	 effects	 when	 either	 (a)	 or	 (b)	 are	 correctly	 specified.	Telescope	
matching	possesses	an	approximate	double	robustness	property	 in	the	sense	that	 if	either	(a)	
the	matching	is	exact	or	close	to	exact,	or	(b)	the	bias	correction	model	is	correctly	specified,	
then	the	resulting	telescope	matching	estimator	will	generally	have	small	bias.	This	differs	from	
the	traditional	notion	of	double	robustness	since	that	relies	on	the	consistency	of	at	least	one	of	
two	models,	whereas	approximate	double	robustness	here	relies	on	finite-	sample	quality	of	the	
matching.

4 |  SIMULATION STUDY

We	evaluate	the	performance	of	telescope	matching	against	existing	direct	effect	methods	using	
a	simulation	in	which	we	artificially	introduce	model	misspecification,	following	an	approach	
similar	to	that	of	Kang	and	Schafer	(2007).	Our	assumed	data	generating	process	reflects	a	com-
mon	situation	encountered	by	researchers	where	there	are	many	observed	covariates	with	vary-
ing	magnitudes	of	confounding.	We	have	twenty	observed	baseline	confounders,	Xi1, Xi2, …, Xi20	,	
that	 are	 each	 (0, 1),	 and	 fifteen	 intermediate	 confounders	Zi1, Zi2, …, Zi15.	 The	 early	 treat-
ment	assignment,	Ai1,	follows	Bern(�i),	where	logit(�i) =

∑20

j=1
j−1(−1) jXij.	Each	of	the	fifteen	

intermediate	confounders,	Zik,	is	a	function	of	early	treatment	and	of	another,	unobserved,	con-
founding	factor	affecting	both	Zik	and	outcome	Yi.	Therefore,	while	each	Zik	is	causally	affected	
by	early	treatment	Ai1,	it	itself	does	not	directly	affect	Yi.	Rather,	it	is	a	control	variable	that	can	
block	confounding	due	to	the	unobserved	common	cause,	denoted	Uik.	Each	intermediate	con-
founder	is	generated	as	Zik =

1

2 × k
Ai1 + � ik +

�

k
Uik,	where	� ik ∼  (0, 1),	Uik ∼  (0, 0.2)	with	

𝛾 ik ⊥⊥ Uik.	The	parameter	δ,	which	we	vary	in	our	simulations,	captures	the	amount	of	confound-
ing	 between	 the	 intermediate	 covariate	 and	 the	 outcome.	 The	 stronger	 this	 confounding,	 the	
larger	the	post-	treatment	bias	for	τ	when	conditioning	on	Zik	in	a	naive	manner.

Late	treatment	Ai2	follows	Bern(ri),	where

To	approximate	the	typical	case	for	matching,	where	there	are	many	controls	to	be	matched	to	a	
smaller	number	of	treated	units,	this	functional	form	sets	the	marginal	probability	of	Ai2 = 1	to	
be	between	about	0.37	and	0.39	in	our	simulations	depending	on	the	magnitude	of	confounding.	
Finally,	the	outcome	is	generated	as

where	�i ∼  (0, 1)	and	δ	is	the	same	parameter	that	appears	in	the	functional	form	of	Zik.	In	this	
case,	the	effect	of	Ai1	flows	entirely	through	future	treatment,	so	the	true	(direct)	effect	of	early	
treatment	is	0.

logit(ri) = − 1.5 + 0.5Ai1 +
∑20

j=1

(
( − 1)j−13

2 + j

)
Xij +

∑15

k=1

(
3

2 + k

)
Zik.

Yi = 210 + 27.4Ai2 +
�20

j=1

�
13.7

⌈j∕2⌉
�
Xij +

�15

k=1

�
�
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�
Uik + �i
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As	in	Kang	and	Schafer	(2007),	we	simulate	model	misspecification	by	considering	a	scenario	
where	each	of	the	confounders	are	not	measured	directly	but	rather	as	one	of	three	non-	linear	
transformations.	

