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Abstract

Corporations, unions, and other interest groups have become key sponsors of televi-
sion advertising in United States elections after the Supreme Court’s decision in Citizen’s
United v. FEC that eliminated restrictions on such spending. This paper estimates the par-
tisan effects of ads sponsored by these groups to obtain a more complete picture of voter
behavior and electoral politics. Advertising strategies vary over the course of the cam-
paign, and so marginal structural models are a natural tool to estimate these effects. Un-
fortunately, this approach requires an assumption of no unobserved confounders between
the treatment and outcome, which may not be plausible with observational electoral data.
To address this, we propose a novel inverse probability of treatment weighting estimator
with propensity-score fixed effects to adjust for time-constant unmeasured confounding
in marginal structural models of fixed-length treatment histories. We show that these es-
timators are consistent and asymptotically normal when the number of units and time
periods grow at a similar rate. Unlike traditional fixed effect models, this approach works
even when the outcome is only measured at a single point in time as in our setting, though
the method does rely on some degree of treatment switching within units. Against con-
ventional wisdom, we find that interest group ads are only effective when run by groups
supporting Democratic candidates and that these effects are most prominent after Donald
Trump became a presidential candidate in 2016.
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1 Introduction

Television advertisements have been a cornerstone of United States politics since they first

aired in the 1950s (Benoit, 2013). In the 2019–2020 election cycle, there were 2.35 million ad

airings in the presidential race, 2.33 million in Senate races, and 1.36 million in U.S. House

races, each number setting a record (Ridout et al., 2021). These ads are one of the main ways

in which candidates, political parties, and outside interest groups attempt to influence voter

behavior, electoral outcomes, and, ultimately, public policy. A large literature in political sci-

ence and related fields has attempted to estimate the effect of these ads on various outcomes

and for various political offices (Jacobson, 1975; Goldstein and Ridout, 2004; Huber and Arce-

neaux, 2007; Ridout and Franz, 2011; Blackwell, 2013; Hill et al., 2013; Sides et al., 2022). The

findings from these studies vary but generally point to ad airings having persuasive effects on

voter behavior with larger effects at lower levels of political office.

In this paper, we focus on the effects of advertisements sponsored by independent interest

groups. The U.S. Supreme Court decision in Citizen’s United v. FEC (2010) removed cam-

paign finance restrictions on independent expenditures by outside interest groups, including

corporations and labor unions. Since that time, the share of television ad airings sponsored

by outside groups has grown from roughly 10% pre-Citizen’s United to over 25% in the period

after the decision (Ridout et al., 2021). This growth has worried citizens and political observers

since these groups were no longer required to disclose their donors, a phenomenon known as

“dark money,” potentially providing a large benefit to corporations, wealthy individuals, and,

ultimately, the Republican party. Indeed, early research into the effects of the ruling found that

Citizen’s United increased Republican vote share in state legislative races (Klumpp et al., 2016),

though these studies tended to focus on aggregate effects without focusing on advertising di-

rectly. Our goal is to measure how independent group television ads have affected U.S. Senate

and Gubernatorial races in the post-Citizen’s era.

2



Amajor challenge to assessing the effects of political advertising is the dynamic nature of its

deployment. Candidates and groups change the amount and content of advertising in response

to how other groups advertise, which then affects the decisions of opponents. The feedback

cycle of political advertising implies the potential for time-varying confounding that can bias

our estimates of the effectiveness of advertising. Unfortunately, most studies of advertising

ignore these issues and simply rely on aggregate campaign-level measures of advertising. One

exception, Blackwell (2013), applied the combination of marginal structural models (MSM)

and inverse probability of treatment weighting (IPTW) (Robins et al., 2000) to estimate the

time-varying effects of negative advertising, showing considerable differences with estimates

that ignore or poorly handle time-varying confounding. More generally, the use of marginal

structural models for time-varying treatments in the social sciences has grown over the last

few decades (Sampson et al., 2006; Sharkey and Elwert, 2011; Wodtke et al., 2011; Bacak and

Kennedy, 2015; Ladam et al., 2018; Obikane et al., 2018; Creamer and Simmons, 2019; Baćak

and Karim, 2019; Kurer, 2020).

One limitation of the IPTW approach to marginal structural models is that it usually re-

lies on an assumption of sequential ignorability, which states that there are no unmeasured

confounders between the treatment at time 𝑡 and the outcome conditional on the treatment

and covariate history up to that point. In social science studies, this assumption could be sus-

pect when units select into treatment based on data not available to the researcher. In our

setting, we might worry that groups will be more likely to advertise in certain media mar-

kets where voters are known by the campaigns to be favorable to the supported candidate. To

overcome these issues, this article extends the IPTW approach to estimating the effects of time-

varying treatments to allow for time-constant unmeasured confounding. To do so, we propose

a straightforward modification to IPTW: to include unit-specific fixed effects in the propensity

score model used to construct the inverse-probability weights. While this approach will lead

to an incidental parameters problem for the propensity scoremodel (Neyman and Scott, 1948),
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we show that if this model is correctly specified and the number of time periods grows at the

same rate as the number of units, the IPTWwith fixed effects estimator (IPTW-FE) will lead to

a consistent and asymptotically normal estimator for the parameters of themarginal structural

model. This is true even when we only have a single measurement of the outcome after the

final instance of treatment, as is the case in our setting. This approach relies on a within-unit

version of sequential ignorability, which allows the type of feedback between the treatment

and outcome usually ruled out by linear outcome fixed effects estimators (Sobel, 2012; Imai

and Kim, 2019). The essential logic of the IPTW-FE is quite simple. If the propensity score

model is stable over time and we have a number of time periods, we can allow for each unit to

have a unique offset to the propensity score model that should incorporate any time-constant

variables, measured or unmeasured.

To prove ourmain results, we rely on a robust literature on nonlinear panel models that has

established the asymptotic distribution of our propensity score estimator when the number of

time periods grows at a similar rate to the number of units (Hahn and Newey, 2004; Arellano

and Hahn, 2007; Fernández-Val, 2009; Hahn and Kuersteiner, 2011; Fernández-Val and Weid-

ner, 2016, 2018). Many of these approaches have developed bias correction techniques since

these estimators are often asymptotically biased. Our approach avoids this issue with these

estimators for two reasons. First, we follow the MSM literature and focus on estimating the

parameters of the MSM at the slower
√
𝑁 rate rather than the

√
𝑁𝑇 rate so that the asymptotic

bias described in this literature converges to 0. Second, we focus on the effect of a finite num-

ber of lags of treatment, which limits howmuch the bias from noisy fixed effect estimation can

affect the estimates of the MSM parameters.

Applying these methods to data on U.S. Senate and Gubernatorial elections from 2010 to

2020, we find that each additional week of ads from independent groups supporting Demo-

cratic candidates increases the Democratic share of the two-party vote, increases Democratic

turnout, and decreases Republican turnout. We find no such effects for ads from independent
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groups supporting Republican candidates, in spite of the conventional wisdom that spending

from interest groups would generally favor Republicans. We additionally find that the effec-

tiveness of pro-Democratic independent group ads is driven mostly by the post-2016 era after

Donald Trump became a presidential candidate. Finally, we show that our method has null ef-

fects on a number of placebo tests, increasing our confidence that these results are not driven

by unmeasured confounding.

Our methodological approach is also related to recent work on causal inference in fixed

effects settings. Arkhangelsky and Imbens (2018) is most closely related to our approach here.

They investigate how to use inverse probability weighting with fixed effects when a set of suf-

ficient statistics for the treatment process is available, though in a fixed-𝑇 setting with no dy-

namic feedback between the treatment and the outcome and no time-varying covariates. Other

work has explained how this dynamic feedback stymies estimation of both contemporaneous

effects and the effects of treatment histories with fixed effects assumptions (Sobel, 2012; Imai

and Kim, 2019). In contrast, our approach allows for feedback between the treatment and the

outcome, so long as sequential ignorability holds conditional on the unit-specific effect. Finally,

a large literature has grown recently to explain how and when difference-in-difference meth-

ods may be used to estimate the effects of time-varying treatments on outcomes when a panel

of treatments and outcomes are observed together (Goodman-Bacon, 2021; Sun and Abraham,

2021; Callaway and Sant’Anna, 2021). In our application (and many others in the MSM litera-

ture), we only have a single endpoint measure of the outcome, so there are no “pre-treatment”

or baseline outcomes to leverage for removing unmeasured confounding.

The paper proceeds as follows. Section 2 introduces the data and notation for our set-

ting. In Section 3, we review marginal structural models and inverse probability of treatment

weighting as they are currently deployed in applied research. We then introduce our fixed-

effect approach in Section 4, describing both the assumptions that justify its use and its large-

sample properties under these assumptions. In Section 5, we present simulation evidence of
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the finite-sample performance of this estimator, which shows that it works well, especially

when the amount of unmeasured heterogeneity is limited. Finally, we present our results in

Section 6 and conclude with some ideas for future research in Section 7.

2 Data and Notation

Our data consists of Senate and Gubernatorial general election campaigns in the United States

from 2010 until 2020. These are state-wide races, but we analyze the data on the level of the

media market, the lowest level at which we can obtain advertising data. Media markets consist

of clusters of counties that where a single group of broadcast television channels can reach.

Our advertising data comes from the Wesleyan Media Project and contains political ads on

all broadcast television stations in all media markets in the United States (Fowler et al., 2019).

Each ad is coded for its sponsor and the nature of its content, which allows us to determine if an

ad is an attack ad or not, a fact we use in constructing some of our covariates. For our outcome

data on electoral returns, we used data from CQ’s Voting and Elections Collection combined

with data on the citizen voting-age population (CVAP) from the US Census. Finally, we obtain

polling data from the website RealClearPolitics. Wemap these county-level outcomes tomedia

markets using the mapping provided by Sides et al. (2022).

Our primary treatment of interest is the presence or absence of independent group (IG)

ads. We define 𝐷𝑖𝑡 to be a binary indicator if an IG ran ads in media market 𝑖 in week 𝑡 of the

campaign. Independent groups are any interest or advocacy group other than the candidate or

political party and include so-called “dark money” groups in addition to political action com-

mittees. Let 𝐷𝑖𝑡 = {𝐷𝑖1, . . . , 𝐷𝑖𝑡} be the treatment history up to time 𝑡 and 𝐷𝑖𝑡 = {𝐷𝑖𝑡 , . . . , 𝐷𝑖𝑇 }

be the history from 𝑡 to𝑇 . Let𝐷𝑖 ≡ 𝐷𝑖𝑇 , where these take values inD𝑇 ∈ {0, 1}𝑇 . We investigate

several outcomes, including the share of the two-party vote for the Democratic candidate and

the share of the eligible vote won by the Democrat and Republican. The latter two outcomes
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use the CVAP as a denominator, which allows us to explore the possibility that advertising

mobilizes each party differently. We denote these outcomes as 𝑌𝑖 and define the potential out-

comes 𝑌𝑖 (𝑑), where 𝑑 ∈ D𝑇 , which is the outcome that unit 𝑖 would have if they had followed

treatment history 𝑑.

We also have a number of time-varying confounders, including variousmeasures of past ad-

vertising by other groups and other candidates and polling averages on support for the Demo-

cratic candidate and percent undecided or backing third-party candidates. We denote themea-

sure of these covariates in week 𝑡 as 𝑋𝑖𝑡 , and we lag these measures carefully to ensure they are

causally prior to 𝐷𝑖𝑡 . We define 𝑋 𝑖𝑡 , 𝑋 𝑖𝑡 , and 𝑋 𝑖 similarly to the treatment history.

3 A Review of Marginal Structural Models

The combination ofmarginal structuralmodels and inverse probability of treatmentweighting

was developed by Robins (1998a) and has since become an important method across a number

of scientific domains. Robins et al. (2000) provides a general introduction to the method. A

robust methodological literature has built up around the method, focusing on stabilizing the

construction of the weights (Cole and Hernán, 2008; Xiao et al., 2013; Imai and Ratkovic, 2015;

Kallus and Santacatterina, 2019), using machine learning methods to make estimation more

flexible (Muñoz and van der Laan, 2011; Gruber et al., 2015), or developing doubly robust

versions of the approach (Bang and Robins, 2005; Rotnitzky et al., 2012). Our contribution to

this literature is to show how these methods may be applied when a researcher suspects there

may be time-constant unmeasured confounding.

The MSMmethodology is based on a sequential ignorability assumption that treatment at

time 𝑡 is unrelated to the potential outcomes conditional on (some function of) the history of

treatment and the time-varying covariates. In particular, there is some vector of time-varying
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covariates, such that,

𝑌𝑖 (𝑑) ⊥⊥ 𝐷𝑖𝑡 | 𝑋 𝑖𝑡 , 𝐷𝑖,𝑡−1, ∀ 𝑑 ∈ {0, 1}𝑇 .

This assumption is a time-varying version of a selection-on-observables assumption applied

repeatedly to treatment in each period. One drawback of this approach in the social sciences is

that unitsmay have differing baseline probabilities of treatment based on traits that are difficult

to measure. In the context of advertising, groups may target ads at media markets that have

more persuadable voters by some metric unknown to the researcher. This limitation of se-

quential ignorability is one motivation for developing the fixed-effects approach we introduce

below.

