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Abstract
Time-varying treatments are prevalent in the social sci-
ences. For example, a political campaign might decide 
to air attack ads against an opponent, but this decision 
to go negative will impact polling and, thus, future cam-
paign strategy. If an analyst naively applies methods for 
point exposures to estimate the effect of earlier treat-
ments, this would lead to post-treatment bias. Several 
existing methods can adjust for this type of time-varying 
confounding, but they typically rely on strong model-
ling assumptions. In this paper, we propose a novel 
two-step matching procedure for estimating the effect 
of two-period treatments. This method, telescope match-
ing, reduces model dependence without inducing post-
treatment bias by using matching with replacement to 
impute missing counterfactual outcomes. It then em-
ploys flexible regression models to correct for bias in-
duced by imperfect matches. We derive the asymptotic 
properties of the telescope matching estimator and pro-
vide a consistent estimator for its variance. We illustrate 
telescope matching by investigating the effect of nega-
tive campaigning in US Senate and gubernatorial elec-
tions. Using the method, we uncover a positive effect on 
turnout of negative ads early in a campaign and a nega-
tive effect of early negativity on vote shares.
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1  |   INTRODUCTION

Political campaigns are inherently dynamic. Candidates develop strategies in response to on-the-
ground campaign conditions, which in turn affect strategies as races move closer to election day. 
A prominent example of this dynamic structure is the use of negative advertising. Candidates 
often ‘go negative’ in response to poor polling or to respond to attacks made by their opponents. 
But what effect does ‘going negative’ actually have? From the perspective of statisticians and 
analysts, estimating the time-varying effects of campaign negativity on various outcomes such 
as vote shares and voter turnout is challenging. Polling, for example, is both a consequence and 
cause of negativity at different points in time. And if polling is related to the outcome (voter 
turnout or vote shares in favour of a candidate), then controlling for polling earlier in a campaign 
cycle can lead to post-treatment bias in the estimation of the effect of early campaign negativity 
for a fixed level of late campaign negativity (Blackwell, 2013; Robins, 1997).

What can analysts do in these situations? Several parametric and semi-parametric methods 
have been developed for estimating such time-varying effects, including the parametric g-formula, 
structural nested models and marginal structural models (Richardson & Rotnitzky, 2014; Robins, 
1986). Unfortunately, these extant approaches require the (correct) specification of several mod-
els, meaning that any inferences are heavily dependent on those modelling choices. Matching, on 
the other hand, is a popular strategy for estimating average treatment effects for a single binary 
treatment and is known to reduce model dependence (Abadie & Imbens, 2006; Dehejia & Wahba, 
1999; Ho et al., 2006; Rosenbaum, 1995). However, although it has been widely adopted in the 
social and biomedical sciences due to its nonparametric and intuitive nature, its application has 
been very limited in situations with multiple or time-varying treatments. Standard matching can 
be used to estimate the effect of the last period treatment (since that can be formulated as a point-
exposure problem), but it will fail for the effect of earlier exposure due to post-treatment bias.

In this paper, we present a new matching method for estimating the effect of time-varying 
treatments that helps reduce dependence on these modelling assumptions without inducing 
post-treatment bias. We focus on the case with two treatment exposures—in our example, nega-
tivity early in the campaign and late in the campaign. Our method matches in two steps, first for 
the early treatment (going negative early in a campaign) and then for the late treatment (going 
negative later), using different covariate sets for each step. This two-stage approach, which we 
call telescope matching, adjusts for only baseline confounders in the first stage, telescoping out to 
adjust for both the baseline and intermediate confounders in the second stage. These matching 
steps help impute missing counterfactual outcomes for each unit, which then can be used to esti-
mate the effects of interest—in our case, the effect of a candidate going negative on voter turnout 
and the vote shares of the respective candidates.

Previous propensity score matching methods have been developed for time-varying treat-
ments (Lechner, 2004), and we make two key contributions to this literature. First, we extend 
previous matching algorithms to handle direct matching on covariates rather than simply relying 
on propensity scores, which have been shown to have poor performance in matching applica-
tions (King & Nielsen, 2019). Second, we derive the large-sample properties of the telescope 
matching estimator, which can encompass both direct and propensity score matching, under a 
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fixed number of matches and show that while it is consistent for the effect of early exposure, it 
possesses a bias due to inexact matches that prevents convergence to a stable asymptotic distri-
bution, as is the case with point-exposure matching (Abadie & Imbens, 2006). This bias even ex-
tends to propensity score matching with time-varying treatment, unlike in the single-treatment 
setting (Abadie & Imbens, 2016). We thus develop a bias-correction method that uses regression 
estimators in a similar manner to Abadie and Imbens (2011) and show that, under some regular-
ity conditions, the asymptotic distribution of the bias-corrected and simple matching estimator 
are the same. We further leverage this bias correction to derive a consistent variance estimator 
for our matching estimator.

Although we present the regressions here as bias correction for simple matching, telescope 
matching can also be seen as a way to make regression approaches to estimating these effects 
(such as structural nested mean models) more robust to modelling assumptions. We show that 
this is the case in our simulations—when the regression models are correctly specified, telescope 
matching shows similarly small levels of bias compared to these other methods but is slightly less 
efficient. When these models are misspecified, however, our procedure shows considerably lower 
bias even in a setting where other methods that attempt to reduce model dependence such as co-
variate balancing propensity scores are unstable (Imai & Ratkovic, 2015). While these results are 
not likely to hold across all possible data generating processes, they demonstrate that telescope 
matching can help to guard against misspecification of the outcome or propensity score models 
at the expense of efficiency when those models are correct.

Telescope matching has additional benefits in this setting. First, both matching steps can be 
done and evaluated without access to the outcome, reducing the potential for biased model se-
lection. Second, the matching procedure can be applied to any type of outcome variable, whereas 
methods like structural nested mean models are difficult to apply to binary outcomes.

This paper proceeds as follows. We begin with a description of the applied setting of a can-
didate going negative in the course of a political campaign in Section 2. In Section 3, we define 
the relevant quantities of interest and the assumptions necessary to identify these effects—in 
our case, the effect of going negative on election-day outcomes. We then develop our telescope 
matching approach to estimating these direct effects, discuss its large-sample properties, describe 
the bias-correction approach, and derive variance estimators. In addition, we discuss how this 
matching estimator compares to other ways of estimating time-varying effects, with special at-
tention to previously proposed sequential propensity score matching estimators. We then con-
duct a simulation study in Section 4 that shows how these various estimators perform when 
a researcher has correct and incorrect specifications of the outcome regression and propensity 
score models. In Section 5 we apply the method to our application of negative campaigning; 
using this technique, we find, contrary to the existing work in this area, that there is a positive 
effect of an incumbent candidate going negative early in the campaign on voter turnout. We also 
find a negative effect on early negativity on incumbent vote shares. This suggests that ‘going neg-
ative’ might actually create a backlash effect where outpartisans are motivated to turnout against 
a candidate who runs the negative ads.

2  |   MOTIVATING APPLICATION

A substantial literature in political science addresses the question of ‘campaign effects’—that is, 
how the course of political campaigns affect various electoral outcomes (see Jacobson, 2015, for 
a review of this literature). Here, scholars have studied a wide variety of tools that campaigns 
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use to mobilize (or demobilize) voters and to persuade voters to change their vote. These tools 
include door-to-door canvassing, rallies, speeches, news conferences, social media posts and 
advertisements.