Were	these	non-	linear	transformations	known	to	the	researcher,	it	would	be	possible	to	specify	the	
true	linear	regression	model	in	terms	of	a	correct	transformation	of	the	confounders.	However,	in	
practice,	researchers	do	not	know	the	exact	non-	linear	transformation	that	would	yield	a	correctly	
specified	model.	Instead,	they	will	typically	use	models	that	simply	assume	linearity	and	additivity.	
Our	simulation	varies	two	parameters:	sample	size	and	the	magnitude	of	post-	treatment	confound-
ing	(δ).

For	each	simulated	dataset,	we	estimate	the	controlled	direct	effect	of	early	treatment	using	
several	approaches:	(1)	a	naive	overspecified	linear	regression	that	conditions	on	both	treatments	
and	all	confounders,	baseline	and	intermediate;	(2)	a	structural	nested	mean	model	that	assumes	
the	 outcome	 model	 is	 linear	 and	 additive	 in	 all	 variables;	 (3)	 the	 sequential	 propensity	 score	
matching	approach	of	Lechner	(2004)	(without	any	bias	correction);	(4)	the	doubly	robust	ap-
proach	of	Bang	and	Robins	 (2005)	using	 the	 same	outcome	model	as	 structural	nested	mean	
model	and	the	propensity	scores	estimated	as	with	the	Lechner	method;	and	(5)	our	telescope	
matching	approach	with	the	Mahalanobis	distance	metric,	bias	correcting	with	the	same	regres-
sion	model	as	in	the	structural	nested	mean	model.	In	our	simulations,	we	set	the	number	of	
units	matched	to	each	treated	unit	to	L = 3.	We	also	considered	a	standard	(stabilized)	inverse	
probability	weighting	estimator,	and	while	 it	performs	reasonably	well	 in	 large	samples	given	
correct	model	specifications	for	both	late	treatment	and	the	outcome,	we	omit	it	from	the	graphs	

(
X∗
i,odd

,X∗
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∗
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)
=
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F I G U R E  2 	 Performance	of	several	estimators	under	simulated	data	with	correct	and	misspecified	models.	
The	y-	axis	measures	absolute	bias	(Abs.	Bias)	or	root	mean	square	error	depending	on	the	column
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for	expository	reasons	as	the	bias	under	misspecification	is	far	larger	than	for	any	of	the	other	
methods,	 consistent	 with	 Kang	 and	 Schafer	 (2007).	 In	 addition,	 we	 evaluated	 the	 covariate-	
balancing	propensity	 score	method	 for	marginal	 structural	models	which	was	designed	 to	es-
timate	weights	in	a	way	that	is	more	robust	to	model	misspecification	(Imai	&	Ratkovic,	2015).	
Although	the	bias	reduction	under	misspecification	is	considerable,	the	variance	and	RMSE	far	
exceed	the	other	methods	and	we	also	omit	this	from	our	graphs.	In	the	Supplemental	Materials,	
we	show	the	figure	with	standard	weighting	results	and	covariate-	balancing	propensity	scores	
(Figure	SM.2)	along	with	results	on	the	confidence	interval	coverage	of	the	various	variance	esti-
mators	described	above	(Figure	SM.1).

Figure	2	plots	the	absolute	value	of	the	bias	and	the	root	mean	squared	error	for	all	approaches	
under	correct	and	incorrect	model	specifications.	On	the	x-	axis,	we	vary	the	amount	of	interme-
diate	confounding	(δ),	which	is	translated	into	the	partial	correlation	between	Ui1	and	Yi.	This	
partial	correlation	is	a	deterministic	function	of	δ:	0.2�(0.04�2 + 1)−1∕2.	For	each	combination	of	
parameter	values,	we	carried	out	10,000	iterations	of	our	simulation.	We	find	that	both	telescope	
matching	and	structural	nested	mean	models	are	unbiased	when	the	model	is	correctly	specified,	
with	the	latter	having	a	slight	advantage	over	matching	in	terms	of	variance,	a	gap	that	decreases	
significantly	as	sample	size	increases.	At	the	larger	sample	sizes,	the	increase	in	variance	result-
ing	from	including	a	more	flexible	imputation	model	is	rather	minimal.	As	expected,	the	overspe-
cified	regression	suffers	from	post-	treatment	bias,	the	magnitude	of	which	grows	as	we	increase	
the	 correlation	 between	 the	 intermediate	 confounder	 and	Yi.	 Lechner’s	 sequential	 propensity	
score	matching	shows	some	bias	that	shrinks	with	sample	size	but	grows	slightly	with	the	degree	
of	intermediate	confounding.	The	performance	of	the	structural	nested	mean	model	and	doubly	
robust	estimator	are	nearly	identical	across	all	specifications.