A marginal structural model is a model for the marginal mean of the potential outcomes as

a function of the treatment history

(3.1) 𝔼[𝑌𝑖 (𝑑)] = 𝑔(𝑑; 𝛾0),

parameterized as a function of 𝛾. Throughout, we use a zero subscript (𝛾0, for example) to

indicate the true values of parameters. The dimensionality of 𝑑 grows quickly in 𝑇 , so even

when 𝑇 is moderate, 𝑔(·) will usually impose some parametric restrictions on the response

surface. Even if these modeling restrictions are correct, the observed conditional expectation

function 𝔼[𝑌𝑖 | 𝐷𝑖 = 𝑑] ≠ 𝑔(𝑑; 𝛾0) due to confounding by 𝑋𝑖𝑡 . On the other hand, including the

covariates in the conditional expectation will lead to post-treatment bias so that 𝔼[𝑌𝑖 | 𝐷𝑖 =

𝑑, 𝑋 𝑖] ≠ 𝑔(𝑑; 𝛾0). Robins (1999) showed how an inverse probability of treatment weighting

scheme could avoid these two biases. In particular, he showed that a weighted conditional

expectation can recover the parameters of the MSM when the weights are proportional to

the inverse of the conditional probability of the unit’s treatment history given their covariate

history. Let π𝑡 (𝑑𝑡−1, 𝑥𝑡) = ℙ(𝐷𝑖𝑡 = 1 | 𝐷𝑖,𝑡−1 = 𝑑𝑡−1, 𝑋 𝑖𝑡 = 𝑥𝑡) and let π𝑖𝑡 = π𝑡 (𝐷𝑖,𝑡−1, 𝑋 𝑖𝑡). Then,
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the IPTW weights for our MSM become

(3.2) 𝑊𝑖 =

𝑇∏
𝑡=1

π−𝐷𝑖𝑡

𝑖𝑡
(1 − π𝑖𝑡)−(1−𝐷𝑖𝑡 )

With these weights, Robins (1999) showed that 𝔼[1{𝐷𝑖 = 𝑑}𝑊𝑖𝑌𝑖] = 𝑔(𝑑; 𝛾0).

In observational studies, the propensity scores used to construct the weights are not usu-

ally known to the analyst and so must be estimated. The standard approach to this in the

MSM literature is to specify a parametric model for treatment and estimate its parameters via

maximum likelihood. Define a parametrization of the propensity score π𝑡 (𝑥𝑡 , 𝑑𝑡 ; 𝛽), where we

define the true value of this parameter as π𝑡 (𝑥𝑡 , 𝑑𝑡 ; 𝛽0) = ℙ(𝐷𝑖𝑡 = 1 | 𝑋 𝑖𝑡 = 𝑥𝑡 , 𝐷𝑖𝑡 = 𝑑𝑡). We then

define the estimated propensity scores as π̂𝑖𝑡 = π𝑡 (𝑋 𝑖𝑡 , 𝐷𝑖𝑡 ; 𝛽), where 𝛽 is the MLE. These esti-

mated propensity scores can then be used to generate estimated weights,𝑊𝑖 =
∏𝑇
𝑡=1 π̂

−𝐷𝑖𝑡

𝑖𝑡
(1 −

π̂𝑖𝑡)−(1−𝐷𝑖𝑡 ) . With these estimated weights, an IPTW estimator for theMSM can be constructed

by solving the empirical version of the following estimating equation for 𝛾,

𝔼
{
𝑊𝑖ℎ(𝐷𝑖) (𝑌𝑖 − 𝑔(𝐷𝑖; 𝛾))

}
= 0,

where ℎ(·) is a researcher-specified dim(𝛾) × 1 vector of fixed functions of 𝑑. This approach

finds the value of 𝛾 that makes the MSM residuals approximately uncorrelated with ℎ(𝐷𝑖) in

the weighted data, and it simplifies to standard estimation techniques in many cases. For ex-

ample, when 𝑔(·) and ℎ(·) are the identity functions, then this approach reduces to weighted

least squares. Robins (1998b) established this procedure as producing a consistent and asymp-

totically normal estimator for the parameters of the MSM.

The weights in equation (3.2) can often be unstable when the true or estimated propensity

scores are close to one or zero, which can lead to highly variable estimates. A common prac-

tice, in this case, is to include a stabilizing numerator that is the marginal probability of the
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treatment history, π𝑖𝑡 = 𝐻𝑃(𝐷𝑖𝑡 = 1 | 𝐷𝑖,𝑡−1). In this case, the stabilized weights become

𝑊𝑖 =

𝑇∏
𝑡=1

(
π𝑖𝑡
π𝑖𝑡

)𝐷𝑖𝑡
(
1 − π𝑖𝑡
1 − π𝑖𝑡

)1−𝐷𝑖𝑡

.

Another common practice is to trim the weights to additionally guard against unstable causal

parameter estimates (Cole and Hernán, 2008), though other propensity score estimation tech-

niques also help with this problem (Imai and Ratkovic, 2015).

4 Fixed-effect Propensity Score Estimators

4.1 Setting and Assumptions

Wenow focus on estimating propensity scoreswith fixed effects forMSMswhen time-constant

unmeasured confounding exists. As with the traditional MSM case, we assume that (𝑌𝑖, 𝐷𝑖, 𝑋 𝑖)

are independent across observations. In order to adjust for unit-specific heterogeneity, we do

require restrictions beyond the typical MSM case. First and foremost, we focus on marginal

structural models for a treatment history of a fixed length rather than the entire treatment his-

tory, whichwe call truncatedMSMs. In particular, truncatedMSMs focus onmodeling only the

last 𝑘 periods of treatment, 𝔼[𝑌𝑖 (𝑑𝑇−𝑘 )] = 𝑔(𝑑𝑇−𝑘 ; 𝛾), where 𝑑𝑇−𝑘 = (𝑑𝑇−𝑘 , . . . , 𝑑𝑇 ), 𝑘 is fixed,

and the parameter vector 𝛾 is of length 𝐽. Truncation is a restriction onwhat quantities of inter-

est can be consistently estimated in this setting, not a substantive assumption about the effect of

the treatment before the truncation point. By the usual consistency assumption, we can define

these “shorter” potential outcomes as 𝑌𝑖 (𝑑𝑇−𝑘 ) ≡ 𝑌𝑖 (𝐷𝑖,𝑇−𝑘−1, 𝑑𝑇−𝑘 ), so that treatment history

before 𝑘 lags acts more like a baseline confounder. In particular, our use of a truncated MSM

does not invoke a “no carryover” assumption as in Imai and Kim (2019). Compared to typical

MSM practice, the main limitation of this restriction is to rule out functional forms where the

cumulative sum of the entire treatment history is included as part of theMSM. Intuitively, this
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restriction implies that analysts cannot simultaneously use long treatment histories to estimate

long-term effects and adjust for unmeasured confounding.

We now describe the key identification assumption of the IPTW-FE approach, which com-

bines the concept of a unit-specific randomized experiments with the standard MSM frame-

work in Section 3. Let 𝑋 𝑖,𝑡+1(𝑑) = (𝑋𝑖,𝑡+1(𝑑𝑡), 𝑋𝑖,𝑡 (𝑑𝑡+2), . . . , 𝑋𝑖,𝑇 (𝑑𝑇−1)) represent the potential

outcomes of the future covariates under a particular treatment history, where we truncate the

full treatment history 𝑑 = (𝑑1, . . . , 𝑑𝑇 ) for each time period, 𝑑𝑘 = (𝑑1, . . . , 𝑑𝑘 ), since future

treatments values cannot affect past covariates.

Assumption 1 (Unit-specific Sequential Ignorability). Let 𝛼𝑖 be an unmeasured, time-constant

random variable. For all 𝑖, 𝑡 and 𝑑,

{𝑌𝑖 (𝑑), 𝑋 𝑖,𝑡+1(𝑑)}⊥⊥ 𝐷𝑖𝑡 | 𝑋 𝑖𝑡 , 𝐷𝑖,𝑡−1 = 𝑑𝑡−1, 𝛼𝑖 .

Assumption 1 states that conditional on the unit-specific effect, the treatment history, and (a

function of) the covariate history, treatment is independent of future potential outcomes for

both the outcome and the covariate process. In essence, treatment is randomized with respect

to future covariates and the outcome, conditional on the past and time-constant features of

the unit. This assumption allows for both time-varying confounding by measured covariates

and time-constant confounding by measured and unmeasured covariates. We do assume that

the time-constant unmeasured confounding can be captured by the unidimensional, 𝛼𝑖 , which

might represent a combination of several unit-specific factors.

Assumption 1 involves potential outcomes of the entire treatment history,𝑌𝑖 (𝑑), but above,

we defined our main marginal structural models in terms of truncated treatment histories,

𝔼[𝑌𝑖 (𝑑𝑇−𝑘 )]. Thus, the requirements of sequential ignorability go beyond the treatments of

interest in the marginal structural model and apply to the potential outcomes for the entire

treatment history. This allows for the fixed-effect propensity score estimators to be consistent
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even without a no-carryover assumption that would assume that treatment before 𝑇 − 𝑘 has

no effect on the outcome.

Under Assumption 1, we can nonparametrically identify the mean of the potential out-

comes under a given historywith unit-specific propensity scores. Let π𝑖𝑡 (𝑥𝑡 , 𝑑𝑡−1, 𝛼𝑖) = ℙ(𝐷𝑖𝑡 =

1 | 𝑋 𝑖𝑡 = 𝑥𝑡 , 𝐷𝑖,𝑡−1 = 𝑑𝑡−1, 𝛼𝑖) and let π𝑖𝑡 = π𝑖𝑡 (𝑋 𝑖𝑡 , 𝐷𝑖,𝑡−1, 𝛼𝑖). Then, we can use the usual tech-

niques to arrive at the nonparametric identification of

𝔼[𝑌𝑖 (𝑑𝑇−𝑘 )] = 𝔼

[
1(𝐷𝑖,𝑇−𝑘 = 𝑑𝑇−𝑘 )𝑌𝑖∏𝑇
𝑡=𝑇−𝑘 π

𝑑𝑡
𝑖𝑡
(1 − π𝑖𝑡)1−𝑑𝑡

]
,

where 𝑑𝑡 denotes the corresponding entry in 𝑑𝑇−𝑘 . Thus, under Assumption 1 (and a positiv-

ity assumption), treatment history effects are nonparametrically identified since we can write

them as functions of quantities that are in principle observable as 𝑁,𝑇 → ∞.

As is common with nonparametric identification, however, the sampling details across

units and time will play an important role in actually obtaining valid estimates of these causal

effects. We can see this even in static causal inference settings. If units in that setting are

not independent across units, for example, standard IPW approaches might not be estimable

at standard rates without further assumptions. While we assume i.i.d. data across units, this

assumption would be unrealistic for the time dimensions. We now lay out the sampling as-

sumptions for our setting.

Assumption 2 (Sampling Assumptions). Let 𝜈 > 0, 𝜇 > 4(8 + 𝜈)/𝜈, and B0(𝜖) is an 𝜖-

neighborhood of (𝛽0, 𝛼𝑖0) for all 𝑖, 𝑡, 𝑁, 𝑇 .

(i) (Asymptotics) Let 𝑁,𝑇 → ∞ such that 𝑁/𝑇 → 𝜌 where 0 < 𝜌 < ∞.

(ii) (Across/Within-Unit Dependence) For all 𝑁 and 𝑇 , {(𝑌𝑖 (•), 𝐷𝑖, 𝑋 𝑖, 𝛼𝑖) : 𝑖 = 1, . . . , 𝑁} are

i.i.d. across 𝑖, where 𝑌𝑖 (•) = {𝑌𝑖 (𝑑); 𝑑 ∈ {0, 1}𝑇 }. Letting 𝑍𝑖𝑡 = (𝐷𝑖𝑡 , 𝑋𝑖𝑡) for 𝑡 = 1, . . . , 𝑇

and 𝑍𝑖,𝑇+1 = (𝑌𝑖 (𝑑)), then for each 𝑖, {𝑍𝑖𝑡 : 𝑡 = 1, . . . , 𝑇 + 1} is 𝛼-mixing conditional on 𝛼𝑖
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with mixing coefficients satisfying sup𝑖 𝑎𝑖 (𝑚) = 𝑂 (𝑚−𝜇) as 𝑚 → ∞ where

𝑎𝑖 (𝑚) ≡ sup
𝑡

sup
𝐴∈A𝑖𝑡 ,𝐵∈B𝑖,𝑡+𝑚

|ℙ(𝐴 ∩ 𝐵) − ℙ(𝐴)ℙ(𝐵) |,

and A𝑖𝑡 is the sigma field generated by (𝑍𝑖𝑡 , 𝑍𝑖,𝑡−1, . . .) and B𝑖,𝑡 is the sigma field generated

by (𝑍𝑖𝑡 , 𝑍𝑖,𝑡+1, . . .).

Assumption 2(i) establishes the large-N, large-T asymptotic framework, which has been

widely used for nonlinear panel models in econometrics (Hahn and Newey, 2004; Arellano

and Hahn, 2007; Fernández-Val, 2009; Hahn and Kuersteiner, 2011; Fernández-Val and Weid-

ner, 2016, 2018). The strong mixing process in Assumption 2(ii) allows us to rely on the laws

of large numbers and the central limit theorem in the time dimension. It essentially states that

dependence over time is sufficiently weak that as the distance between two periods increases,

information in the two periods becomes approximated uncorrelated. That is, data over time

within a unit may be dependent, but there is new information as time goes on. This assump-

tion is substantially weaker than independence over time or even stationarity. In particular,

it allows for time trends, which are a common feature of propensity score models in MSMs.