One particularly important campaign tool is negative campaigning—or, ads that directly at-
tack an opponent. (This stands in contrast to ads that simply promote the candidate herself.) 
Although a number of studies using experimental and observational approaches have tried to 
estimate the effect of negative advertising on turnout in US elections (Lau et al., 2007), the di-
rection of the effect is difficult to predict a priori. On the one hand, we might think that nega-
tivity generates more media attention, leading to more interest in the campaign and thus higher 
turnout. On the other hand, negativity might cause citizens to become disenchanted with the 
political process and, thus, disengage, leading to lower voter turnout. Evidence from the empir-
ical literature is mixed. One meta-analysis concluded that ‘the research literature provides no 
general support for the hypothesis that negative political campaigning depresses voter turnout. If 
anything, negative campaigning more frequently appears to have a slight mobilizing effect’ (Lau 
et al., 2007).

A problem with these studies is, however, that they fail to consider the dynamic nature of 
campaigning. Candidates tend to ‘go on the attack’ in response to something—usually something 
like falling behind in the polls or being on the receiving end of attack ads from their own oppo-
nents (Blackwell, 2013). Ignoring the dynamic nature of negative advertising means that existing 
studies tend to estimate the effect of ‘going negative’ at just one point in time. Not only does this 
approach ignore how effects vary over time, but also it becomes challenging to think about which 
variables to control for and which to ignore.

Here, we investigate the effect of campaign negativity on voter turnout and vote shares in 
US Senate and gubernatorial elections from 2000 to 2016. For each campaign, we have collected 
data on the types of television ads shown, the polling of the candidates in the race, the amount 
donated to each candidate in the race, and a host of background features of the race and its can-
didates. Because we are interested in the effects of negativity early in the race (from the primary 
until the end of September), we need a method that can adjust for time-varying confounding 
without introducing post-treatment bias. Furthermore, many of the covariates we measure are 
continuous with potentially nonlinear relationships with both the decision to go negative and the 
outcomes. Thus, it is essential to have a method that is robust to the sometimes ad-hoc modelling 
decisions researchers are forced to make.

3  |   PROPOSED METHOD

3.1  |  Notation and assumptions

We focus on the case of two binary treatment exposures over time, though it is possible to extend 
the approach to arbitrary numbers of periods. Let Ai1 ∈ {0, 1} and Ai2 ∈ {0, 1} denote the value 
of early and late treatment, respectively, for unit i. The goal of the analysis is to estimate the effect 
of treatment on some outcome, Yi. We define potential outcomes for this variable under the vari-
ous combinations of the treatment history, Yi(a1, a2) (Robins, 1986; Rubin, 1974). We make the 
usual consistency assumption, Yi = Yi(a1, a2) if Ai1 = a1 and Ai2 = a2, which states that the ob-
served outcome for unit i is the potential outcome for that unit at its observed level of Ai1 and Ai2.

We define two sets of relevant covariates: baseline and intermediate. The baseline covariates, 
Xi, are causally prior to both treatments. Thus, researchers can adjust for these covariates using 
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typical causal inference techniques such as regression, weighting or matching. The intermediate 
covariates, Zi, can be affected by Ai1, but are causally prior to Ai2 and confound the relationship 
between the outcome and late treatment. These covariates pose problems for standard models 
when trying to estimate the effect of the entire treatment history due to the potential for post-
treatment bias induced by conditioning on them (Robins, 1997; Rosenbaum, 1984). An example 
of this causal structure is shown in Figure 1.

Our goal in this paper is to estimate the effect of early exposure to negative ads on voter turnout  	
for a fixed value of late negativity: �a2 = E{Yi(1, a2) − Yi(0, a2)}. This quantity represents the aver-
age effect of early treatment when late treatment is fixed at a particular value. For this paper, we focus 
on the effect when a2 = 0 and write � ≡ �0, but it is straightforward to estimate the effects at any level. 
We can also define the conditional effect of early treatment: �(x) = E{Yi(1, 0) − Yi(0, 0) |Xi = x}.  	
This is the direct effect of early treatment within levels of the baseline covariates. We can recover 
the marginal effect from the conditional effects by averaging over the distribution of the data: 
� = E{�(Xi)}. In the context of mediation studies, this quantity is also known as the controlled direct 
effect (Robins & Greenland, 1992) (see the dashed lines in Figure 1).

We make the following sequential ignorability assumption about the treatment history:

Assumption 1  (Sequential Ignorability) For every value, a1, a2, x, z: 

 

The first part of this assumption states that early treatment is independent of the potential 
outcomes, conditional on baseline covariates. The second part states that the late treatment is 
independent of the potential outcomes, conditional on early treatment and the baseline and 
intermediate covariates. This assumption essentially requires two ‘selection-on-observables’ 
conditions, one for each treatment. Thus, there must be no unmeasured confounders for the 
early-treatment-outcome relationship after conditioning on Xi and no unmeasured confounders 
for the late-treatment-outcome relationship after conditioning on {Xi, Ai1, Zi}. Note that this se-
quential ignorability assumption is considerably weaker than a version of sequential ignorability 
used in mediation analyses that requires no intermediate confounders (Imai et al., 2010).

We further assume that the distributions of the treatments are not degenerate at any values 
of the covariates.

(1)
{Yi(a1, a2),Zi(a1)}⊥⊥Ai1|Xi = x,

(2)Yi(a1, a2)⊥⊥Ai2|Xi = x, Zi = z, Ai1 = a1.

F I G U R E  1   Directed acyclic graph showing the causal relationships in the present setting. Dashed red lines 
represent the effect of early treatment for fixed values of later treatment. Unobserved errors are omitted
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Assumption 2  (Positivity) For every value, a, x, z, and for some values η > 0 and ν > 0: 

 

The first part of this assumption requires that the treated and control distributions of the base-
line covariates have the same support. The second part extends this assumption to the Ai2 = 1 
and Ai2 = 0 covariate distributions. These are straightforward generalizations of the common 
support assumptions in the matching literature to this settings.

A few other pieces of notation will be useful. First, we define a series of conditional ex-
pectation functions (CEF) of the potential outcomes, conditional on different sets of covari-
ates. In particular, we define �a1a2 (x, z, a1) = E{Y (a1, a2) |Xi = x, Zi = z, Ai1 = a1} and 	
�a1a2 (x, a1) = E{Yi(a1, a2) |Xi = x, Ai1 = a1}. Let �(x, z, a1, a2) = E(Yi |Xi = x, Zi = z, Ai1 = a1, Ai2 = a2)   	
be the CEF of the observed outcome, noting that under Assumption 1, 
�a1a2 (x, z, a1) = �(x, z, a1, a2). We also define two types of residuals, �i = Yi − �(Xi, Zi, Ai1, Ai2) 
and �i = �Ai10(Xi, Zi, Ai1) − �Ai10(Xi, Ai1). The first is the CEF error for Yi and the second 
captures the variation in the CEF of the potential outcomes that is due to Zi. Given these 
definitions, we have E(�i |X, A1) = 0 and E(�i |X, Z, A1, A2) = 0, where X and Z are the 
entire N × kx and N × kz matrices of baseline and intermediate covariates, and A1 and A2 
are the N vectors of the early and late treatments. Finally, we define various conditional 
variance functions. Let �2(x, z, a1, a2) = var(Yi |Xi = x, Zi = z, Ai1 = a1, Ai2 = a2) and 
�2�(x, a1) = var[E{Yi(a1, 0)|Xi = x, Zi, Ai1 = a1} |Xi = x, Ai1 = a1] = E(�2

i
|Xi = x, Ai1 = a1) . 