When	we	introduce	model	misspecification,	the	performance	of	structural	nested	mean	mod-
els	is	worse	than	that	of	telescope	matching,	with	the	gap	growing	as	a	function	of	the	sample	
size.	Telescope	matching	has	considerably	lower	bias	than	all	four	of	the	other	methods	under	
misspecification	and	has	the	lowest	root	mean	square	error	across	all	sample	sizes	and	degree	of	
post-	treatment	confounding.	We	also	find	that	the	root	mean	square	error	of	telescope	matching	
is	decreasing	in	the	sample	size	even	with	a	relatively	inflexible	bias	correction	model.	Finally,	
we	find	that	the	sequential	propensity	score	matching	has	significantly	higher	bias	under	this	
misspecification	even	though	it	is	a	matching	algorithm.	This	occurs	because	propensity	score	
matching	requires	the	correct	specification	of	the	propensity	score	model,	whereas	direct	match-
ing	on	covariates	can	be	robust	to	those	functional	form	assumptions.

Overall,	the	simulation	results	are	promising	for	our	proposed	method.	The	findings	are	con-
sistent	with	the	argument	made	in	Ho	et al.	 (2006)	 that	matching	allows	researchers	 to	avoid	
some	of	the	pitfalls	of	having	to	choose	the	‘correct’	imputation	model.	Moreover,	at	least	under	
the	data	generating	process	of	this	simulation,	the	loss	of	power	when	the	true	model	is	somehow	
known	is	minimal	and	far	outweighed	by	the	reduction	in	bias	under	the	more	likely	case	where	
the	researcher	happens	to	select	a	specification	that	does	not	quite	match	the	truth.	However,	we	
do	caution	that,	even	if	it	outperforms	the	other	methods	considered	here,	the	bias	of	telescope	
matching	can	still	be	significant	under	the	incorrect	specification	without	a	very	large	sample.

5 |  EMPIRICAL ANALYSIS

Does	negative	advertising	early	in	a	campaign	affect	voter	turnout	or	vote	shares	on	election	day?	
We	apply	the	above	methodology	to	a	data	set	of	Senate	and	gubernatorial	elections	in	the	United	
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States	from	2000	until	2016.	Our	data	expands	on	that	used	by	Blackwell	(2013)	to	estimate	the	
effect	 of	 negativity	 by	 Democratic	 candidates	 on	 Democratic	 vote	 shares.	 In	 our	 analysis,	 we	
focus	on	the	effect	of	incumbent	negativity	(regardless	of	party)	on	both	voter	turnout	and	vote	
shares.	Voter	turnout	is	defined	as	the	percentage	of	citizen	voting-	age	population	(that	is,	those	
eligible	to	vote)	who	cast	a	ballot	in	the	election,	whereas	vote	share	is	the	percent	of	the	two-	
party	vote	 for	 the	 incumbent.	The	data	on	advertising	comes	from	the	Wisconsin	Advertising	
Project	(Goldstein	&	Rivlin,	2007)	and	its	successor	the	Wesleyan	Media	Project	(Fowler	et al.,	
2019),	both	of	which	code	each	political	 television	advertisement	as	negative	(mentioning	the	
opponent)	or	positive	(focusing	entirely	on	the	sponsor	of	the	ad).	Furthermore,	these	projects	
collect	information	on	when	these	ads	were	shown,	allowing	us	to	create	a	measure	of	candidate	
negativity	for	the	early	part	of	the	race	versus	the	late	part	of	the	race.	We	focus	on	the	effect	of	
the	incumbent	candidate’s	decision	to	go	negative	and	code	Ai1 = 1	if	incumbent	i’s	proportion	
of	negative	ads	exceeded	50%	from	the	end	of	the	primary	until	the	end	of	September.	We	code	
Ai2 = 1	 similarly	 for	 the	months	of	October	and	 the	 first	week	of	November.	After	 removing	
races	that	had	no	incumbent,	no	opponent,	or	had	no	television	ads,	we	have	a	total	of	144	races	
for	the	US	Senate	and	54	for	state	Governor.	The	median	length	of	these	campaigns—	from	the	
primary	to	the	general	election—	is	21	weeks.