The i.i.d. nature of the distribution of the data and the fixed effects across units is common

to IPTW approaches and allows us to take averages over the unit-specific heterogeneity and

has been used before for average partial effects in nonlinear panel models (Fernández-Val and

Weidner, 2016). It is possible to replace this assumption with stationarity of 𝑋𝑖𝑡 over time, but

this would rule out lagged treatment in the propensity score model along with time trends.

To determine the asymptotic properties of our approach, we assume researchers will spec-

ify a correct parametric model for the propensity score (up to the unmeasured heterogeneity)

as π𝑖𝑡 (𝑥𝑡 , 𝑑𝑡−1; 𝛽, 𝛼𝑖) = ℙ(𝐷𝑖𝑡 = 1 | 𝑋 𝑖𝑡 = 𝑥𝑡 , 𝐷𝑖,𝑡−1 = 𝑑𝑡−1; 𝛽, 𝛼𝑖), where 𝛽 is a 𝑘 × 1 parameter

vector, 𝛼𝑖 is the time-constant unmeasured confounder, and π𝑖𝑡 (𝛽, 𝛼𝑖) = π𝑖𝑡 (𝑋 𝑖𝑡 , 𝐷𝑖,𝑡−1; 𝛽, 𝛼𝑖).
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We write the log-likelihood of this model as

ℓ𝑖𝑡 (𝛽, 𝛼) = 𝐷𝑖𝑡 log π𝑖𝑡 (𝛽, 𝛼) + (1 − 𝐷𝑖𝑡) log {1 − π𝑖𝑡 (𝛽, 𝛼)}

Let 𝛼0 = (𝛼10, . . . , 𝛼𝑁0) and 𝛽0 be the values of the parameters that generate the treatment

process. In particular, we assume that these values are the solution to the following population

conditional maximum likelihood condition

(4.1) (𝛽0, 𝛼0) = arg max
(𝛽,𝛼)∈ℝ𝑑𝛽+𝑁

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝔼[ℓ𝑖𝑡 (𝛽, 𝛼) | 𝛼𝑖],

where the expectation is with respect to the distribution of the data conditional on the un-

observed effect (see, for example, Fernández-Val and Weidner, 2016, equation 2.1). Our ap-

proach requires a correctly specified parametric model for the covariates in the propensity

score (which is common in the MSM literature) but is semiparametric in that we make no as-

sumptions about the relationship between the unmeasured heterogeneity and the covariates.

We assume a fixed-length parameter vector, but it may be possible to allow this vector to grow

with 𝑁 and𝑇 and thus allow formore flexible estimation strategies. As this is beyond the scope

of the current paper, we leave it to future research.

With this propensity scoremodel in hand, we can construct weights that can adjust for both

observed time-varying confounding and unobserved time-constant confounding. In particu-

lar, we use the following weights

𝑊𝑖 (𝛽, 𝛼𝑖) =
𝑇∏

𝑗=𝑇−𝐾

(
1

π𝑖 𝑗 (𝛽, 𝛼𝑖)

)𝐷𝑖 𝑗
(

1
1 − π𝑖 𝑗 (𝛽, 𝛼𝑖)

)1−𝐷𝑖 𝑗

,

where we only take the product over the last 𝑘 time periods because our quantities of interest

focus on those periods. As with the standard MSM case, we can replace the numerator with

the marginal probability of the treatment history, π𝑖𝑡 , which can stabilize the variance of the
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estimator without affecting identification.

The IPTW approach to estimating this MSM is to rely on the estimating equation

0 =
1
𝑁

𝑁∑︁
𝑖=1

𝑈𝑖 (𝛾, 𝛽, 𝛼𝑖) =
1
𝑁

𝑁∑︁
𝑖=1

{
𝑊𝑖 (𝛽, 𝛼𝑖)ℎ(𝐷𝑖,𝑇−𝑘 ) (𝑌𝑖 − 𝑔(𝐷𝑖,𝑇−𝑘 ; 𝛾))

}
,

where ℎ(·) is a function with 𝐽-length output chosen by the researcher as in the standard

MSM case. For example, if 𝑌𝑖 is continuous and 𝑔 is linear and additive, it is common to

use ℎ(𝐷𝑖,𝑇−𝑘 ) = 𝐷′
𝑖,𝑇−𝑘 . Under the fixed-effects sequential ignorability assumption and the

MSM, we have 𝔼[𝑈𝑖 (𝛾0, 𝛽0, 𝛼𝑖0)] = 0, which is a semiparametric identification result because

the restriction identifies the causal parameters, 𝛾0, solely in terms of sample quantities (up to

the propensity score parameters). This result follows the standard g-computation algorithm

with the unit-specific heterogeneity, 𝛼𝑖 , included in the place of a baseline covariate (Robins,

1999, 2000). We make the following regularity conditions on the marginal structural model

and outcome.

4.2 Proposed Method

Wepropose a two-step approach to estimating the parameters of themarginal structuralmodel

using inverse probability of treatment weighting. These two steps are:

1. Obtain estimates of the parameters of the propensity score model, (𝛽, �̂�𝑖), using condi-

tional maximum likelihood treating the unit-specific effects 𝛼𝑖 as fixed parameters to be

estimated. Construct estimated weight𝑊𝑖 (𝐷𝑖,𝑇−𝑘 ; 𝛽, �̂�𝑖).

2. Pass the estimated weights to a weighted estimating equation 𝑁−1∑𝑁
𝑖=1𝑈𝑖 (�̂�, 𝛽, �̂�𝑖) = 0

to obtain estimates of the MSM parameters, 𝛾.

The first step in this procedure can be implemented with a sample conditional maximum
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likelihood estimator. Letting �̂� = (�̂�1, . . . , �̂�𝑁 ), we have

(4.2) (𝛽, �̂�) = arg max
(𝛽,𝛼)∈ℝ𝑑𝛽+𝑁

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

ℓ𝑖𝑡 (𝛽, 𝛼𝑖)

Under these assumptions, we use the following maximum likelihood estimators:

𝛽 = arg max
𝛽

1
𝑁𝑇

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

ℓ𝑖𝑡 (𝛽, �̂�𝑖 (𝛽)), �̂�𝑖 (𝛽) = arg max
𝛼

1
𝑇

𝑇∑︁
𝑡=1

ℓ𝑖𝑡 (𝛽, 𝛼).

These maximum likelihood estimates are subject to the usual incidental parameters problem

that results in bias that shrinks as 𝑇 → ∞. Even when 𝑁 and 𝑇 grow at the same rate, Hahn

and Newey (2004) showed that these types of MLE estimators are not
√
𝑁𝑇-consistent, and

a large literature has developed proposing several bias correction techniques (Arellano and

Hahn, 2007; Fernández-Val andWeidner, 2018). We sidestep these issues in our results because

we target the slower convergence rate of
√
𝑁 because we only have a single outcome per unit,

which is common in the MSM literature.

To obtain estimates of the MSM parameters, �̂�, we use the sample version of the MSM

moment condition, 𝑁−1∑𝑁
𝑖=1𝑈𝑖 (�̂�, 𝛽, �̂�𝑖) = 0. This estimator depends on the link function for

the marginal structural model and a function ℎ(·). One particularly straightforward estimator

in this class is weighted least squares for the identity link with continuous outcomes. Often,

ℎ(·) can be chosen to enhance the efficiency of the estimator (Robins, 1999), but we do not

explore that here. We now show in Theorem 1 that under regularity conditions and the above

assumptions, this estimator is consistent and asymptotically normal. The proof and precise

statements of the regularity conditions are in Appendix A. Let 𝐺 = 𝔼{𝜕𝑈𝑖 (𝛾, 𝛽, 𝛼)/𝜕𝛾}𝛾=𝛾0 ,

and𝑈𝑖 = 𝑈𝑖 (𝛾0, 𝛽0, 𝛼𝑖0).
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Theorem 1. Under Assumptions 1, 2, and suitable regularity conditions, �̂�
𝑝
→ 𝛾0 and

(4.3)
√
𝑁 (�̂� − 𝛾0)

𝑑−→ 𝑁 (0, 𝑉𝛾0),

where 𝑉𝛾0 = 𝐺−1𝔼[𝑈𝑖𝑈⊤
𝑖
]𝐺−1.

We can build a consistent variance estimator in the usual way with 𝑉𝛾 = 𝐺−1Ω̂𝐺−1, where

𝐺 =
1
𝑁

𝑁∑︁
𝑖=1

𝜕𝑈𝑖

𝜕𝛾
, Ω̂ =

1
𝑁

𝑁∑︁
𝑖=1

𝑈𝑖𝑈
⊤
𝑖 , 𝑈𝑖 = 𝑈𝑖 (�̂�, 𝛽, �̂�𝑖).

This is a standard sandwich estimator for estimators based on estimating equations.

Theorem 1 establishes that the IPTW-FE for MSMs is asymptotically normal and that we

can asymptotically ignore the estimation of the weights. In the standard IPTW case, the esti-

mation of the weights does impact the distribution of the MSM estimates. Here, however, the

estimation of the weights doesn’t affect the first-order asymptotic distribution because we are

using 𝑁𝑇 observations to estimate the propensity score parameters but only using a fraction of

the observations, 𝑁𝑘 , to create the weights, where 𝑘 is fixed as 𝑇 → ∞. Thus, the 𝛽 converges

much faster than �̂� and so we can ignore its estimation error. Of course, this is an approxi-

mation that might be less accurate when 𝑇 is small, so a bootstrap of units might yield more

accurate variance estimates in that case.

In typical nonlinear panelmodels, plugging in noisy estimates of the fixed-effect parameters

leads to a bias that converges to 0 slowly enough to create asymptotic bias. In our setting, how-

ever, the strongmixing property of the treatment process ensures that this bias fades over time,

and so allows us to ignore the estimation of the fixed-effect parameters as well. In the literature

on nonlinear panel models, there is a similar result for estimating partial effects or differences

in the conditional expectation, as opposed to parameters of the nonlinear model. For example,

Fernández-Val and Weidner (2018) showed how these average partial effects can converge at a

17



slower rate with parameter estimation not having a first-order effect on the asymptotic distri-

bution (see also Fernández-Val and Weidner, 2016). The current approach is similar since we

are only interested in the parameters of the weightingmodel insofar as they provide consistent

estimates of the IPTW weights.

This result establishes that it is possible to adjust for unmeasured baseline confounding

in MSMs when the time dimension is long and provides sufficiently new information within

units. The quality of this adjustment will depend on both how long the panels are and how

severe the unmeasured heterogeneity is. A second-order expansion of the estimator shows

that second-order bias (which can be ignored in our asymptotic analysis) is inversely related

to the propensity scores. Thus, strong unit-specific heterogeneity will push propensity scores

close to zero or one and create more finite-sample bias. Longer panels help with this finite-

sample bias since these second-order terms will be of order 𝑂𝑃 (1/
√
𝑇). A fruitful avenue for

future research would be to use analytic or computational approaches like the jackknife to

adjust for these second-order terms as in Hahn and Newey (2004).

What about doubly robust estimation? In traditionalMSM settings, it is possible to develop

doubly robust estimators that depend both on the correct modeling of the propensity scores

and a series of outcome regression models (Bang and Robins, 2005). In our setting, however,

this would require an outcome regressionmodel that had unobserved heterogeneity, andwith-

out multiple observations of the outcome over time, it is not possible to estimate such a model

without overly strong assumptions.

4.3 Trimming Weights

One drawback of the IPTW-FE approach is that the fixed-effect parameters of the propensity

score model are not identified when units are either always treated or always control. Even

when we maintain the population-level positivity assumption, this in-sample positivity viola-
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tion means that some units will have undefined weights. We propose three ways to address

this issue. First, one could simply omit the no-treatment-variance units and estimate the pa-

rameters of the MSM for the units that have at least one treated or control period. This is

the simplest procedure but could induce confounding bias, especially if the 𝛼𝑖 has a nonlinear

relationship with the outcome. Second, we could use an ad hoc rule for imputing propen-

sity scores of the no-treatment-variance units. For example, we could set these units to have

π̂𝑖𝑡 = 0.01 if 𝐷𝑖𝑡 = 0 for all 𝑡 and π̂𝑖𝑡 = 0.99 if 𝐷𝑖𝑡 = 1 for all 𝑡. Depending on the lag length 𝑘 in

the MSM and the exact trimming, this may lead to extreme weights, which themselves could

require trimming. Alternatively, one could place bounds on the range of the unit-specific ef-

fects in the MLE estimation to 𝛼𝑖 ∈ [𝑎0, 𝑎1] and set the estimates of those effects as �̂�𝑖 = 𝑎0

or �̂�𝑖 = 𝑎1 if 𝐷𝑖𝑡 = 0 or 𝐷𝑖𝑡 = 1 for all 𝑡, respectively. The amount of trimming of the weights

in this approach amounts to a bias-variance trade-off similar to weight trimming in standard

IPTW estimators for MSMs (Cole and Hernán, 2008).

Finally, one alternative approach to handling positivity violations would be to focus on a

different quantity of interest. Kennedy (2019) proposed estimating the effect of incremental

propensity score interventions, which are interventions that shift the propensity score rather

than set treatment histories to specific values. The identification and estimation of these effects

do not depend on positivity, and under the assumption of a correctly specified propensity score

model, a simple inverse probability weighting estimator is available (Kennedy, 2019, p. 650).