Again, under Assumption 1, �2(x, z, a1, a2) = var{Yi(a1, a2) |Xi = x, Zi = z, Ai1 = a1}.

3.2  |  The telescope matching procedure

How can we estimate the effect of early treatment fixing late treatment? If Ai1 and Ai2 are jointly 
randomized, then standard tools for multileveled treatments can be used to estimate the direct 
effect of a treatment since there are no covariates for which to adjust. When there are only base-
line confounders, then standard selection-on-observable methods for multileveled treatments 
can be applied (Imbens, 2004). However, when there are post-treatment confounders for the 
relationship between Ai2 and Yi, we must turn to other methods to adjust for this form of con-
founding. Our proposed approach, which we call telescope matching, imputes values of the miss-
ing potential outcomes in a flexible manner. For any particular unit, we only observe one of 
four possible potential outcomes, an issue sometimes called the fundamental problem of causal 
inference. To estimate the effect of Ai1 when Ai2 = 0, we would like to observe values for Yi(1, 0) 
and Yi(0, 0) for all units. The goal of telescope matching is to use matching methods in order to 
obtain reasonable imputations of these values for all units. We describe the technical details of 
the matching and imputation procedure here, but we also provide a simple example of the pro-
cedure with N = 6 in Supplemental Materials Section A.

The broad approach to sequential matching for time-varying treatments we describe below 
was first proposed by Lechner (2004) and focused on creating pair matches using the propensity 
scores for Ai1 and Ai2 (see Huber et al., 2018; Lechner & Miquel, 2010, for applications of this 
method). Our proposed matching approach generalizes this algorithm to allow for using more 
than a single match and to allow for matching directly on covariates in addition to propensity 

(3)𝜂 < pr(Ai1 = 1|Xi = x) < 1 − 𝜂,

(4)𝜈 < pr(Ai2 = 1|Xi = x, Zi = z, Ai1 = a) < 1 − 𝜈.
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scores. Generalizing beyond a single match is important for trading off bias and efficiency of 
our estimators, while allowing direct matching provides robustness against misspecification of 
the propensity score models. Below we discuss more fully the advantages and disadvantages of 
working with direct matching versus propensity score matching. Finally, we extend the proposal 
of Lechner (2004) by deriving the large-sample properties of telescope matching in the following 
sections and show that all of these matching methods require bias correction.

In the first step of telescope matching, we match each unit to L units of the opposite early 
treatment status with similar values of the baseline covariates as if we were attempting to esti-
mate the average treatment effect of Ai1 adjusting for Xi. We follow Abadie and Imbens (2006) 
in much of our discussion of matching estimators. Given a particular distance metric on the 
support of Xi (such as the Euclidean norm or the Mahalanobis distance) and given a particular 
unit i, we choose L units, here indexed by j, that are the closest to i in terms of covariate dis-
tance that have Aj1 = 1 − Ai1. Let 1L(i) denote this set of units that are matched to some unit 
i. Matching is done with replacement so each unit might be matched to multiple times, and we 
let K1L(i) =

∑N
k=1 �{i ∈ 1L(k)} be the number of times that unit i is used as a match in the first 

stage, where �{ ⋅} is the indicator function. As in Abadie and Imbens (2006), this quantity is im-
portant to the asymptotic distribution of the matching estimator.

In the second stage, we match across levels of late treatment to minimize the imbalance in 
terms of both baseline and intermediate confounders. Letting Vi = (Xi, Zi), the second step of 
telescope matching is to match each unit with Ai2 = 1 to some number of units, indexed by 
ℓ, with A�2 = 0 that have similar values of covariates Vi and identical early treatment status 
Ai1 = A�1. Let 2L(i) denote this set of units that are matched to some unit i with Ai2 = 1, with 
K2L(i) =

∑N
k=1 �{i ∈ 2L(k)} being the number of times that unit i is used as a match in the sec-

ond stage.
Typically, each of these steps would be used to estimate the average effect of treatment given 

the past, but here we are actually more interested in obtaining a good imputation of the potential 
outcome for different treatment histories. We do so by moving backward through the treatment 
history. Let Yi(Ai1, 0) be the composite potential outcome under the observed early treatment 
status for i, but with late treatment set to 0, which is unobserved for any unit with Ai2 = 1. We 
define the following imputation: 

For units observed with Ai2 = 0, we observe Yi(Ai1, 0) = Yi by consistency. However, for units with 
Ai2 = 1, we need to impute the missing counterfactual outcome and do so by averaging the outcome 
among those units with Ai2 = 0 which were matched to unit i. These units have identical early treat-
ment levels Ai1 and are the closest to i in terms of the baseline and intermediate covariates. Using the 
first-stage matching, we can now generate imputations of the base potential outcomes with Ai2 = 0: 

Ŷ i(Ai1, 0) =

⎧⎪⎨⎪⎩

Yi if Ai2=0
1

L

�
�∈2L(i)

Y� if Ai2=1

Ŷ i(a1, 0) =

⎧⎪⎨⎪⎩

Ŷ i(Ai1, 0) if Ai1=a1
1

L

�
j∈1L(i)

Ŷ j(Aj1, 0) if Ai1=1−a1
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With these definitions in hand, we can then apply a standard difference in means matching estima-
tor. In particular, the simple telescope matching estimate of the effect of early treatment then 
becomes 

In general, this estimator will perform well when the matching discrepancies in the covariates are 
small. One can assess the matching quality of each step using standard matching diagnostics applied 
to the appropriate covariate set. For instance, for the second step, we would check the balance of the 
matched Ai2 = 1 units to the Ai2 = 0 units in terms of both Xi and Zi.

Both K1L(i) and K2L(i) tell us how much unit i is contributing to the overall estimate through 
being matched in the first and second stages respectively. Of course, units with Ai2 = 0 might 
also contribute indirectly if they are matched to a Ai2 = 1 unit in the second stage and that 
Ai2 = 1 unit is used as a match in the first stage. To account for such indirect contributions of a 
unit, let K∗L(i) =

∑N
j=1 �{i ∈ 2L(j)}K1L(j) be the number of times a second-stage match with 

Ai2 = 0 is implicitly used as a match in the first stage because the unit to which it was matched 
is selected as a match in the first stage. We can rewrite the simple telescope matching estimator 
as a weighted average of units with Ai2 = 0, �̂ = N−1 ∑N

i=1 (2Ai1 − 1)(1 − Ai2)WiYi, where: 

This weighted-average version of the estimator highlights how the K terms might affect the variance 
of our estimators—units that are used as matches many times can lead to large weights and thus 
higher variances. This provides one reason to keep the number of matches L relatively low. One 
data-driven approach to selecting L would be to start at some modest number such as L = 5 or L = 10 
and then decrease the matching ratio until some pre-specified balance criteria is met. Unfortunately, 
given the variety of possible balance criteria, it is beyond the scope of this paper to develop a general 
way to find the optimal matching ratio.

3.3  |  Bias and consistency

Abadie and Imbens (2006) showed that in the context of estimating the overall ATE of a point 
exposure, the equivalent simple matching procedure was biased due to imperfect matches. 
Furthermore, they showed that with a fixed size for the matched set, L, this bias converges to 0 
as the sample size increases, but at a rate slow enough to affect the asymptotic distribution of the 
matching estimator. In this section, we show that a similar account holds in the present setting.