We	estimate	the	direct	effect	of	early	negativity	fixing	late	campaign	tone	to	be	negative—	that	
is	we	seek	to	compare	Yi(1, 1)	to	Yi(0, 1)—	since	there	are	relatively	few	campaigns	that	switched	
from	negative	early	to	positive	later,	as	seen	in	Table	1.	To	estimate	these	effects,	we	control	for	a	
host	of	potential	covariates	that	might	confound	the	relationship	between	the	decision	to	go	neg-
ative	and	the	eventual	outcomes.	For	baseline	covariates,	we	include	the	length	of	the	campaign	
in	weeks;	an	indicator	for	whether	the	incumbent	was	a	Democrat;	the	average	support	for	the	
incumbent	in	baseline	polling;	the	average	percent	undecided	in	baseline	polling;	the	total	num-
ber	of	ads	shown	by	the	major	party	candidates	in	the	primary;	an	indicator	for	midterm	versus	
presidential	election	year;	a	linear	term	for	election	year;	baseline	contributions	to	both	candi-
dates;	the	number	of	eligible	voters	in	the	state;	and	an	indicator	for	office	type.	For	intermediate	
covariates,	we	include	several	covariates	measured	at	the	beginning	of	the	late-	campaign	period:	
the	average	support	for	the	incumbent	in	polls;	the	average	percent	undecided;	the	log	of	the	total	
number	of	ads	shown	through	the	early	period;	total	number	of	contributions	to	either	candidate	
through	the	end	of	 the	early	period;	and	the	average	negativity	of	 the	challenger	 through	the	
early	part	of	the	race.	These	intermediate	confounders	could	at	least	plausibly	be	affected	by	early	
negativity	by	the	incumbent.

We	explore	three	different	methods	for	estimating	these	direct	effects.	First,	we	simply	esti-
mate	an	overspecified	linear	regression	with	both	treatments	and	both	sets	of	covariates.	Second,	
we	 estimate	 the	 effect	 using	 a	 linear	 structural	 nested	 mean	 model,	 where	 the	 covariates	 are	
modelled	 in	the	same	way	as	 the	overspecified	regression.	Finally,	we	use	telescope	matching	
using	the	same	linear	regression	models	as	the	structural	nested	mean	models	for	the	bias	correc-
tion.	For	telescope	matching,	we	use	L = 3	matches	in	both	stages	after	checking	that	balance	did	
not	change	dramatically	with	smaller	matching	ratios.	In	the	Supplemental	Materials,	we	present	

T A B L E  1 	 Count	of	campaign	treatment	histories

Positive late (Ai2 = 0) Negative late (Ai2 = 1)

Positive	early	(Ai1 = 0) 93 44

Negative	early	(Ai1 = 1) 11 50
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a	second	empirical	example	from	political	science	on	the	effect	of	membership	in	a	labour	union	
on	racial	attitudes	of	white	Americans.	That	example	has	a	larger	sample	size,	but	more	extreme	
imbalance	 in	 the	 covariate	 distributions.	 In	 contrast	 to	 the	 campaign	 negativity	 example,	 we	
found	that	the	estimated	propensity	scores	in	this	example	clustered	very	close	to	0	and	1	as	the	
treatment	statuses	were	fairly	well	predicted	by	the	covariates.	While	the	larger	sample	size	re-
sulted	in	a	greater	reduction	in	post-	matching	imbalance	due	to	the	presence	of	more	potential	
control	matches,	in	both	examples	some	residual	imbalance	remained	due	to	insufficient	control	
units	in	extreme	parts	of	the	covariate	distribution.