5 Simulation Evidence

In this section, we conduct simulation studies to evaluate the finite sample performance of the

proposed approach.
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5.1 Setup

We simulate a balanced panel of 𝑛 units with 𝑇 time points where the number of units varies

𝑛 ∈ {200, 500, 1000, 3000}. We fix the ratio of the number of units to the number of time pe-

riods 𝑛/𝑇 = 𝜌 ∈ {5, 10, 50}. This setup mimics the key asymptotic approach of our theoretical

results, and the larger value of 𝜌 implies the small number of time points, 𝑇 = 𝑛/𝜌. The treat-

ment sequence is generated as a function of individual unobserved effect 𝛼𝑖 , the past treatment

𝐷𝑖,𝑡−1 and the time-varying covariates, 𝑋𝑖𝑡 .

𝐷𝑖𝑡 ∼ Bernoulli(expit(𝛼𝑖 + 𝜑𝐷𝑖,𝑡−1 + 𝛽⊤𝑋𝑖𝑡))

where expit(𝑥) = 1/(1+exp(−𝑥)) is the inverse logistic function. The individual heterogeneity

is drawn from a uniform distribution with support on [−𝑎, 𝑎] for 𝑎 ∈ {1, 2}. The value of 𝑎 is

chosen such that the variance of individual heterogeneity explains 1/3 (𝑎 = 1) or 2/3 (𝑎 = 2) of

the variance of the linear predictor. The time-varying covariates 𝑋𝑖𝑡 are generated exogenous

to the treatment, drawn from the multivariate normal distribution, 𝑋𝑖𝑡 ∼ N(−1/21, Σ) where

Σ 𝑗 𝑗 = 1 and Σ 𝑗 𝑗 ′ = 0.2 for 𝑗 ≠ 𝑗 ′. Finally, we set 𝜑 = 0.3 and 𝛽 = (−0.5,−0.5) when the

number of covariates is two or 𝛽 = (−0.5,−0.5, 1.0,−0.5) when the number of covariates is

four.

The outcome is generated by the linear model with individual unobserved variable 𝛼𝑖 , the

final treatment 𝐷𝑖𝑇 , the cumulative lagged treatments
∑𝑇−3

𝑡=𝑇−1 𝐷𝑖𝑡 and the average of the time-

varying covariates, 𝑋 𝑖 =
∑𝑇

𝑡=1 𝑋𝑖𝑡/𝑇 , all of which are generated in the previous step.

𝑌𝑖 = 𝛼𝑖 + 𝜏𝐹𝐷𝑖𝑇 + 𝜏𝐶
𝑇−3∑︁
𝑡=𝑇−1

𝐷𝑖𝑡 + 𝛾⊤𝑋 𝑖 + 𝜖𝑖, 𝜖𝑖 ∼ N(0, 1)

where we set 𝜏𝐹 = 1, 𝜏𝐶 = 0.3, and 𝛾 = (1.0, 0.5) or 𝛾 = (1.0, 0.5, 1.0, 1.0) depending on the

number of covariates used in each simulation.
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Figure 1: Bias, standard error (Std. Error) and coverage probability of 90% confidence intervals
(Coverage) for the estimation of the final period effect 𝜏𝐹 and the cumulative effect 𝜏𝐶 under
the “low” heterogeneity (𝑎 = 1) – first two columns – and the “high” heterogeneity (𝑎 = 2) – last
two columns – scenario. Solid lines in blue show the proposed estimator (IPTW-FE), solid lines
in grey show the estimator based on the true propensity score (IPTW-True), and dashed lines in
green show the estimator based on the estimated propensity score without fixed effects (IPTW).
Shapes correspond to the 𝑛 to 𝑇 ratio 𝜌 such that squares represent 𝜌 = 5 (the largest number
of time periods), circles represent 𝜌 = 10, and triangles represent 𝜌 = 50 (the smallest number
of time periods)

5.2 Results

Wecompared the performance of the proposedmethod in terms of estimating two causal quan-

tities: the final period effect 𝜏𝐹 and the cumulative lagged effect 𝜏𝐶 . We estimate two quantities
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together in the framework of weighted least squares,

(�̂�𝐹 , �̂�𝐶) = arg min
𝜏𝐹 ,𝜏𝐶

𝑛∑︁
𝑖=1

𝑊𝑖

{
𝑌𝑖 − 𝛼 − 𝜏𝐹𝐷𝑖𝑇 − 𝜏𝐶

𝑇−3∑︁
𝑡=𝑇−1

𝐷𝑖𝑡

}2
where𝑊𝑖 is constructed as described in the previous section. We focus on this correctly spec-

ified MSM to isolate the effects of unmeasured heterogeneity on estimator performance. The

variance of �̂�𝐹 and �̂�𝐶 is estimated using the standard sandwich formula with the HC2 option,

which is an adjustment to improve finite-sample properties of the variance estimator (MacK-

innon and White, 1985).

In addition to the fixed effect approach, we consider two other strategies to obtain the

weights𝑊𝑖 as benchmarks to the proposed method. First, we use the true propensity score to

construct the weights. Second, the estimated propensity score without the fixed effect is used

to construct weights. We expect that the weights with known propensity scores is least biased

and the weights without the fixed effect is most biased.

Figure 1 shows the results for the two-covariate case. Bias (first row), standard errors (sec-

ond row) and coverages (third row) are computed based on 500 Monte Carlo simulations. Ad-

ditional simulation results are presented in Supplemental Materials C. The first two columns

correspond to the “low” heterogeneity case where the support of the fixed effect is [−1, 1],

whereas the last two columns correspond to the “high” heterogeneity scenario where the sup-

port of 𝛼𝑖 is set to [−2, 2]. Solid lines in blue show the proposed estimator (IPTW-FE), solid lines

in grey show the estimator based on the true propensity score (IPTW-True), and dashed lines in

green show the estimator based on the estimated propensity score without fixed effects (IPTW).

Shapes correspond to the 𝑛 to 𝑇 ratio 𝜌 such that squares represent 𝜌 = 5 (the largest number

of time periods), circles represent 𝜌 = 10, and triangles represent 𝜌 = 50 (the smallest number

of time periods).

We can see that under the low heterogeneity setting, where the unobserved individual het-
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erogeneity explains roughly 1/3 of the variance of the treatment assignment, the bias of the

proposed estimator (IPTW-FE) is indistinguishable from the estimator that is based on the true

propensity score (IPTW-True) and the confidence interval estimates maintain the nominal cov-

erage across different values of 𝑛 and 𝜌. Under this scenario, even a case of 𝑛 = 200 and 𝑇 = 4,

the proposed method performs well.

When the variance of the individual heterogeneity is high (𝑎 = 2) such that it explains

roughly 2/3 of the variance of the treatment assignments, the proposed estimator shows rel-

atively larger bias compared with IPTW-True, while bias of the estimator without fixed effects

(IPTW) is substantially larger. Under this setting, the coverage results are mainly driven by

the bias, thus the figure shows that as 𝑛 increases, the coverage results also improves thanks

to the reduction in bias. We can also see that in general the estimator without fixed effects

shows smaller standard errors than IPTW-FE. This implies that the proposed method (IPTW-FE)

trade-off the efficiency with lower bias. Finally, we highlight that small Monte Carlo bias is ob-

served even for IPTW-True under this scenario. This is possibly due to the high variability of the

weights, which are produce of inverse probabilities over four time periods with stabilization.

Overall, these results point to two key tensions in controlling for time-constant unmea-

sured heterogeneity through fixed effects in the propensity score models. First, high degrees

of unmeasured heterogeneity in the propensity scores may lead to near violations of the pos-

itivity assumption that could lead to the kind of instability we see when 𝑎 = 2. Second, larger

magnitudes of heterogeneity may require more time periods to achieve good finite sample

performance compared to when the heterogeneity is relatively small.
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6 Results

6.1 Specification and balance

We now apply these techniques to estimate the effectiveness of independent group advertising

inU.S. Senate andGubernatorial elections from 2010 until 2020. We build on Blackwell (2013),

who investigated the effects of negative advertising using an MSM approach without fixed

effects for elections over the period from 2000 to 2008. Our primary results focus on three

outcomes: the Democratic percentage of the two-party vote, percent of the voting-eligible

population casting Democratic votes (which we call “Democratic Turnout”), and percentage of

the voting-eligible population casting Republican votes (which we call “Republican Turnout”).

To calculate the propensity scores, we organize the data into a market-week panel, where

an example of a market-race would be the 2010 California Gubernatorial election in the Santa

Barbara media market (as distinct from the media markets of San Diego, Fresno, and so on).

We focus on the time period between the primary election for the race and the general election

so that we have campaign lengths ranging from 8 to 40 weeks with amedian of 20 weeks. After

dropping market-races that have no variation in the treatment, we have 𝑁 = 467market-races

for Democratic IG ads and 𝑁 = 623market-races for Republican IG ads. Most of the dropped

races are very uncompetitive races or media markets with smaller audiences. In Supplemen-

tal Materials D, we investigate an alternative approach to handling no-treatment-variation

market-races that uses extreme values of the unit fixed effects to obtainweights. We find results

from this approach are very similar to our own below.

Table 1 shows the distribution of our aggregated treatment variable across different election

years. Even with only a handful of time periods and a high level of aggregation, we can see that

empirical positivity violations in the final weeks of the race are fairly common, which is the

main motivation for using a marginal structural model. Note that even if a market-race had

zero weeks of ads in the final five weeks of the campaign, they may have had IG ads earlier in
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Table 1: Number of weeks with Democratic IG ads in the last 5 weeks of the campaign

# of ads weeks 2010 2012 2014 2016 2018 2020 All

0 12 14 25 6 5 6 68
1 10 9 13 5 16 3 56
2 19 8 17 8 14 15 81
3 14 4 6 7 4 8 43
4 13 15 7 4 6 6 51
5 11 34 28 21 50 24 168

the campaign, allowing us to estimate propensity scores for these units.

Our marginal structural model is

𝔼[𝑌𝑖 (𝑑) | 𝑅𝑖] = 𝛾𝑅𝑖 + 𝛾1

( 4∑︁
𝑘=0

𝑑𝑇−𝑘

)
,

where the time index here is weeks of the campaign and 𝑅𝑖 is the electoral race associated

with market-race 𝑖. This MSM allows for race-specific intercepts, which helps to purge any

remaining race-specific confounding from our estimates. The main quantity of interest, 𝛾1,

can be interpreted as the effect of an additional week of IG advertising in the last five weeks

on the outcomes, conditional on the state-wide race. For the outcome MSM, we restrict our

attention to races with multiple markets to accommodate the race-specific intercepts.

We apply several different estimation approaches to this MSM: the proposed IPTW-FE

approach, a standard IPTW approach without fixed effects, and a naive approach that ignores

time-varying covariates altogether. For theweightingmodel, we included various time-varying

covariates: average Democratic share of the two-party preferences in polls in the previous

week (and the square of this term), the average percentage reporting undecided or voting for

third-party candidates in the previous week, measures of Republican negativity over the last

six weeks, the cumulative number of ads shown by the Democrat and Republican (and their

squared terms). For the fixed effects approach, we additionally include a market-race fixed ef-

fect term in the specification. For the IPTW approach, we only include fixed effects at the race
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level.
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Figure 2: Balance of baseline covariates under different weighting approaches.

Assessing balancewith the IPTW-FE approach is difficult becausewe care about the balance

with respect to both measured and unmeasured confounders. Of course, we cannot assess bal-

ance with respect to unmeasured confounders. We can, however, investigate how well IPTW-

FEbalances themeasured time-varying covariates. To do so, we regress each of these covariates

on the treatment indicator, the lagged cumulative sum of treatment, and a race-specific inter-

cept (all variables included in the MSM and the numerator of our weighting models) in the

five-week period of ourMSM. Figure 2 shows the distribution of standardized partial correla-

tions of the treatment indicator and the various covariates under different weighting schemes

(no weighting, IPTW, and IPTW-FE). Both IPTW and IPTW-FE vastly reduce the conditional

imbalance on these covariates relative to the naive approach. In the unweighted approach,

there are a few extremely unbalanced time-varying confounders.

6.2 Main results

Figure 3 shows the results of these methods for each of the outcomes. Substantively, the meth-

ods generally agree that there is a positive effect of Democratic IG ads on Democratic electoral
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Figure 3: Estimated effects of the number of weeks of independent group advertising in the
last five weeks of the campaign with different methods.

performance. This effect is driven by a positive effect onDemocratic turnout and aweaker neg-

ative effect on Republican turnout. Thus, it appears that Democratic independent group ads

mobilize Democratic voters and perhaps demobilize Republican voters. Republican IG ads, on

the other hand, have no estimated effect on any of these measures, indicating that these ads are

not very effective. The different methods here generally agree on the direction and significance

of the effects, though IPTW-FE estimates a larger effect for Democratic groups than the basic

IPTW approach.