In the Supplemental Materials, we show that one can decompose the estimation error of �̂  as 
follows: 

�̂ ≡
1

N

N∑
i=1

(
Ŷ i(1, 0) − Ŷ i(0, 0)

)
.

(5)Wi = 1 +
K1L(i)

L
+
K2L(i)

L
+
K∗L(i)

L2
.

(6)�̂ − � =

(
1

N

N∑
i=1

�(Xi) − �

)
+U1L +U2L + B1L + B2L.
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 The first term in the decomposition, (1∕N)
∑N

i=1 �(Xi) − �, is the difference between the sample 
average of the conditional effects and the marginal effect, which converges to 0 under a standard law 
of large numbers. Next in the decomposition are two weighted sums of the residuals: 

 The error due to the second-stage is mean-zero conditional on all variables, E(U2L |X, A1, Z, A2) = 0 , 
and the error due to the first-stage is mean-zero conditional on the baseline covariates and the treat-
ment, E(U1L |X, A1) = 0. Thus, the first three terms impose no bias on the matching estimator.

Finally, the last two terms capture the bias of the matching procedure due to the first and 
second-stages of matching: 

These bias terms reflect the matching discrepancy at each stage of matching. For instance, the last 
term in the definition of B2L is the difference in the expectation of the outcome for the covariates 
for unit i and for the units matched to i. This bias is amplified by the number of times that this 
Ai2 = 1 unit is matched in the first stage. If the matches were perfect, then we would have Xi = X� 
and Zi = Z� for all � ∈ 2L(i) and Xi = Xj for all j ∈ 1L(i), and both of these bias terms would 
be equal to 0. In general, however, matches are imperfect when we have any continuous covariates 
and so these bias terms will not be mean-zero (Abadie & Imbens, 2006). Importantly for the results 
below, though, these values do converge to 0 as N increases.

To establish the large-sample properties of the matching estimator, we make the following 
regularity conditions, which mostly generalize those of Abadie and Imbens (2006) to the current 
setting.

Assumption 3  (Regularity conditions) We assume the following:

1.	 Let Vi = (Zi, Xi) be a random vector of k = kz + kx continuous covariates distributed on ℝk 
with compact and convex support � , with its density bounded and bounded away from zero.

2.	{(Yi, Ai2, Zi, Ai1, Xi)}Ni=1 are independent and identically distributed.
3.	 The functions �(x, z, a1, a2), �2(x, z, a1, a2), and �2�(x, a1) are Lipschtiz on � .
4.	 E(Y 4

i
|Vi = v,Ai1 = a1, Ai2 = a2) exists and is uniformly bounded in �  for all a1 and a2.

5.	 �2(x, z, a1, a2) and �2�(x, a1) are bounded away from 0.

U2L=
1

N

N∑
i=1

(2Ai1−1)(1−Ai2)

(
1+

K1L(i)

L
+
K2L(i)

L
+
K∗L(i)

L2

)
�i,

U1L=
1

N

N∑
i=1

(2Ai1−1)

(
1+

K1L(i)

L

)
�i.

B2L=
1

N

N�
i=1

(2Ai1−1)Ai2

�
1+

K1L(i)

L

�⎛
⎜⎜⎝
1

L

�
�∈J2L(i)

�Ai10(X� ,Z� ,Ai1)−�Ai10(Xi,Zi,Ai1)
⎞
⎟⎟⎠
,

B1L=
1

N

N�
i=1

(2Ai1−1)
⎡⎢⎢⎣
1

L

�
j∈J1L(i)

�1−Ai1,0(Xi, 1−Ai1)−�1−Ai1,0(Xj, 1−Ai1)
⎤⎥⎥⎦
.
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These assumptions impose smoothness on conditional expectations and variances as func-
tions of the covariates and ensure that sufficient moments of the outcome exist to allow for 
convergence in distribution. These conditions ensure that even though the simple matching esti-
mator is biased, it is consistent for the true effect of early treatment.

Theorem 1  Suppose that Assumptions 1, 2, and 3 hold. Then, (i) �̂ − �
p
→ 0 and (ii) √

N
�
�̂ − B1L − B2L

� d
→ N(0, �2), where �2 = V �(X ) + V � + V �, and 

Proofs for all results are in the Supplemental Materials. The crux of part (i) of this result 
comes from the fact that the terms in the decomposition in Equation (6) all converge to 0 in 
probability. Unfortunately, without further assumptions, the bias terms dominate the distri-
bution of the estimator as N → ∞, so that the simple matching estimator will not converge in 
distribution at the 

√
N  rate (Abadie & Imbens, 2006). The second part of this theorem shows 

that when the bias terms are removed, the matching estimator is asymptotically normal with a 
variance that depends on the distribution of the number of times a unit is used as a match. Even 
though these results ignore the bias terms, they are still useful because the bias correction that 
we describe next will converge at a fast enough rate so it can be ignored asymptotically (Abadie 
& Imbens, 2011).

There are several tuning parameters for matching that deserve attention in our setting. It is 
important to note that our approach does not prune observations for which the matching dis-
crepancy on the covariates is large as does radius or kernel matching. While it is possible to prune 
based on baseline covariates, any pruning based on intermediate confounders has the potential 
to induce post-treatment bias and so we avoid this. For the sake of efficiency, it is possible to ex-
tend the theoretical results here to allow for a variable number of matches for each unit, so long 
as the minimum number of matches is one and therefore no pruning occurs (Abadie & Imbens, 
2012). Of course, allowing for a large number of matches for a particular unit could increase the 
number of indirect matches, K∗L(i), make the implied matching weights more variable and actu-
ally reduce efficiency. The additional benefit of a variable matching ratio in this setting would be 
a fruitful avenue for future research.

3.4  |  Bias correction

Due to the large-sample bias of a simple matching estimator, Abadie and Imbens (2011) proposed 
a bias-corrected estimator that estimates and removes this bias. In this section, we extend this 
idea to the present two-stage setting. In particular, we propose estimating the two bias terms with 
regression estimators of the two relevant conditional expectations, ̂�(x, z, a1, a2) and �̂a10(x, a1). 
As in Abadie and Imbens (2011), we leverage a flexible series estimator that grows more complex 
with the sample size, which we describe in more technical detail in the Supplemental Material 
Section B. We can then use these regressions to obtain estimates of the bias terms themselves: 

(7)
V �(X )=E

{
(�(Xi)−�)2

}
, V � =E

{(
1+

K1L(i)

L

)2

�2�(Xi,Ai1)

}
,

V �=E

{
(1−Ai2)

(
1+

K1L(i)

L
+
K2L(i)

L
+
K∗L(i)

L2

)2

�2(Xi,Zi,Ai1, 0)

}
.
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 If the regression estimators are consistent for their respective conditional expectations (as they are 
under our regularity conditions), then B̂2L and B̂1L converge in probability to the bias terms B2L 
and B1L respectively. With these estimates in hand, we define the following bias-corrected telescope 
matching estimator: �̃ ≡ �̂ − B̂2L − B̂1L. We establish the asymptotic distribution of this estimator 
in Theorem 2.

Theorem 2  (Bias-corrected matching) Suppose that Assumptions 1–3 hold along with 
Assumption 1 in the Supplemental Material. Then, 

√
N(B2L + B1L − (B̂2L + B̂1L)) converges 

in probability to 0 and 
√
N(�̃ − �) converges in distribution to N(0, �2).