5.1 | Findings

We	begin	by	investigating	how	telescope	matching	addresses	imbalances	across	both	the	early	
and	 late	 treatment	covariate	distributions.	 In	Figure	3,	we	plot	 the	standardized	difference	 in	
means	 of	 each	 covariate	 in	 the	 matched	 and	 unmatched	 sample.	 For	 most	 of	 the	 covariates,	
there	is	a	decrease	in	the	imbalance	across	the	treatment	groups	after	matching	(points	below	
the	45-	degree	line),	which	we	hope	translates	into	robustness	against	model	misspecification	for	
those	covariates.	The	few	covariates	that	see	increases	in	imbalance	had	fairly	small	imbalances	
in	the	unmatched	sample	and	so	the	overall	balance	is	much	higher	in	the	matched	sample.	In	
the	Supplemental	Materials,	we	present	a	full	summary	of	the	changes	in	balance	for	each	vari-
able	along	with	an	investigation	of	overlap	in	the	propensity	score	distributions.	Consistent	with	
the	nonparametric	nature	of	the	matching	procedure,	telescope	matching	reduces	imbalance	on	

F I G U R E  3 	 Comparison	of	balance	before	(x-	axis)	and	after	(y-	axis)	matching.	Each	dot	represents	a	
covariate	its	position	represents	the	standardized	difference	in	means	across	the	treated	and	control	groups	in	
either	period
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several	squared	terms	of	continuous	covariates	and	the	estimated	propensity	scores	even	though	
neither	of	these	were	used	in	the	matching	procedure.	In	spite	of	these	improvements,	there	are	
still	residual	imbalances	between	the	treated	and	control	groups	in	both	periods	in	terms	of	the	
propensity	scores	and	other	covariates.	Our	hope	is	that	the	bias	correction	step	can	adequately	
address	these	remaining	imbalances,	but	there	is	the	possibility	that	it	drives	some	of	the	results	
we	find	below.

In	Table	2,	we	present	the	estimated	direct	effects	of	early	negativity	on	both	voter	turnout	
and	the	incumbent	percentage	of	the	vote.	For	voter	turnout,	each	of	the	three	methods	pro-
duce	a	positive	estimated	effect	of	early	negativity,	though	the	estimate	from	telescope	match-
ing	is	much	higher	in	magnitude	than	the	other	two	estimates.	This	finding	is	interesting	from	
a	substantive	perspective	because	campaign	effects	are	usually	thought	to	dissipate	quickly	
due	to	recency	bias	(Gerber	et al.,	2011).	The	effects	on	incumbent	vote	shares,	on	the	other	
hand,	are	negative	and	more	consistent	across	telescope	matching	and	structural	nested	mean	
models,	though	uncertainty	is	higher	for	the	telescope	matching	estimator.	Combined,	these	
results	are	consistent	with	an	account	where	early	 incumbent	negativity	actually	mobilizes	
the	challenger’s	supporters	to	turn	out	against	the	incumbent,	leading	to	a	backlash	effect	on	
vote	shares.

Beyond	the	substantive	results,	this	application	demonstrates	not	only	how	telescope	match-
ing	can	be	used	to	estimate	the	effects	of	time-	varying	treatments,	but	also	how	the	choice	of	
method	can	lead	to	dramatically	different	conclusions	about	these	effects.	In	the	Supplemental	
Materials,	we	discuss	one	likely	source	of	this	divergence	due	to	model	misspecification:	when	
we	add	a	handful	of	covariate	interactions,	the	estimated	effect	of	early	negativity	on	turnout	
from	the	structural	nested	mean	model	becomes	much	closer	to	the	estimate	from	telescope	
matching.