The effectiveness of Democratic independent group ads runs counter to the conventional

wisdom about what party would benefit the most from the Citizen’s United decision. To un-

derstand what drives this effect, we estimated differential effects by election era. Specifically,
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Figure 4: Treatment effect heterogeneity before and after Donald Trump enters the 2016 Pres-
idential Race.

we included an interaction between our cumulative treatment measure and an indicator for

whether the election was before or after Donald Trump became a candidate for president in

2015. Figure 4 shows that the effectiveness of Democratic group ads is driven in large part by

the post-Trump era. These ads are more effective at increasing Democratic votes and reducing

Republican votes, and all of these effect differences are statistically significant at the 𝛼 = 0.1

level. In particular, the demobilizing effect of Democratic group ads on Republican voters is a

feature of the Trump era. These patterns are consistent with how Trump alienated large seg-

ments of Republicans and perhaps made them more vulnerable to ads that encouraged them

to stay home or vote for Democrats.

The flexible structure ofmarginal structuralmodels allows us to investigate whichweeks of

the campaign are driving the effects on these outcomes. To do so, we can break up the cumula-

tive sum of treated weeks into the number of treated weeks within three weeks of election day

and the number of treated weeks 4-5 weeks before election day. Under our assumptions, this

is another valid way to parameterize the MSM, allowing us to summarize the causal response

surface in a different way. Figure 5 shows the estimated effects of independent group ads at
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Figure 5: IPTW-FE estimated effects of IG ads by week of the campaign for various outcomes.

various weeks before election day, as estimated by the IPTW-FE with the baseline covariates.

The only major difference is that the positive effect of Democratic IG ads appears stronger in

the last few weeks of the campaign compared to earlier weeks. This increased effectiveness

of more recent ads is consistent with previous experimental studies of television ads (Gerber

et al., 2011).

6.3 Robustness checks

Given that advertising is not randomized acrossmarkets, wemayworry about residual unmea-

sured confounding that our approach may miss. To investigate if we can detect any potential

biases in our estimation strategy, we use the same designs as above on placebo outcomes. First,

we obtain the outcomes for the same media market for the most recent previous election for

the same office and use those as outcomes. If our IPTW-FE approach was unable to adjust

for unmeasured confounding at the market level, then these estimates would detect bias since

future independent group ads cannot affect past electoral outcomes. We also investigate the ef-

fects of our estimates on the baseline polling for theDemocratic candidate before the five-week

period in our MSMs.

29



Lagged Dem. Two-Party Vote %Lagged Dem. Turnout % Lagged Rep. Turnout %Pre-election Dem. Poll %

Dem
ocratic IG Ads

Republican IG Ads

IPTWIPTW-FENaive IPTWIPTW-FENaive IPTWIPTW-FENaive IPTWIPTW-FENaive

-2

-1

0

1

2

3

-2

-1

0

1

2

3

Method

Es
tim

at
e IPTW

IPTW-FE

Naive

Figure 6: Falsification test results. These are estimated effects on outcomes from the previous
election in that market for that office and pre-election polling results.

Figure 6 shows these results. Both of the IPTW approaches result in estimates very close to

zero for all outcomes, which is consistent with our identifying assumptions. Interestingly, the

naive approach does show some residual confounding for some of the effects of Democratic

group ads. Taken together, these results give us some confidence that further unmeasured

confounding is not a major source of bias in our estimates.

7 Conclusion

In this paper, we estimated the effects of independent group advertising on electoral outcomes

in U.S. state-wide elections. To do so, we developed a method to control for time-constant

unmeasured confounding in marginal structural models by using a fixed effects approach to

estimate the propensity score of the time-varying treatment. We derived the large-sample

properties of this estimator under an asymptotic setup where the number of time periods and
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the number of units grow together. Simulations showed that the proposed method outper-

forms a naive approach that omits fixed effects and performs well overall, especially when the

magnitude of the heterogeneity is moderate. An obvious place for future research would be to

apply these methods to data where we have repeated measurements of the outcomes as well

as the treatment. In those situations, it may be possible to develop doubly-robust estimators

under fixed effects assumptions.
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A Proofs

We let 𝑉𝑖𝑡 (𝛽, 𝛼) = 𝜕ℓ𝑖𝑡 (𝛽, 𝛼)/𝜕𝛼 and 𝑆𝑖𝑡 (𝛽, 𝛼) = 𝜕ℓ𝑖𝑡 (𝛽, 𝛼)/𝜕𝛽 be the score functions for the

propensity score model with additional subscripts indicating higher-order partial derivatives,

𝑉𝑖𝑡𝛼 (𝛽, 𝛼) = 𝜕𝑉𝑖𝑡 (𝛽, 𝛼)/𝜕𝛼. As above, without arguments, these functions are evaluated at their

true values, 𝑉𝑖𝑡 = 𝑉𝑖𝑡 (𝛽0, 𝛼𝑖0).

Here, we state the regularity conditions on the treatment process.

Assumption 3 (Treatment Regularity Conditions). Let 𝜈, 𝜖 > 0 and B0(𝜖) is an 𝜖-neighborhood

of (𝛽0, 𝛼𝑖0) for all 𝑖, 𝑡, 𝑁, 𝑇 .

(i) We assume that for all 𝑖, 𝑡, 𝑁, 𝑇 , we have π𝑖𝑡 (𝛽0, 𝛼𝑖0) = ℙ(𝐷𝑖𝑡 = 1 | 𝑋 𝑖𝑡 , 𝐷𝑖,𝑡−1, 𝛼𝑖). The real-

ization of the parameters and unobserved effects that generate the observed data are denoted

𝛽0 and 𝛼0.

(ii) We assume that (𝛽, 𝛼) ↦→ ℓ𝑖𝑡 (𝛽, 𝛼) is four-times continuously differentiable overB0(𝜖) almost

surely. The partial derivatives of ℓ𝑖𝑡 (𝛽, 𝛼) with respect to the elements of (𝛽, 𝛼) are bounded

in absolute value uniformly over (𝛽, 𝛼) ∈ B0(𝜖) by a function 𝑀 (𝑍𝑖𝑡) > 0 almost surely and

max𝑖,𝑡 𝔼[𝑀 (𝑍𝑖𝑡)8+𝜈] is almost surely uniformly bounded over 𝑁,𝑇 .

(iii) For all 𝑖, 𝑡 we have π𝑖𝑡 (𝛽, 𝛼) bounded away from 0 and 1 uniformly over (𝛽, 𝛼) ∈ B0(𝜖).

(iv) (Concavity) For all 𝑁 , 𝑇 (𝛽, 𝛼) ↦→ ℓ𝑖𝑡 (𝛽, 𝛼) is strictly concave over ℝdim(𝛽)+1 almost surely.

Furthermore, there exists 𝑏min and 𝑏max such that for all (𝛽, 𝛼) ∈ B0(𝜖), 0 < 𝑏min ≤

−𝔼[𝜕2ℓ𝑖𝑡 (𝛽, 𝛼)/𝜕𝛼𝑖𝛼 𝑗 | 𝛼𝑖] ≤ 𝑏max almost surely uniformly over 𝑖, 𝑡, 𝑁 , and 𝑇 .

Assumption 3 mostly derives from Fernández-Val and Weidner (2016), who used them to

establish the asymptotic properties of nonlinear panel models with unit- and time-specific ef-

fects, though we focus only on unit effects. Assumption 3(i) establishes the parametric compo-

nent of themodel, whichwill help us derive the asymptotic behavior of our estimation strategy

37



under the sampling assumption. As noted above, this assumption is not required for nonpara-

metric identification, but it does reflect the common correctly specified parametric propensity

score model often invoked in applications of IPW estimators. If this model is misspecified, we

can view the results propensity scores as projections onto the assumed parametric family and

the resulting bias will depend on the size of the error of that projection and how it correlates

with the outcome. Assumption 3(ii) requires the log-likelihood of the propensity score model

and its derivatives to be sufficiently smooth to allow for the higher-order asymptotic expan-

sionswe use. With a binary response, this assumption could be replaced by amoment condition

on the distribution of the covariates. We invoke a locally uniform version of positivity in As-

sumption 3(iii). Note that Assumption 3(iii) implicitly restricts 𝛼𝑖 , since if 𝛼𝑖 were completely

unrestricted, then we may have π−1
𝑖𝑡

→ ∞. Furthermore, bounded propensity scores also rules

out staggered adoption designs where a unit can only switch into treatment once and cannot

revert. Finally, Assumption 3(iv) ensures that the MLE is identified and should be satisfied in

the usual parametric models used for binary data when the covariates, 𝑋𝑖𝑡 vary in the time and

unit dimensions.

We now turn to the regularity conditions for the outcome model

Assumption 4 (Outcome Regularity Conditions). Let 𝜈 > 0 and B0(𝜖) is an 𝜖-neighborhood of

(𝛾0, 𝛽0, 𝛼𝑖0) for all 𝑖, 𝑁 .

(i) (Bounded outcome moments) 𝔼[|𝑌𝑖 (𝑑) |4+𝜈] and 𝔼[|𝑌𝑖 (𝑑) |4+𝜈 | 𝛼𝑖, 𝐷𝑖, 𝑋 𝑖] are bounded by

finite constants, uniformly over 𝑖.

(ii) (MSM regularity) The parameters 𝜙 = (𝛾, 𝛽, 𝛼) are in the interior of Φ, which is a compact,

convex subset of ℝ𝐽+𝑅+1 with 𝐽 = dim(𝛾) and 𝑅 = dim(𝛽). The map 𝛾 ↦→ 𝑈𝑖 (𝛾, 𝛽, 𝛼) is

continuously differentiable over (𝛾, 𝛽, 𝛼) ∈ B0(𝜖) with 𝔼[sup𝛾∈B0 (𝜖) ∥𝜕𝛾𝑈𝑖 (𝛾, 𝛽, 𝛼)∥] < ∞.

Assumption 4(i) ensures the potential outcomes have sufficiently bounded (conditional)
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moments. Assumptions 4(ii) is a set of standard regularity conditions for the marginal struc-

tural model.

Proof of Theorem 1. Suppose now we are interested in an MSM 𝑔(𝑑
𝑘
; 𝛾) = 𝔼[𝑌𝑖𝑇 (𝑑𝑘 )], where

𝑑
𝑘
= (𝑑𝑇−𝑘 , . . . , 𝑑𝑇 ) and 𝑘 is fixed. The parameter vector 𝛾 is of length 𝐽. Define the probability

of a particular treatment history as a function of the propensity score parameters as

𝑊𝑖 (𝑑𝑘 ; 𝛽, 𝛼𝑖) =
𝑘∏
𝑗=0

π𝑖,𝑇− 𝑗 (𝛽, 𝛼𝑖)𝑑𝑇− 𝑗 (1 − π𝑖,𝑇− 𝑗 (𝛽, 𝛼𝑖))1−𝑑𝑇− 𝑗 .

Generally, we can define an MSM as the solution to the following:

0 = 𝔼

{
ℎ(𝐷𝑖𝑘 ) (𝑌𝑖 − 𝑔(𝐷𝑖𝑘 ; 𝛾))

𝑊𝑖 (𝐷𝑖𝑘 ; 𝛽, 𝛼𝑖)

}
where ℎ(·) is a function with 𝐽-length output, chosen by the researcher. For example, if 𝑌𝑖 is

continuous and 𝑔 is linear and additive, it is common to use ℎ(𝐷𝑖𝑘 ) = 𝐷′
𝑖𝑘
. If we knew the

propensity scores, we could derive an estimator of 𝛾 based on the sample moment condition:

0 =
1
𝑁

𝑁∑︁
𝑖=1

ℎ(𝐷𝑖𝑘 ) (𝑌𝑖 − 𝑔(𝐷𝑖𝑘 ; �̂�))
𝑊𝑖 (𝐷𝑖𝑘 ; 𝛽, 𝛼𝑖)

=
1
𝑁

𝑁∑︁
𝑖=1

𝑈𝑖 (�̂�, 𝛽, 𝛼𝑖)

Because the propensity score is never known in observational studies, we define our estimator

based on the estimated propensity scores:

0 =
1
𝑁

𝑁∑︁
𝑖=1

ℎ(𝐷𝑖𝑘 ) (𝑌𝑖 − 𝑔(𝐷𝑖𝑘 ; �̂�))
𝑊𝑖 (𝐷𝑖𝑘 ; 𝛽, �̂�𝑖)

=
1
𝑁

𝑁∑︁
𝑖=1

𝑈𝑖 (�̂�, 𝛽, �̂�𝑖)

Consistency Note thatwithin (𝛽, 𝛼𝑖) ∈ B0(𝜖), |𝜕𝛽ℓ𝑖𝑡 (𝛽, 𝛼𝑖) | < 𝑀 (𝑍𝑖𝑡) implies that |𝜕𝛽𝑘π𝑖𝑡 (𝛽, 𝛼𝑖) | <

𝐶𝑀 (𝑍𝑖𝑡) for some constant 𝐶 since,

|𝜕𝛽𝑘ℓ𝑖𝑡 (𝛽, 𝛼𝑖) | =
����( 𝐷𝑖𝑡 − π𝑖𝑡 (𝛽, 𝛼𝑖)
π𝑖𝑡 (𝛽, 𝛼𝑖) (1 − π𝑖𝑡 (𝛽, 𝛼𝑖))

)
𝜕𝛽𝑘π𝑖𝑡 (𝛽, 𝛼𝑖)

����,
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and the propensity scores are uniformly bounded from below over B0(𝜖). The same applies to

|𝜕𝛼π𝑖𝑡 (𝛽, 𝛼) |. With these results, we can also bound the partial derivatives of the weights:

|𝜕𝛽𝑘𝑊𝑖 (𝛽, 𝛼𝑖) | =
����� 𝑇∑︁
𝑡=𝑇−𝑘

𝜕𝛽𝑘π𝑖𝑡 (𝛽, 𝛼𝑖)
∑︁
𝑠≠𝑡

π𝑖𝑠 (𝛽, 𝛼𝑖)
����� ≤ 𝑘 (𝑘 − 1) |𝜕𝛽𝑘π𝑖𝑡 (𝛽, 𝛼𝑖) | ≤ 𝐶𝑘 (𝑘 − 1)𝑀 (𝑍𝑖𝑡),

where 𝑘 is fixed as 𝑁,𝑇 → ∞. Again, a similar expression holds for |𝜕𝛼𝑊𝑖 (𝛽, 𝛼𝑖) |. Thus, by the

mean value theorem, we have

|𝑊𝑖 (𝛽, �̂�𝑖) −𝑊𝑖 (𝛽0, 𝛼𝑖0) | ≤ ∥𝜕𝛽𝑊𝑖 (𝛽, 𝛼𝑖)∥ ∥𝛽 − 𝛽0∥ + |𝜕𝛼𝑊𝑖 (𝛽, 𝛼𝑖) | |�̂�𝑖 − 𝛼𝑖0 |

≤ 𝐶𝛽𝑀 (𝑍𝑖𝑡)∥𝛽 − 𝛽0∥ + 𝐶𝛼𝑀 (𝑍𝑖𝑡) |�̂�𝑖 − 𝛼𝑖0 |,

for some constants 𝐶𝛽 and 𝐶𝛼.