Theorem 2 shows that, under some smoothness conditions, the bias-correction terms con-
verge at a rate faster than 

√
N  and that using the estimated bias rather than the true bias does not 

affect the large-sample distribution of the matching estimator. Of course, this might understate 
the sampling variance in finite samples where the variance of the bias correction estimator is 
non-negligible. In particular, the bias terms may converge more slowly when there are relatively 
many Ai2 = 1 units, since, intuitively, there is more bias to correct in that setting. In these situa-
tions �2 might not be a good approximation to the finite sample variance of �̃ .

3.5  |  Inference

Conducting inference for telescope matching requires a valid method for estimating standard er-
rors. Matching with replacement, as we propose here, complicates variance estimation because 
it creates dependence across the imputed counterfactuals, leading to the complicated form of 
the variance of the matching estimator in Equation (7). One approach to estimating the variance 
of the matching estimator is to directly estimate the components of Equation (7), which are the 
variance of �(Xi) and weighted averages of the conditional variances of the outcomes. A straight-
forward way to implement such an estimator is to replace the population quantities with their 
sample counterparts, with estimators for the conditional variances: �̂2 = V̂

�(X )
+ V̂

�
+ V̂

�
 , 

where: 

B̂2L=
1

N

N�
i=1

(2Ai1−1)

�
1+

K1L(i)

L

�
Ai2

⎛
⎜⎜⎝
1

L

�
�∈J2L(i)

�̂(X� ,Z� ,Ai1, 0)− �̂(Xi,Zi,Ai1, 0)
⎞
⎟⎟⎠
,

B̂1L=
1

N

N�
i=1

(2Ai1−1)
⎡
⎢⎢⎣
1

L

�
j∈J1L(i)

�̂1−Ai1,0(Xi, 1−Ai1)− �̂1−Ai1,0(Xj, 1−Ai1)
⎤
⎥⎥⎦
.

(8)

V̂
�(X )

=
1

N

N∑
i=1

(
�̂10(Xi)− �̂00(Xi)− �̃

)2
,

V̂
�
=
1

N

N∑
i=1

(
1+

K1L(i)

L

)2 (
�̂(Xi,Zi,Ai1, 0)− �̂Ai10(Xi,Ai1)

)2
,

V̂
�
=
1

N

N∑
i=1

(
1−Ai2

)
W 2

i

(
Yi− �̂(Xi,Zi,Ai1, 0)

)2
.
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 This estimator relies on the estimators for the conditional expectations that we also use for the bias-
correction. Alternatively, one could use a matching approach to estimate these conditional variances 
as in Abadie and Imbens (2006), though these matching estimators can often be improved using 
bias correction techniques that lead to an estimator similar to the one presented here. In the next 
theorem, we show that the same assumptions that justify the bias correction also imply this variance 
estimator will be consistent for the asymptotic variance of the matching estimator.

Theorem 3  (Variance estimator) Under the conditions of Theorem 2, �̂2
p
→ �2.

While the bootstrap is a popular approach for many methods, it is well known that conven-
tional non-parametric bootstrapping, resampling observations {Yi, Xi, Zi, Ai1, Ai2}, is invalid for 
matching estimators (Abadie & Imbens, 2008). This is due to the inability of the naive boostrap 
to preserve the distributions of K1L(i), the counts of the number of times unit i is used as a match, 
across resamples. In the case of telescope matching, the same issue persists for the other match 
counts: K2L(i) and K∗L(i). Recently, Otsu and Rai (2017) proposed a method for using a variety of 
bootstrap techniques in the matching setting. They show that when the bias-corrected matching 
estimator is written in a linearized form such that �̃ =

∑N
i=1 �̃ i where �̃ i consists only of func-

tions of observation i, one could use a weighted bootstrap of the residuals, �̃ i − �̃ , to obtain valid 
confidence intervals for matching estimators. This ‘weighted’ boostrap resamples the ith contri-
bution to the overall estimate rather than resampling units and matching again in the resampled 
units. As discussed by Otsu and Rai (2017), this approach avoids the issues with the naive row-
resampling bootstrap method that is commonly used and analysed by Abadie and Imbens (2008) 
in the matching context. We extend their procedure to our setting in the Supplemental Materials.

Finally, we note that both the weighted bootstrap and our asymptotic variance estimator 
target �2, the variance of the simple matching estimator. This is justified by Theorem 2, which 
shows that the bias-corrected estimator will have the same asymptotic variance as the simple 
matching estimator. However, in small samples, the variation in �̃  due to the bias correction esti-
mation would be non-negligible, but will be ignored by both of these approaches. One advantage 
of the naive bootstrap in this case is that it will account for both the matching and bias-correction 
estimation uncertainty.

To assess how these three methods perform in practice, we evaluate them in a simulation 
study with varying sample sizes and numbers of covariates in Supplemental Material Section 
C. Overall, we find that for reasonable sample sizes and small numbers of covariates, our as-
ymptotic variance estimator and the weighted bootstrapping provide a reliable method for con-
structing confidence intervals when using telescope matching. In contexts with more covariates, 
however, coverage drops for both methods, though the effect is much more pronounced for the 
weighted bootstrap. Coverage for our asymptotic variance estimator is very similar to the vari-
ance estimators of single-treatment, bias-corrected matching estimators of Abadie and Imbens 
(2006), suggesting this drop is broader feature of matching estimators rather than sometime spe-
cific to telescope matching.

3.6  |  Matching on the propensity scores

When there are a large number of covariates, direct matching in the manner described here 
can be difficult. A widely used alternative to direct matching is matching on the estimated pro-
pensity score, or the probability of treatment given the covariates. This has the advantages of 
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being a simpler univariate matching problem while ensuring balance on the covariates when the 
propensity score model is correctly specified (Rosenbaum & Rubin, 1983). Abadie and Imbens 
(2016) studied the asymptotic properties of propensity score matching and derived asymptotic 
variance estimators under both known and estimated propensity scores.

Versions of the propensity score matching approach have been applied to the time-varying 
treatment setting. Lechner (2004) first proposed a sequential matching algorithm based on the 
propensity scores for Ai1 and Ai2, but did not derive the formal properties of that estimator. More 
recently, Huber et al. (2018) use a matching approach to estimate controlled direct effects in a set-
ting where there are no intermediate confounders. These sequential propensity score approaches 
are attractive because they reduce the dimensionality of the matching problem considerably, but 
they have four drawbacks in this setting. First, the Lechner (2004) algorithm is limited to one-to-
one matching, which could lead to a loss in efficiency relative to matching algorithms that allow 
for multiple matches.

Second, the sequential matching of Lechner (2004) prunes observations based on propensity 
scores for Ai2, which can induce post-treatment bias since that is implicitly conditioning the analy-
sis on a post-treatment variable Zi. In particular, let �1(x) = pr(Ai1 = 1 |Xi = x) be the propensity 
score function for t = 1 and �i(x, z, a) = pr(Ai2 = 1 |Xi = x, Zi = z, Ai1 = a) be the propensity 
score function for t = 2. Then, this sequential matching approach will restrict estimation of the di-
rect effects to units in a particular range of �i2 = �i(Xi, Zi, Ai1), which implicitly conditions on Zi. 
While conditioning on these intermediate covariates is valid within an adjustment step (matching 
in our case, or conditional expectations for structural nested mean models), the final estimation of 
the direct effect should only be conditional on baseline covariates (Robins, 1997).