Finally,	we	note	that	both	structural	nested	mean	models	and	telescope	matching	rely	on	the	
sequential	ignorability	assumption,	which	is	impossible	to	verify	in	observational	settings	like	
the	present	one.	In	our	case,	this	assumption	means	that,	the	decision	to	go	negative	is	indepen-
dent	of	the	potential	outcomes	of	turnout	and	vote	share	conditional	on	the	covariates	listed	
above.	This	assumption	will	be	most	plausible	when	the	covariates	include	all	information	that	
the	campaigns	used	to	make	their	decisions.	And	while	our	conditioning	set	does	include	many	
of	those	variables	(campaign	contribution,	opponent’s	ad	behaviour,	polling),	there	may	be	pri-
vate	information	that	campaigns	have	to	which	we	do	not	have	access,	making	sequential	ig-
norability	less	plausible.	Thus,	we	believe	an	important	avenue	for	future	research	is	to	extend	
the	sensitivity	analysis	framework	for	matching	(see,	e.g.,	Rosenbaum,	1995,	Chapter	4)	to	this	
sequential	matching	case.

T A B L E  2 	 Estimated	effect	of	early	incumbent	negativity	on	voter	turnout	and	incumbent	vote	percentage	
fixing	late	campaign	tone	to	be	negative	(N = 198)

Method

Turnout Vote share

Est. SE 95% Conf. Int. Est. SE 95% Conf. Int.

Overspecified	
regression

0.827 1.283 (−1.687,	3.341) −0.762 0.702 (−2.138,	0.614)

Structural	nested	mean	
model

2.284 1.072 (0.183,	4.386) −1.926 0.758 (−3.411,	−0.441)

Telescope	matching 4.186 1.618 (1.015,	7.358) −2.266 1.172 (−4.563,	0.031)
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6 |  CONCLUSION

In	this	paper,	we	have	introduced	a	novel	method	for	estimating	the	effect	of	time-	varying	treat-
ments.	This	matching-	based	approach	flexibly	imputes	missing	values	of	the	potential	outcomes	
and	appears	to	be	more	robust	to	model	misspecification	than	other	approaches	like	structural	
nested	mean	models.	This	method	will	be	useful	to	applied	researchers	who	want	to	estimate	the	
direct	effect	of	early	treatment	but	have	a	large	degree	of	uncertainty	about	the	correct	model	
specification	for	baseline	and	intermediate	covariates.	Furthermore,	we	derived	several	proper-
ties	of	the	estimator,	including	its	large-	sample	distribution,	that	allowed	us	to	develop	a	bias-	
corrected	version	of	this	estimator	that	augments	the	matching	with	regression.

There	are	several	avenues	 for	 future	work	on	 this	 frontier.	First,	 it	would	be	 interesting	 to	
understand	how	these	methods	could	be	extended	to	estimate	quantities	of	interest	in	mediation	
analyses	like	the	natural	direct	and	indirect	effect,	when	the	assumptions	of	that	setting	holds.	
Second,	we	have	explored	bias	correction	through	simple	additive	linear	regression	models	but	
a	range	of	more	flexible	regression	techniques,	from	generalized	additive	models	to	cutting-	edge	
machine	learning	methods,	could	plausibly	be	used	as	well.	Third,	it	would	be	interesting	to	see	
how	well	this	method	generalizes	to	arbitrary	time	points	and	what	steps	that	could	be	taken	to	
mitigate	potential	power	issues	in	that	setting.	In	general,	this	paper	illustrates	how	estimation	
of	time-	varying	treatment	effects	can	be	treated	as	a	problem	of	imputing	missing	potential	out-
comes	Yi(a, 0).	We	outline	one	particular	imputation	strategy,	a	two-	stage	matching	estimator,	
but	there	are	many	other	imputation	methods,	each	with	their	own	particular	advantages	and	
drawbacks,	that	could	be	investigated	in	subsequent	research.
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