Using this result we can uniformly bound the convergence of the estimating equation in

terms of the parameters of the weighting model.

sup
𝛾∈Γ

|𝑁−1
𝑁∑︁
𝑖=1

𝑈𝑖 (𝛾, 𝛽, �̂�𝑖) −𝑈𝑖 (𝛾, 𝛽0, 𝛼𝑖0) |

≤ 𝑁−1
𝑁∑︁
𝑖=1
sup
𝛾∈Γ

|𝑈𝑖 (𝛾, 𝛽, �̂�𝑖) −𝑈𝑖 (𝛾, 𝛽0, 𝛼𝑖0) |

≤ 𝑁−1
𝑁∑︁
𝑖=1
sup
𝛾∈Γ

|ℎ(𝐷𝑖𝑘 ) (𝑌𝑖 − 𝑔(𝐷𝑖𝑘 , 𝛾)) (𝑊𝑖 (𝛽, �̂�𝑖)−1 −𝑊𝑖 (𝛽0, 𝛼𝑖0)) |

≤ 𝑁−1
𝑁∑︁
𝑖=1

|𝑊𝑖 (𝛽, �̂�𝑖) −𝑊𝑖 (𝛽0, 𝛼𝑖0) |
𝑊𝑖 (𝛽, �̂�𝑖)𝑊𝑖 (𝛽0, 𝛼𝑖0)

sup
𝛾∈Γ

|ℎ(𝐷𝑖𝑘 ) (𝑌𝑖 − 𝑔(𝐷𝑖𝑘 , 𝛾)) |

< 𝑁−1
𝑁∑︁
𝑖=1

|𝑊𝑖 (𝛽, �̂�𝑖) −𝑊𝑖 (𝛽0, 𝛼𝑖0) | sup
𝛾∈Γ

|ℎ(𝐷𝑖𝑘 ) (𝑌𝑖 − 𝑔(𝐷𝑖𝑘 , 𝛾)) |

≤ 𝐶𝛽∥𝛽 − 𝛽0∥𝑁−1
𝑁∑︁
𝑖=1

|𝑀 (𝑍𝑖𝑡) | sup
𝛾∈Γ

|ℎ(𝐷𝑖𝑘 ) (𝑌𝑖 − 𝑔(𝐷𝑖𝑘 , 𝛾)) |

+ 𝐶𝛼max
𝑖

|�̂�𝑖 − 𝛼𝑖0 |𝑁−1
𝑁∑︁
𝑖=1

|𝑀 (𝑍𝑖𝑡) | sup
𝛾∈Γ

|ℎ(𝐷𝑖𝑘 ) (𝑌𝑖 − 𝑔(𝐷𝑖𝑘 , 𝛾)) |
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The fourth inequality holds because under Assumption 3(iii), we have that 𝑊𝑖 (𝑑𝑘 ; 𝛽, 𝛼) ∈

(𝜖, 1 − 𝜖) where 𝜖 > 0 near (𝛽0, 𝛼𝑖0). By the bounded moments of 𝑀 (𝑍𝑖𝑡) and 𝑌𝑖 , we have that

𝑁−1∑𝑁
𝑖=1 |𝑀 (𝑍𝑖𝑡) | sup𝛾∈Γ |ℎ(𝐷𝑖𝑘 ) (𝑌𝑖 − 𝑔(𝐷𝑖𝑘 , 𝛾)) | = 𝑂𝑝 (1). Combined with the consistency of

𝛽 and �̂�𝑖 from Lemma 1, we have sup𝛾∈Γ |𝑁−1∑𝑁
𝑖=1𝑈𝑖 (𝛾, 𝛽, �̂�𝑖) −𝑈𝑖 (𝛾, 𝛽0, 𝛼𝑖0) | = 𝑜𝑝 (1). Thus,

we have

|𝑁−1
𝑁∑︁
𝑖=1

𝑈𝑖 (�̂�, 𝛽, �̂�𝑖) | ≤ |𝑁−1
𝑁∑︁
𝑖=1

𝑈𝑖 (�̂�, 𝛽0, 𝛼𝑖0) | + |𝑁−1
𝑁∑︁
𝑖=1

𝑈𝑖 (�̂�, 𝛽, �̂�𝑖) −𝑈𝑖 (�̂�, 𝛽0, 𝛼𝑖0) |

≤ |𝑁−1
𝑁∑︁
𝑖=1

𝑈𝑖 (�̂�, 𝛽0, 𝛼𝑖0) | + sup
𝛾∈Γ

|𝑁−1
𝑁∑︁
𝑖=1

𝑈𝑖 (𝛾, 𝛽, �̂�𝑖) −𝑈𝑖 (𝛾, 𝛽0, 𝛼𝑖0) |

= |𝑁−1
𝑁∑︁
𝑖=1

𝑈𝑖 (�̂�, 𝛽0, 𝛼𝑖0) | + 𝑜𝑝 (1).

This establishes that �̂�
𝑝
→ 𝛾0, by standard results of estimating equations.

Asymptotic expansion Let 𝐺𝑖 (𝛾, 𝛽, 𝛼) = 𝜕𝑈𝑖 (𝛾, 𝛽, 𝛼)/𝜕𝛾, then we have the following ex-

pansion:

0 =
1
√
𝑁

𝑁∑︁
𝑖=1

𝑈𝑖 (�̂�, 𝛽, �̂�𝑖) =
1
√
𝑁

𝑁∑︁
𝑖=1

𝑈𝑖 (𝛾0, 𝛽, �̂�𝑖) +
√
𝑁 (�̂� − 𝛾0)

(
1
𝑁

𝑁∑︁
𝑖=1

𝐺𝑖 (𝛾, 𝛽, �̂�𝑖)
)

where 𝛾 is a value between �̂� and 𝛾0. This implies the following influence-function represen-

tation for the estimator:

√
𝑁 (�̂� − 𝛾0) =

(
1
𝑁

𝑁∑︁
𝑖=1

𝐺𝑖 (𝛾, 𝛽, �̂�𝑖)
)−1

1
√
𝑁

𝑁∑︁
𝑖=1

𝑈𝑖 (𝛾0, 𝛽, �̂�𝑖)(A.1)

= 𝐺−1 1√
𝑁

𝑁∑︁
𝑖=1

𝑈𝑖 (𝛾0, 𝛽, �̂�𝑖) + 𝑜𝑝 (1),(A.2)

where 𝐺 = 𝔼[𝐺𝑖] and noting that function without arguments are evaluated at the true values

of the parameters, 𝐺𝑖 = 𝐺𝑖 (𝛾0, 𝛽0, 𝛼𝑖0). The second equality here follows from Lemma 2.4
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of Newey and McFadden (1994) after noting that 𝛾 is between �̂� and 𝛾0, that �̂�, 𝛽, and �̂�𝑖 are

all consistent and from Assumption 4.

We can expand the 𝑟th element of𝑈𝑖 ,𝑈𝑖𝑟 in Equation (A.2) as

1
√
𝑁

𝑁∑︁
𝑖=1

𝑈𝑖𝑟 (𝛾0, 𝛽, �̂�𝑖) =
1
√
𝑁

𝑁∑︁
𝑖=1

𝑈𝑖𝑟 +
√
𝑁 (𝛽 − 𝛽0)⊤

(
1
𝑁

𝑁∑︁
𝑖=1

𝜕

𝜕𝛽
𝑈𝑖𝑟

)
︸                                 ︷︷                                 ︸

(I)

+ 1
√
𝑁

𝑁∑︁
𝑖=1

(�̂�𝑖 − 𝛼𝑖0)
𝜕

𝜕𝛼
𝑈𝑖𝑟︸                          ︷︷                          ︸

(II)

+
√
𝑁 (𝛽 − 𝛽0)⊤

(
1
𝑁

𝑁∑︁
𝑖=1

𝜕2

𝜕𝛽𝜕𝛽
𝑈𝑖𝑟 (𝛾0, 𝛽, 𝛼𝑖)

)
(𝛽 − 𝛽0)︸                                                                ︷︷                                                                ︸

(III)

+ 1
√
𝑁

𝑁∑︁
𝑖=1

(�̂�𝑖 − 𝛼𝑖)2
𝜕2

𝜕𝛼𝜕𝛼
𝑈𝑖𝑟 (𝛾0, 𝛽, 𝛼𝑖)︸                                             ︷︷                                             ︸

(IV)

+
√
𝑁 (𝛽 − 𝛽)⊤

(
1
𝑁

𝑁∑︁
𝑖=1

𝜕2

𝜕𝛽𝜕𝛼
𝑈𝑖𝑟 (𝛾0, 𝛽, 𝛼𝑖) (�̂�𝑖 − 𝛼𝑖0)

)
︸                                                                ︷︷                                                                ︸

(IV)

where 𝛼𝑖 is the value between �̂�𝑖 and 𝛼𝑖0 (𝛽 is defined similarly).

First order terms Wefirst show that Term (I) and (II) in the above expression are both 𝑜𝑝 (1).

We denote derivatives of𝑈𝑖𝑟 with subscripts so that,

𝑈𝑖𝑟,𝛼 (𝛾, 𝛽, 𝛼) =
𝜕

𝜕𝛼
𝑈𝑖𝑟 (𝛾, 𝛽, 𝛼), and 𝑈𝑖𝑟,𝛽 (𝛾, 𝛽, 𝛼) =

𝜕

𝜕𝛽
𝑈𝑖𝑟 (𝛾, 𝛽, 𝛼)

and simply write 𝑈𝑖𝑟,𝛼 when evaluated at the true values of the parameters. Letting ℎ(𝐷𝑖𝑘 )[𝑟]

be the 𝑟th entry of that vector, the expression of𝑈𝑖𝑟,𝛼 is given by

𝑈𝑖𝑟,𝛼 =
ℎ(𝐷𝑖𝑘 )[𝑟] (𝑌𝑖 − 𝑔(𝐷𝑖𝑘 ; 𝛾0))

𝑊2
𝑖
(𝐷𝑖𝑘 ; 𝛽, 𝛼𝑖)
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×
𝑇∑︁

𝑡=𝑇−𝑘

{
(2𝐷𝑖𝑡 − 1)

𝜕

𝜕𝛼𝑖
π𝑖𝑡 (𝛽0, 𝛼𝑖0)

𝑇∏
𝑠=𝑇−𝑘
𝑠≠𝑡

π𝑖𝑠 (𝛽0, 𝛼𝑖0)𝐷𝑖𝑠
[
1 − π𝑖𝑠 (𝛽0, 𝛼𝑖0)

]1−𝐷𝑖𝑠

}
= 𝑈𝑖𝑟

𝑇∑︁
𝑡=𝑇−𝑘

(2𝐷𝑖𝑡 − 1)π𝑖𝑡𝑉𝑖𝑡
π𝐷𝑖𝑡

𝑖𝑡
(1 − π𝑖𝑡)1−𝐷𝑖𝑡

= 𝑈𝑖𝑟

𝑇∑︁
𝑡=𝑇−𝑘

[
(2𝐷𝑖𝑡 − 1)𝑉𝑖𝑡

{
π𝑖𝑡

1 − π𝑖𝑡

}1−𝐷𝑖𝑡
]

≡ 𝑈𝑖𝑟𝑉 𝑖

Here, we have used

𝜕

𝜕𝛼𝑖
π𝑖𝑡 (𝛽0, 𝛼𝑖0) = π𝑖𝑡

𝜕

𝜕𝛼𝑖
log ℓ𝑖𝑡 = π𝑖𝑡𝑉𝑖𝑡 .

Similarly, the expression of𝑈𝑖𝑟,𝛽 can be derived as

𝑈𝑖𝑟,𝛽 = 𝑈𝑖𝑟

𝑇∑︁
𝑡=𝑇−𝑘

[
(2𝐷𝑖𝑡 − 1)𝑆𝑖𝑡

{
π𝑖𝑡

1 − π𝑖𝑡

}1−𝐷𝑖𝑡
]

≡ 𝑈𝑖𝑟𝑆𝑖

where 𝑆𝑖𝑡 is the score function 𝜕 log ℓ𝑖𝑡/𝜕𝛽.