Third, as we discuss below, these previous methods did not incorporate bias correction for 
the asymptotic bias that comes from imperfect matches. As we show in the simulations, this bias 
can be substantial when the propensity score model is incorrectly specified. Direct matching, on 
the other hand, can still recover decent matches because the validity and quality of the match 
depends less on functional form assumptions. Finally, recent work has shown that the dimension 
reduction inherent in propensity score matching can actually increase imbalance and bias com-
pared to direct matching methods (King & Nielsen, 2019). This last drawback urges caution and 
careful checking when deciding between propensity score and direct matching methods.

If propensity score matching is a better fit for a particular application, there is a straightforward 
way to incorporate propensity scores into telescope matching: simply include them as the sole 
baseline and intermediate covariates in the above method. The propensity score telescope match-
ing procedure would take �i1 = �i(Xi) as the sole baseline covariate and �i2 = �i(Xi, Zi, Ai1) to 
be the sole intermediate covariate. With L = 1 and no bias correction, this procedure is essentially 
what is proposed by Lechner (2004). If the propensity score functions were known, this approach 
is valid since the balancing property of the propensity score ensures Assumption 1 holds. With 
mild restrictions on the propensity score, such as those in Abadie and Imbens (2016), the pro-
pensity scores will also satisfy Assumptions 2 and 3. Finally, we note that, because we have two 
propensity scores in matching for Ai2, there will be asymptotic bias in the estimator as described 
above and bias correction will be required as in the direct matching case. Theorem 1 of Abadie 
and Imbens (2006) showed that the conditional bias term will be B1L = Op(N

−1∕2) and it will 
cause bias unless the conditional mean of the potential outcomes do not vary with the propensity 
scores, a very unrealistic assumption.

Accounting for the estimation of the propensity scores in the variance of the telescope match-
ing procedure is much more difficult. Abadie and Imbens (2016) are able to derive these in the 
single-treatment setting, but unfortunately, those results of are not applicable with two treatments 
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because they rely on propensity score matching being univariate. This allows a simpler statement 
of the variance of the matching estimator in terms of the true propensity score and the variance 
when the propensity score is estimated. The telescoping nature of the confounding and the non-
collapsibility of the propensity score means that the matching for Ai2 must be matched on the 
propensity scores for both Ai2 and Ai2, ensuring that the resulting estimator will be asymptoti-
cally biased. Because of this, it is not clear how to derive the variance of the telescope matching 
estimator when the propensity scores are estimated and bias correction is employed. However, 
Abadie and Imbens (2016) show that, when targeting average rather than conditional effects, the 
standard variance formulas will tend to be conservative—that is, they will overestimate the vari-
ance. A similar argument can be used to show that the propensity score-based telescope match-
ing will have the same property since the average effects of interest here do not depend on the 
propensity score as with the ATE in Abadie and Imbens (2016). Alternatively, one could use the 
nonparametric bootstrap for both the estimation of the propensity score and matching analysis 
similar to how one could use it to account for bias correction above. Given the known theoretical 
shortcomings of the bootstrap, its performance will depend on the particular empirical setting.

3.7  |  Relationship to other approaches

Time-varying treatments have been the focus of a great deal of statistical and empirical studies 
over the last few decades. As pointed out by Robins (1986) and Rosenbaum (1984), these direct 
effects are not identified from standard approaches that condition on Ai2 and Zi due to the poten-
tial post-treatment bias, which is sometimes called collider bias. The estimation of these effects 
has focused on two general approaches. First, structural nested mean models estimate τ by first 
modelling the (conditional) effect of Ai2 on Yi, and then removing that effect from the outcome 
(Robins, 1997). This ‘blipped-down’ outcome is similar to our imputed potential outcomes above, 
but this approach requires the correct parametric specification of �(x, z, a1, a2) to consistently 
estimate τ. Telescope matching leverages estimates of this same conditional expectation, but the 
nonparametric matching feature of the approach should make it less sensitive to minor misspeci-
fication. Our simulations below bear out this conjecture. Structural nested mean models have two 
other limitations that make it difficult to use in all settings. First, if the effect of Ai2 varies by Zi, the 
approach requires the integration of the regression functions over the distribution of Zi . This inte-
gration, though, requires parametric models for the outcome and for the joint distribution of the 
covariates, which can be very demanding when there are more than a handful of covariates. The 
telescoping nature of our matching approach sidesteps this integration. Second, structural nested 
mean models are difficult to apply to binary outcomes (Robins, 2000; Robins & Rotnitzky, 2004; 
Vansteelandt, 2010), whereas the matching approach here does not depend on the support of the 
outcome, though the bias correction may perform better on continuous outcomes.

The second approach, inverse probability of treatment weighting, leverages correctly speci-
fied models for the propensity score of Ai1 and Ai2 to estimate the (direct) effect of Ai1 (Murphy 
et  al., 2001; Robins, 1998; Robins et  al., 2000). Unfortunately, in practice, this approach can 
have poor performance due to unstable weights when the probability of Ai1 = 1 is close to 0 or 
1, which can be compounded by model misspecification (Goetgeluk et al., 2008). In these situa-
tions, matching will also lead to poor matches (in terms of covariate balance), but our bias cor-
rection approach may help mitigate this issue. Covariate-balancing propensity scores, which we 
include in our simulations below, were developed to improve the performance of inverse proba-
bility weighting under model misspecification and provide a good comparison to our approach 
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here (Imai & Ratkovic, 2015). In addition, a host of doubly robust methods have been developed 
that combine features of the structural nested and weighting approaches (Bang & Robins, 2005; 
van der Laan & Gruber, 2012). These methods require models for both (a) the outcome-covariate 
relationship and (b) the propensity scores. These methods are doubly robust in the sense that 
they are consistent for direct effects when either (a) or (b) are correctly specified. Telescope 
matching possesses an approximate double robustness property in the sense that if either (a) 
the matching is exact or close to exact, or (b) the bias correction model is correctly specified, 
then the resulting telescope matching estimator will generally have small bias. This differs from 
the traditional notion of double robustness since that relies on the consistency of at least one of 
two models, whereas approximate double robustness here relies on finite-sample quality of the 
matching.

4  |   SIMULATION STUDY

We evaluate the performance of telescope matching against existing direct effect methods using 
a simulation in which we artificially introduce model misspecification, following an approach 
similar to that of Kang and Schafer (2007). Our assumed data generating process reflects a com-
mon situation encountered by researchers where there are many observed covariates with vary-
ing magnitudes of confounding. We have twenty observed baseline confounders, Xi1, Xi2, …, Xi20 , 
that are each  (0, 1), and fifteen intermediate confounders Zi1, Zi2, …, Zi15. The early treat-
ment assignment, Ai1, follows Bern(�i), where logit(�i) =

∑20

j=1
j−1(−1) jXij. Each of the fifteen 

intermediate confounders, Zik, is a function of early treatment and of another, unobserved, con-
founding factor affecting both Zik and outcome Yi. Therefore, while each Zik is causally affected 
by early treatment Ai1, it itself does not directly affect Yi. Rather, it is a control variable that can 
block confounding due to the unobserved common cause, denoted Uik. Each intermediate con-
founder is generated as Zik =

1

2 × k
Ai1 + � ik +

�

k
Uik, where � ik ∼  (0, 1), Uik ∼  (0, 0.2) with 

𝛾 ik ⊥⊥ Uik. The parameter δ, which we vary in our simulations, captures the amount of confound-
ing between the intermediate covariate and the outcome. The stronger this confounding, the 
larger the post-treatment bias for τ when conditioning on Zik in a naive manner.

Late treatment Ai2 follows Bern(ri), where

To approximate the typical case for matching, where there are many controls to be matched to a 
smaller number of treated units, this functional form sets the marginal probability of Ai2 = 1 to 
be between about 0.37 and 0.39 in our simulations depending on the magnitude of confounding. 
Finally, the outcome is generated as

where �i ∼  (0, 1) and δ is the same parameter that appears in the functional form of Zik. In this 
case, the effect of Ai1 flows entirely through future treatment, so the true (direct) effect of early 
treatment is 0.

logit(ri) = − 1.5 + 0.5Ai1 +
∑20

j=1

(
( − 1)j−13

2 + j

)
Xij +

∑15

k=1

(
3

2 + k

)
Zik.

Yi = 210 + 27.4Ai2 +
�20

j=1

�
13.7

⌈j∕2⌉
�
Xij +

�15

k=1

�
�

k

�
Uik + �i
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As in Kang and Schafer (2007), we simulate model misspecification by considering a scenario 
where each of the confounders are not measured directly but rather as one of three non-linear 
transformations. 

Were these non-linear transformations known to the researcher, it would be possible to specify the 
true linear regression model in terms of a correct transformation of the confounders. However, in 
practice, researchers do not know the exact non-linear transformation that would yield a correctly 
specified model. Instead, they will typically use models that simply assume linearity and additivity. 
Our simulation varies two parameters: sample size and the magnitude of post-treatment confound-
ing (δ).

For each simulated dataset, we estimate the controlled direct effect of early treatment using 
several approaches: (1) a naive overspecified linear regression that conditions on both treatments 
and all confounders, baseline and intermediate; (2) a structural nested mean model that assumes 
the outcome model is linear and additive in all variables; (3) the sequential propensity score 
matching approach of Lechner (2004) (without any bias correction); (4) the doubly robust ap-
proach of Bang and Robins (2005) using the same outcome model as structural nested mean 
model and the propensity scores estimated as with the Lechner method; and (5) our telescope 
matching approach with the Mahalanobis distance metric, bias correcting with the same regres-
sion model as in the structural nested mean model. In our simulations, we set the number of 
units matched to each treated unit to L = 3. We also considered a standard (stabilized) inverse 
probability weighting estimator, and while it performs reasonably well in large samples given 
correct model specifications for both late treatment and the outcome, we omit it from the graphs 

(
X∗
i,odd

,X∗
i,even,Z

∗
ik

)
=
{
exp(Xi,odd∕2), (1+exp(Xi,even))

−1 + 10, (Zik∕25+0.6)
3
}

F I G U R E  2   Performance of several estimators under simulated data with correct and misspecified models. 
The y-axis measures absolute bias (Abs. Bias) or root mean square error depending on the column
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for expository reasons as the bias under misspecification is far larger than for any of the other 
methods, consistent with Kang and Schafer (2007). In addition, we evaluated the covariate-
balancing propensity score method for marginal structural models which was designed to es-
timate weights in a way that is more robust to model misspecification (Imai & Ratkovic, 2015). 
Although the bias reduction under misspecification is considerable, the variance and RMSE far 
exceed the other methods and we also omit this from our graphs. In the Supplemental Materials, 
we show the figure with standard weighting results and covariate-balancing propensity scores 
(Figure SM.2) along with results on the confidence interval coverage of the various variance esti-
mators described above (Figure SM.1).

Figure 2 plots the absolute value of the bias and the root mean squared error for all approaches 
under correct and incorrect model specifications. On the x-axis, we vary the amount of interme-
diate confounding (δ), which is translated into the partial correlation between Ui1 and Yi. This 
partial correlation is a deterministic function of δ: 0.2�(0.04�2 + 1)−1∕2. For each combination of 
parameter values, we carried out 10,000 iterations of our simulation. We find that both telescope 
matching and structural nested mean models are unbiased when the model is correctly specified, 
with the latter having a slight advantage over matching in terms of variance, a gap that decreases 
significantly as sample size increases. At the larger sample sizes, the increase in variance result-
ing from including a more flexible imputation model is rather minimal. As expected, the overspe-
cified regression suffers from post-treatment bias, the magnitude of which grows as we increase 
the correlation between the intermediate confounder and Yi. Lechner’s sequential propensity 
score matching shows some bias that shrinks with sample size but grows slightly with the degree 
of intermediate confounding. The performance of the structural nested mean model and doubly 
robust estimator are nearly identical across all specifications.

When we introduce model misspecification, the performance of structural nested mean mod-
els is worse than that of telescope matching, with the gap growing as a function of the sample 
size. Telescope matching has considerably lower bias than all four of the other methods under 
misspecification and has the lowest root mean square error across all sample sizes and degree of 
post-treatment confounding. We also find that the root mean square error of telescope matching 
is decreasing in the sample size even with a relatively inflexible bias correction model. Finally, 
we find that the sequential propensity score matching has significantly higher bias under this 
misspecification even though it is a matching algorithm. This occurs because propensity score 
matching requires the correct specification of the propensity score model, whereas direct match-
ing on covariates can be robust to those functional form assumptions.

Overall, the simulation results are promising for our proposed method. The findings are con-
sistent with the argument made in Ho et al. (2006) that matching allows researchers to avoid 
some of the pitfalls of having to choose the ‘correct’ imputation model. Moreover, at least under 
the data generating process of this simulation, the loss of power when the true model is somehow 
known is minimal and far outweighed by the reduction in bias under the more likely case where 
the researcher happens to select a specification that does not quite match the truth. However, we 
do caution that, even if it outperforms the other methods considered here, the bias of telescope 
matching can still be significant under the incorrect specification without a very large sample.

5  |   EMPIRICAL ANALYSIS

Does negative advertising early in a campaign affect voter turnout or vote shares on election day? 
We apply the above methodology to a data set of Senate and gubernatorial elections in the United 
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States from 2000 until 2016. Our data expands on that used by Blackwell (2013) to estimate the 
effect of negativity by Democratic candidates on Democratic vote shares. In our analysis, we 
focus on the effect of incumbent negativity (regardless of party) on both voter turnout and vote 
shares. Voter turnout is defined as the percentage of citizen voting-age population (that is, those 
eligible to vote) who cast a ballot in the election, whereas vote share is the percent of the two-
party vote for the incumbent. The data on advertising comes from the Wisconsin Advertising 
Project (Goldstein & Rivlin, 2007) and its successor the Wesleyan Media Project (Fowler et al., 
2019), both of which code each political television advertisement as negative (mentioning the 
opponent) or positive (focusing entirely on the sponsor of the ad). Furthermore, these projects 
collect information on when these ads were shown, allowing us to create a measure of candidate 
negativity for the early part of the race versus the late part of the race. We focus on the effect of 
the incumbent candidate’s decision to go negative and code Ai1 = 1 if incumbent i’s proportion 
of negative ads exceeded 50% from the end of the primary until the end of September. We code 
Ai2 = 1 similarly for the months of October and the first week of November. After removing 
races that had no incumbent, no opponent, or had no television ads, we have a total of 144 races 
for the US Senate and 54 for state Governor. The median length of these campaigns—from the 
primary to the general election—is 21 weeks.