To control (I), we use the following results:

|(I)| ≤
√
𝑁 ∥𝛽 − 𝛽0∥

 1𝑁 𝑁∑︁
𝑖=1

𝑈𝑖𝑟𝑆𝑖


Because

√
𝑁𝑇 ∥𝛽 − 𝛽0∥ = 𝑂𝑝 (1), we have

√
𝑁 ∥𝛽 − 𝛽0∥ = 𝑂𝑝 (1/

√
𝑇) = 𝑜𝑝 (1). Let 𝑆𝑖𝑞 be the

𝑞th entry in the 𝑆𝑖 vector. Note that 𝑆𝑖𝑞 has bounded fourth moments by Lemma 5 since it a
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function of the 𝑞th score vector. Thus, for the second term bounding (I), we have:

𝔼


(
1
𝑁

𝑁∑︁
𝑖=1

𝑈𝑖𝑟𝑆𝑖𝑞

)2 ≤ 1
𝑁

𝑁∑︁
𝑖=1

𝔼[(𝑈𝑖𝑟𝑆𝑖𝑞)2] ≤
1
𝑁

𝑁∑︁
𝑖=1

(
𝔼[𝑈4𝑖𝑟]

)1/2 (
𝔼[𝑆4𝑖𝑞]

)1/2
= 𝑂 (1),

where the first inequality holds because for any i.i.d. set of random variables 𝑋1, . . . , 𝑋𝑛, we

have 𝔼[(𝑛−1
∑

𝑖 𝑋𝑖)2] ≤ 𝑛−1
∑

𝑖 𝔼[𝑋2𝑖 ]. The second inequality holds by Cauchy-Schwarz, and

the last equality holds by Assumption 3(ii) and 4(i). Because the same holds for all entries in 𝑆𝑖 ,

we have ∥𝑁−1∑𝑁
𝑖=1𝑈𝑖𝑟𝑆𝑖∥ = 𝑂𝑝 (1) by the Markov inequality and so (I) is 𝑜𝑝 (1)𝑂𝑝 (1) = 𝑜𝑝 (1).

By Lemma 1, Term (II) can be written as

(II) =
1
√
𝑁

𝑁∑︁
𝑖=1

𝑈𝑖𝑟,𝛼 (�̂�𝑖 − 𝛼𝑖0) =
√
𝑁

𝑁𝑇

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝑈𝑖𝑟,𝛼𝜓𝑖𝑡 + 𝑜𝑝 (1)

=

√
𝑁

𝑁𝑇

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝔼[𝑈𝑖𝑟,𝛼𝜓𝑖𝑡 | 𝛼𝑖]︸                               ︷︷                               ︸
(II.a)

+
√
𝑁

𝑁𝑇

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

(
𝑈𝑖𝑟,𝛼𝜓𝑖𝑡 − 𝔼[𝑈𝑖𝑟,𝛼𝜓𝑖𝑡 | 𝛼𝑖]

)
︸                                                ︷︷                                                ︸

(II.b)

+𝑜𝑝 (1),

where the 𝑜𝑝 (1) term in the first line is due to 𝑁−1∑𝑁
𝑖=1𝑈𝑖𝑟,𝛼 being 𝑂𝑝 (1) and the remained

of the �̂�𝑖 expansion from Lemma 1 beingmax𝑖 |𝑅𝑖 | = 𝑜𝑝 (𝑇−1/2).

Note that 𝜓𝑖𝑡 = 𝔼𝑇 {𝔼𝛼 [𝑉𝑖𝑡𝛼]}−1𝑉𝑖𝑡 . In an abuse of notation, we define 𝑉 𝑖 (𝑑𝑘 , 𝐷𝑖𝑡) to be

𝑉 𝑖 with all covariates and the outcome replaced with their potential outcomes setting 𝑑𝑘 and

we leave 𝐷𝑖𝑡 as an argument to emphasize that this function depends on 𝐷𝑖𝑡 . Furthermore, let

𝑈𝑖𝑟,𝛼 (𝑑𝑘 , 𝐷𝑖𝑡) = 𝑉 𝑖 (𝑑𝑘 , 𝐷𝑖𝑡)ℎ(𝑑𝑘 )[𝑟] (𝑌𝑖 (𝑑𝑘 , 𝐷𝑖𝑡)−𝑔(𝑑𝑘 ; 𝛾0)). Then, applying the g-computational

formula, we have for all 𝑡 < 𝑇 − 𝑘 ,

𝔼[𝑈𝑖𝑟,𝛼𝜓𝑖𝑡 | 𝛼𝑖] =
∑︁
𝑑𝑘

𝔼𝑇 {𝔼𝛼 [𝑉𝑖𝑡𝛼]}−1𝔼
[
𝑉𝑖𝑡𝑈𝑖𝑟,𝛼 (𝑑𝑘 , 𝐷𝑖𝑡) | 𝛼𝑖

]
Note that because 𝑉𝑖𝑡 is a score, we can use iterated expectations to show that 𝔼[𝑉𝑖𝑡 | 𝛼𝑖] =

0. Thus, the inner expectation in the above expression is the covariance between 𝑉𝑖𝑡 and
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𝑈𝑖𝑟,𝛼 (𝑑𝑘 , 𝐷𝑖𝑡) conditional on 𝛼𝑖 . Using Lemma 2, we have

��𝔼 [
𝑉𝑖𝑡𝑈𝑖𝑟,𝛼 (𝑑𝑘 , 𝐷𝑖𝑡) | 𝛼𝑖

] �� = ��Cov(𝑉𝑖𝑡 ,𝑈𝑖𝑟,𝛼 (𝑑𝑘 , 𝐷𝑖𝑡) | 𝛼𝑖)��
≤ 8𝑎(𝑇 − 𝑘 − 𝑡) [1−1/(8+𝜈)−1/(2+𝜈)]

×
[
𝔼[|𝑉𝑖𝑡 |8+𝜈]

]1/(8+𝜈) [
𝔼[|𝑈𝑖𝑟,𝛼 (𝑑𝑘 , 𝐷𝑖𝑡) |

2+𝜈]
]1/(2+𝜈)

≤ 𝐶 (𝑇 − 𝑘 − 𝑡)−𝜇[1−1/(8+𝜈)−1/(2+𝜈)]

≤ 𝐶 (𝑇 − 𝑘 − 𝑡)−4

Thus, we have����� 𝑇∑︁
𝑡=1

𝔼[𝑈𝑖𝑟,𝛼𝜓𝑖𝑡 | 𝛼𝑖]
����� ≤ 𝑇∑︁

𝑡=1

∑︁
𝑑𝑘

��𝔼𝑇 {𝔼𝛼 [𝑉𝑖𝑡𝛼]}−1𝔼 [
𝑉𝑖𝑡𝑈𝑖𝑟,𝛼 (𝑑𝑘 , 𝐷𝑖𝑡) | 𝛼𝑖

] ��
≤ 2𝑘

𝑇∑︁
𝑡=1

𝔼
{��𝔼 [

𝑉𝑖𝑡𝑈𝑖𝑟,𝛼 (𝑑𝑘 , 𝐷𝑖𝑡) | 𝛼𝑖
] ��}

≤ 𝐶2𝑘
𝑇∑︁
𝑡=1

(𝑇 − 𝑘 − 𝑡)−4

≤ 𝐶2𝑘
∞∑︁
𝑚=1

𝑚−4 =
𝐶2𝑘π4

90

Thus, we can establish that (II.a) is 𝑂𝑝 (1/
√
𝑇). By Lemma 3 and the bounded moment condi-

tions for the outcome and the partial derivatives, we have

1
𝑁𝑇

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

(
𝑈𝑖𝑟,𝛼𝜓𝑖𝑡 − 𝔼[𝑈𝑖𝑟,𝛼𝜓𝑖𝑡 | 𝛼𝑖]

)
= 𝑂𝑝 (1/

√
𝑁𝑇).

This implies that (II.b) is
√
𝑁𝑂𝑝 (1/

√
𝑁𝑇) = 𝑂𝑝 (𝑇−1/2) = 𝑜𝑝 (1). Then, it follows that

(I) + (II) = 𝑜𝑝 (1) + 𝑜𝑝 (1) = 𝑜𝑝 (1).

Second order terms We will show that Term (III), (IV) and (V) are all 𝑜𝑝 (1).
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Define the following second derivatives of the MSM estimating equation:

𝑈𝑖𝑟𝛼𝛼 (𝛾, 𝛽, 𝛼) =
𝜕

𝜕𝛼
𝑈𝑖𝑟𝛼 (𝛾, 𝛽, 𝛼), 𝑈𝑖𝑟 𝛽𝛽 (𝛾, 𝛽, 𝛼) =

𝜕

𝜕𝛽
𝑈𝑖𝑟 𝛽 (𝛾, 𝛽, 𝛼),

𝑈𝑖𝑟 𝛽𝛼 (𝛾, 𝛽, 𝛼) =
𝜕

𝜕𝛼
𝑈𝑖𝑟 𝛽 (𝛾, 𝛽, 𝛼).

Lemma 1 implies estimation error in the fixed effects are uniformly bounded so (IV) is

bounded as

(A.3) |(IV)| ≤
√
𝑁max

𝑖
|�̂�𝑖 − 𝛼𝑖 |2

���� 1𝑁 𝑁∑︁
𝑖=1

𝑈𝑖𝑟𝛼𝛼 (𝛾0, 𝛽, 𝛼𝑖)
����.

Note that Lemma 1 also implies thatmax𝑖 |�̂�𝑖 − 𝛼 |2 = 𝑂𝑝 (𝑇−3/4).

Next we bound the second term in (A.3). First, we derive an expression for𝑈𝑖𝑟𝛼𝛼 using the

derivation of𝑈𝑖𝑟𝛼 above:

𝑈𝑖𝑟𝛼𝛼 (𝛾0, 𝛽, 𝛼𝑖) = 𝑈𝑖𝑟𝛼 (𝛾0, 𝛽, 𝛼𝑖)𝑉 𝑖 (𝛽, 𝛼) +𝑈𝑖𝑟 (𝛾0, 𝛽, 𝛼𝑖)
𝜕

𝜕𝛼
𝑉 𝑖 (𝛽, 𝛼)

= 𝑈𝑖𝑟 (𝛾0, 𝛽, 𝛼𝑖)𝑉 𝑖𝛼 (𝛽, 𝛼),

where we define 𝑉 𝑖𝛼 (𝛽, 𝛼) = 𝑉 𝑖 (𝛽, 𝛼)2 + 𝜕𝑉 𝑖 (𝛽, 𝛼)/𝜕𝛼.

With this, we bound the second moment of the second term in a neighborhood around the

truth:

𝔼

 sup
(𝛼,𝛽)∈𝐵0 (𝜖)

(
1
𝑁

𝑁∑︁
𝑖=1

𝑈𝑖𝑟𝛼𝛼 (𝛾0, 𝛽, 𝛼𝑖)
)2 = 𝔼

 sup
(𝛼,𝛽)∈𝐵0 (𝜖)

(
1
𝑁

𝑁∑︁
𝑖=1

𝑈𝑖𝑟 (𝛾0, 𝛽, 𝛼𝑖)𝑉 𝑖𝛼 (𝛽, 𝛼)
)2

≤ 𝔼

 sup
(𝛼,𝛽)∈𝐵0 (𝜖)

(
1
𝑁

𝑁∑︁
𝑖=1

|𝑈𝑖𝑟 (𝛾0, 𝛽, 𝛼𝑖) | |𝑉 𝑖𝛼 (𝛽, 𝛼) |
)2

≤ 𝔼

 sup
(𝛼,𝛽)∈𝐵0 (𝜖)

(
1
𝑁

𝑁∑︁
𝑖=1

|𝑌𝑖 − 𝑔(𝐷𝑖𝑘 ; �̂�) | |𝑉 𝑖𝛼 (𝛽, 𝛼) |
)2
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≤ 𝔼


(
1
𝑁

𝑁∑︁
𝑖=1

|𝑌𝑖 − 𝑔(𝐷𝑖𝑘 ; �̂�) |𝑀𝑖

)2
≤ 1
𝑁

𝑁∑︁
𝑖=1

𝔼
[ (
|𝑌𝑖 − 𝑔(𝐷𝑖𝑘 ; �̂�) |𝑀𝑖

)2]
≤ 1
𝑁

𝑁∑︁
𝑖=1

(
𝔼[(𝑌𝑖 − 𝑔(𝐷𝑖𝑘 ; �̂�))

4]
)1/2 (

𝔼[𝑀4
𝑖 ]

)1/2
= 𝑂 (1)

The second inequality here is due to bounded propensity scores, the third due to Lemma 5, the

fourth due to i.i.d. data, the fifth is Cauchy-Swarchz, and the final equality is due to bounded

outcome moments and Lemma 5. This implies that

sup
(𝛼,𝛽)∈𝐵0 (𝜖)

���� 1𝑁 𝑁∑︁
𝑖=1

𝑈𝑖𝑟𝛼𝛼 (𝛾0, 𝛽, 𝛼𝑖)
���� = 𝑂𝑝 (1).

Note that (𝛽, 𝛼𝑖) ∈ B(𝜖) with probability approaching 1 due to these values between the con-

sistent estimators and the true values of the parameters. This implies that

���� 1𝑁 𝑁∑︁
𝑖=1

𝑈𝑖𝑟𝛼𝛼 (𝛾0, 𝛽, 𝛼𝑖)
���� = 𝑂𝑝 (1).