We estimate the direct effect of early negativity fixing late campaign tone to be negative—that 
is we seek to compare Yi(1, 1) to Yi(0, 1)—since there are relatively few campaigns that switched 
from negative early to positive later, as seen in Table 1. To estimate these effects, we control for a 
host of potential covariates that might confound the relationship between the decision to go neg-
ative and the eventual outcomes. For baseline covariates, we include the length of the campaign 
in weeks; an indicator for whether the incumbent was a Democrat; the average support for the 
incumbent in baseline polling; the average percent undecided in baseline polling; the total num-
ber of ads shown by the major party candidates in the primary; an indicator for midterm versus 
presidential election year; a linear term for election year; baseline contributions to both candi-
dates; the number of eligible voters in the state; and an indicator for office type. For intermediate 
covariates, we include several covariates measured at the beginning of the late-campaign period: 
the average support for the incumbent in polls; the average percent undecided; the log of the total 
number of ads shown through the early period; total number of contributions to either candidate 
through the end of the early period; and the average negativity of the challenger through the 
early part of the race. These intermediate confounders could at least plausibly be affected by early 
negativity by the incumbent.

We explore three different methods for estimating these direct effects. First, we simply esti-
mate an overspecified linear regression with both treatments and both sets of covariates. Second, 
we estimate the effect using a linear structural nested mean model, where the covariates are 
modelled in the same way as the overspecified regression. Finally, we use telescope matching 
using the same linear regression models as the structural nested mean models for the bias correc-
tion. For telescope matching, we use L = 3 matches in both stages after checking that balance did 
not change dramatically with smaller matching ratios. In the Supplemental Materials, we present 

T A B L E  1   Count of campaign treatment histories

Positive late (Ai2 = 0) Negative late (Ai2 = 1)

Positive early (Ai1 = 0) 93 44

Negative early (Ai1 = 1) 11 50
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a second empirical example from political science on the effect of membership in a labour union 
on racial attitudes of white Americans. That example has a larger sample size, but more extreme 
imbalance in the covariate distributions. In contrast to the campaign negativity example, we 
found that the estimated propensity scores in this example clustered very close to 0 and 1 as the 
treatment statuses were fairly well predicted by the covariates. While the larger sample size re-
sulted in a greater reduction in post-matching imbalance due to the presence of more potential 
control matches, in both examples some residual imbalance remained due to insufficient control 
units in extreme parts of the covariate distribution.

5.1  |  Findings

We begin by investigating how telescope matching addresses imbalances across both the early 
and late treatment covariate distributions. In Figure 3, we plot the standardized difference in 
means of each covariate in the matched and unmatched sample. For most of the covariates, 
there is a decrease in the imbalance across the treatment groups after matching (points below 
the 45-degree line), which we hope translates into robustness against model misspecification for 
those covariates. The few covariates that see increases in imbalance had fairly small imbalances 
in the unmatched sample and so the overall balance is much higher in the matched sample. In 
the Supplemental Materials, we present a full summary of the changes in balance for each vari-
able along with an investigation of overlap in the propensity score distributions. Consistent with 
the nonparametric nature of the matching procedure, telescope matching reduces imbalance on 

F I G U R E  3   Comparison of balance before (x-axis) and after (y-axis) matching. Each dot represents a 
covariate its position represents the standardized difference in means across the treated and control groups in 
either period
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several squared terms of continuous covariates and the estimated propensity scores even though 
neither of these were used in the matching procedure. In spite of these improvements, there are 
still residual imbalances between the treated and control groups in both periods in terms of the 
propensity scores and other covariates. Our hope is that the bias correction step can adequately 
address these remaining imbalances, but there is the possibility that it drives some of the results 
we find below.

In Table 2, we present the estimated direct effects of early negativity on both voter turnout 
and the incumbent percentage of the vote. For voter turnout, each of the three methods pro-
duce a positive estimated effect of early negativity, though the estimate from telescope match-
ing is much higher in magnitude than the other two estimates. This finding is interesting from 
a substantive perspective because campaign effects are usually thought to dissipate quickly 
due to recency bias (Gerber et al., 2011). The effects on incumbent vote shares, on the other 
hand, are negative and more consistent across telescope matching and structural nested mean 
models, though uncertainty is higher for the telescope matching estimator. Combined, these 
results are consistent with an account where early incumbent negativity actually mobilizes 
the challenger’s supporters to turn out against the incumbent, leading to a backlash effect on 
vote shares.

Beyond the substantive results, this application demonstrates not only how telescope match-
ing can be used to estimate the effects of time-varying treatments, but also how the choice of 
method can lead to dramatically different conclusions about these effects. In the Supplemental 
Materials, we discuss one likely source of this divergence due to model misspecification: when 
we add a handful of covariate interactions, the estimated effect of early negativity on turnout 
from the structural nested mean model becomes much closer to the estimate from telescope 
matching.

Finally, we note that both structural nested mean models and telescope matching rely on the 
sequential ignorability assumption, which is impossible to verify in observational settings like 
the present one. In our case, this assumption means that, the decision to go negative is indepen-
dent of the potential outcomes of turnout and vote share conditional on the covariates listed 
above. This assumption will be most plausible when the covariates include all information that 
the campaigns used to make their decisions. And while our conditioning set does include many 
of those variables (campaign contribution, opponent’s ad behaviour, polling), there may be pri-
vate information that campaigns have to which we do not have access, making sequential ig-
norability less plausible. Thus, we believe an important avenue for future research is to extend 
the sensitivity analysis framework for matching (see, e.g., Rosenbaum, 1995, Chapter 4) to this 
sequential matching case.

T A B L E  2   Estimated effect of early incumbent negativity on voter turnout and incumbent vote percentage 
fixing late campaign tone to be negative (N = 198)

Method

Turnout Vote share

Est. SE 95% Conf. Int. Est. SE 95% Conf. Int.

Overspecified 
regression

0.827 1.283 (−1.687, 3.341) −0.762 0.702 (−2.138, 0.614)

Structural nested mean 
model

2.284 1.072 (0.183, 4.386) −1.926 0.758 (−3.411, −0.441)

Telescope matching 4.186 1.618 (1.015, 7.358) −2.266 1.172 (−4.563, 0.031)
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6  |   CONCLUSION

In this paper, we have introduced a novel method for estimating the effect of time-varying treat-
ments. This matching-based approach flexibly imputes missing values of the potential outcomes 
and appears to be more robust to model misspecification than other approaches like structural 
nested mean models. This method will be useful to applied researchers who want to estimate the 
direct effect of early treatment but have a large degree of uncertainty about the correct model 
specification for baseline and intermediate covariates. Furthermore, we derived several proper-
ties of the estimator, including its large-sample distribution, that allowed us to develop a bias-
corrected version of this estimator that augments the matching with regression.

There are several avenues for future work on this frontier. First, it would be interesting to 
understand how these methods could be extended to estimate quantities of interest in mediation 
analyses like the natural direct and indirect effect, when the assumptions of that setting holds. 
Second, we have explored bias correction through simple additive linear regression models but 
a range of more flexible regression techniques, from generalized additive models to cutting-edge 
machine learning methods, could plausibly be used as well. Third, it would be interesting to see 
how well this method generalizes to arbitrary time points and what steps that could be taken to 
mitigate potential power issues in that setting. In general, this paper illustrates how estimation 
of time-varying treatment effects can be treated as a problem of imputing missing potential out-
comes Yi(a, 0). We outline one particular imputation strategy, a two-stage matching estimator, 
but there are many other imputation methods, each with their own particular advantages and 
drawbacks, that could be investigated in subsequent research.
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