Combining this with the above, we have that (IV) is
√
𝑁𝑂𝑝 (𝑇−3/4)𝑂𝑝 (1) = 𝑜𝑝 (1).

For (V), we follow a similar strategy. First note that we have:

|(V)| <
√
𝑁 ∥𝛽 − 𝛽0∥max

𝑖
|�̂�𝑖 − 𝛼𝑖 |

 1𝑁 𝑁∑︁
𝑖=1

𝑈𝑖𝑟 𝛽𝛼 (𝛾0, 𝛽, 𝛼𝑖)


As above,
√
𝑁 ∥𝛽 − 𝛽0∥max𝑖 |�̂�𝑖 − 𝛼𝑖 | =

√
𝑁𝑂𝑝 (1/

√
𝑁𝑇)𝑂𝑝 (𝑇−3/8) = 𝑂𝑝 (𝑇−7/8). Let 𝑈𝑖𝑟𝑞𝛼 =

𝜕𝑈𝑖𝑟𝛼/𝜕𝛽𝑞 be the 𝑞th entry of𝑈𝑖𝑟 𝛽𝛼. By a similar argument to𝑈𝑖𝑟𝛼𝛼, we have

𝑈𝑖𝑟𝑞𝛼 (𝛽, 𝛼) = 𝑈𝑖𝑟 (𝛽, 𝛼)
(
𝑉 𝑖 (𝛽, 𝛼)𝑆𝑖𝑞 (𝛽, 𝛼) + 𝜕𝑉 𝑖 (𝛽, 𝛼)/𝜕𝛽𝑞

)
≡ 𝑈𝑖𝑟 (𝛽, 𝛼)𝑉 𝑖𝑞 (𝛽, 𝛼).
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By Lemma 5 and the argument for𝑈𝑖𝑟𝛼𝛼, we have����� 1𝑁 𝑁∑︁
𝑖=1

𝑈𝑖𝑟𝑞𝛼 (𝛾0, 𝛽, 𝛼𝑖)
����� = 𝑂𝑝 (1),

for all 𝑞 which in turn implies, 1𝑁 𝑁∑︁
𝑖=1

𝑈𝑖𝑟 𝛽𝛼 (𝛾0, 𝛽, 𝛼𝑖)
 = 𝑂𝑝 (1)

Thus, we have that (V) is 𝑂𝑝 (𝑇−7/8)𝑂𝑝 (1) = 𝑜𝑝 (1). The proof for (III) being 𝑜𝑝 (1) follows

similarly.

Combining all results Combining all results, we have that

√
𝑁 (�̂� − 𝛾0) = 𝐺−1 1√

𝑁

𝑁∑︁
𝑖=1

𝑈𝑖 + 𝑜𝑝 (1)

□
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B Supporting Lemmas

B.1 Lemmas

The following lemma is a restatement of results in Fernández-Val and Weidner (2016) with an

additional result on the uniform rate of converge for the propensity score model.

Lemma 1. Under Assumption 2, the following hold:

(i) ∥𝛽 − 𝛽0∥ = 𝑂𝑝 (1/
√
𝑁𝑇)

(ii) Letting 𝜓𝑖𝑡 = 𝔼𝑇 {𝔼𝛼 [𝑉𝑖𝑡𝛼]}−1𝑉𝑖𝑡 , we have:

�̂�𝑖 = 𝛼𝑖0 +
1
𝑇

𝑇∑︁
𝑡=1

𝜓𝑖𝑡 + 𝑅𝑖,

where 𝑅𝑖 = 𝑂𝑝 (1/𝑇).

(iii) max𝑖 |�̂�𝑖 − 𝛼𝑖0 | = max𝑖 |𝑇−1∑𝑇
𝑡=1 𝜓𝑖𝑡 | = 𝑂𝑝 (𝑇−3/8) and max𝑖 |𝑅𝑖 | = 𝑜𝑝 (𝑇−1/2).

The following can be found as Proposition 2.5 of Fan and Yao (2005).

Lemma 2. Let {𝜉𝑡} be an 𝛼-mixing process with mixing coefficient 𝑎(𝑚). Let 𝔼|𝜉𝑡 |𝑝 < ∞ and

𝔼|𝜉𝑡+𝑚 |𝑞 < ∞ for some 𝑝, 𝑞 ≥ 1 and 1/𝑝 + 1/𝑞 < 1. Then,

|Cov(𝜉𝑡 , 𝜉𝑡+𝑚) | ≤ 8𝑎(𝑚)1/𝑟 [𝔼|𝜉𝑡 |𝑝]1/𝑝 [𝔼|𝜉𝑡+𝑚 |𝑞]1/𝑞 ,

where 𝑟 = (1 − 1/𝑝 − 1/𝑞)−1.

The following lemma comes from Theorem 1 of Cox and Kim (1995).

Lemma 3. Let {𝜉𝑡} be an 𝛼-mixing process with mixing coefficient 𝑎(𝑚) and 𝔼[𝜉𝑡] = 0. Let 𝑟 ≥ 1

be an integer, and let 𝛿 > 2𝑟 , 𝜇 > 𝑟/(1 − 2𝑟/𝛿), 𝑐 > 0, and 𝐶 > 0. Assume that sup𝑡 𝔼[|𝜉𝑡 |𝛿] ≤ 𝐶

and that 𝑎(𝑚) ≤ 𝑐𝑚−𝜇 for all 𝑚 ∈ {1, 2, 3, . . .}. Then there exists a constant 𝐵 > 0 depending on
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𝑟, 𝛿, 𝜇, 𝑐 and 𝐶, but not depending on 𝑇 or any other distributional characteristics of 𝜉𝑡 such that

for any 𝑇 > 0,

𝔼


(
1
√
𝑇

𝑇∑︁
𝑡=1

𝜉𝑡

)2𝑟 ≤ 𝐵.

Lemma4. Let ℓ∗
𝑖
(𝛽,𝑉) be the Legendre transformation of the objective function ℓ𝑖 (𝛽, 𝛼) = 𝑇−1∑𝑇

𝑡=1 ℓ𝑖𝑡 (𝛽, 𝛼)

such that ℓ∗
𝑖
(𝛽,𝑉) = max𝛼∈B𝛼 (𝜖𝛼) [ℓ𝑖 (𝛽, 𝛼) − 𝛼𝑉] and 𝐴𝑖 (𝛽,𝑉) = arg max

𝛼∈B𝛼 (𝜖𝛼)
[ℓ𝑖 (𝛽, 𝛼) − 𝛼𝑉] where

𝛽 ∈ B𝛽 (𝜖𝛽) and 𝑉 denotes the dual parameter to 𝛼. Suppose Assumption 2 holds. Then, for some

𝜈 > 0

(i)

sup
(𝛽,𝛼𝑖)∈B0 (𝜖)

|𝜕𝑉𝑉𝑉𝑉ℓ∗𝑖 (𝛽, 𝛼𝑖) | = 𝑂𝑝 (1)

sup
(𝛽,𝛼𝑖)∈B0 (𝜖)

∥𝜕𝑉𝛽𝛽′ℓ∗𝑖 (𝛽, 𝛼𝑖)∥ = 𝑂𝑝 (1)

sup
(𝛽,𝛼𝑖)∈B0 (𝜖)

∥𝜕𝑉𝑉𝛽ℓ∗𝑖 (𝛽, 𝛼𝑖)∥ = 𝑂𝑝 (1)

(ii)

sup
(𝛽,𝛼𝑖)∈B0 (𝜖)

max
𝑖

|𝜕𝑉𝑉𝑉𝑉ℓ∗𝑖 (𝛽, 𝛼𝑖) | = 𝑂𝑝 (𝑇1/(8+𝜈))

sup
(𝛽,𝛼𝑖)∈B0 (𝜖)

max
𝑖

∥𝜕𝑉𝛽𝛽′ℓ∗𝑖 (𝛽, 𝛼𝑖)∥ = 𝑂𝑝 (𝑇2/(8+𝜈))

sup
(𝛽,𝛼𝑖)∈B0 (𝜖)

max
𝑖

∥𝜕𝑉𝑉𝛽ℓ∗𝑖 (𝛽, 𝛼𝑖)∥ = 𝑂𝑝 (𝑇2/(8+𝜈))
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Lemma 5. Let 𝑉𝑖𝑡 (𝛽, 𝛼) = 𝜕ℓ𝑖𝑡 (𝛽, 𝛼)/𝛼 and 𝑆𝑖𝑡𝑞 (𝛽, 𝛼) = 𝜕ℓ𝑖𝑡 (𝛽, 𝛼)/𝜕𝛽𝑞 . Define the following:

𝑉 𝑖 (𝛽, 𝛼) =
𝑇∑︁

𝑡=𝑇−𝑘

[
(2𝐷𝑖𝑡 − 1)𝑉𝑖𝑡 (𝛽, 𝛼)

{
π𝑖𝑡 (𝛽, 𝛼)

1 − π𝑖𝑡 (𝛽, 𝛼)

}1−𝐷𝑖𝑡
]

𝑆𝑖𝑞 (𝛽, 𝛼) =
𝑇∑︁

𝑡=𝑇−𝑘

[
(2𝐷𝑖𝑡 − 1)𝑆𝑖𝑡𝑞 (𝛽, 𝛼)

{
π𝑖𝑡 (𝛽, 𝛼)

1 − π𝑖𝑡 (𝛽, 𝛼)

}1−𝐷𝑖𝑡
]

𝑉 𝑖𝛼 (𝛽, 𝛼) = 𝑉 𝑖 (𝛽, 𝛼)2 + 𝜕𝑉 𝑖 (𝛽, 𝛼)/𝜕𝛼,

𝑉 𝑖𝑞 (𝛽, 𝛼) = 𝑉 𝑖 (𝛽, 𝛼)𝑆𝑖𝑞 (𝛽, 𝛼) + 𝜕𝑉 𝑖 (𝛽, 𝛼)/𝜕𝛽𝑞,

𝑆𝑖𝑞𝛼 (𝛽, 𝛼) = 𝑉 𝑖 (𝛽, 𝛼)𝑆𝑖𝑞 (𝛽, 𝛼) + 𝜕𝑆𝑖 (𝛽, 𝛼)/𝜕𝛼,

𝑆𝑖𝑞𝑚 (𝛽, 𝛼) = 𝑆𝑖𝑞 (𝛽, 𝛼)𝑆𝑖𝑚 (𝛽, 𝛼) + 𝜕𝑆𝑖𝑞 (𝛽, 𝛼)/𝜕𝛽𝑚

Suppose Assumption 2 holds. Then each of these is uniformly bounded in absolute value for (𝛽, 𝛼) ∈

B0(𝜖) by a function 𝑀𝑖 such that max𝑖,𝑡 𝔼[𝑀4
𝑖
] is almost surely uniformly bounded over 𝑁 .

B.2 Proof of Lemmas

Proof of Lemma 1. We take the convention here that any function with the 𝑡 subscript omitted

is the over-time average of that quantity. For example,𝑉𝑖 (𝛽, 𝛼) = 𝔼𝑇 [𝑉𝑖𝑡 (𝛽, 𝛼)] = 𝑇−1∑𝑇
𝑡=1𝑉𝑖 (𝛽, 𝛼).

Part (i) follows from the results of Fernández-Val andWeidner (2016)without period effects.

To derive an asymptotic expansion of �̂�𝑖 in part (ii), we largely follow the Legendre transfor-

mation approach of Fernández-Val and Weidner (2016). Our discussion follows theirs closely,

though in a more specialized setting. We define

ℓ∗𝑖 (𝛽,𝑉) = max
𝛼∈B𝛼 (𝜖𝛼)

[ℓ𝑖 (𝛽, 𝛼) − 𝛼𝑉], 𝐴𝑖 (𝛽,𝑉) = arg max
𝛼∈B𝛼 (𝜖𝛼)

[ℓ𝑖 (𝛽, 𝛼) − 𝛼𝑉]

where 𝛽 ∈ B𝛽 (𝜖𝛽). The function ℓ∗𝑖 (𝛽,𝑉) is the Legendre transformation of the objective func-

tion ℓ𝑖 (𝛽, 𝛼) = 𝑇−1∑𝑇
𝑡=1 ℓ𝑖𝑡 (𝛽, 𝛼). We use𝑉 to denote the dual parameter to𝛼 and ℓ∗𝑖 (𝛽,𝑉) as the

dual function to ℓ𝑖 (𝛽, 𝛼). The relationship between 𝛼 and𝑉 is one-to-one since the optimal 𝛼 =
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𝐴𝑖 (𝛽,𝑉) satisfies the first-order condition 𝑉𝑖 (𝛽, 𝛼) = 𝑉 , where 𝑉𝑖 (𝛽, 𝛼) = 𝑇−1∑𝑇
𝑡=1𝑉𝑖𝑡 (𝛽, 𝛼).

We canwrite ℓ∗
𝑖
(𝛽,𝑉) = ℓ𝑖 (𝛽, 𝐴𝑖 (𝛽,𝑉))−𝐴𝑖 (𝛽,𝑉)𝑉 when 𝐴𝑖 (𝛽,𝑉) solves the FOC,𝑉𝑖 (𝛽, 𝐴𝑖 (𝛽,𝑉𝑖)) =

𝑉𝑖 . Taking the derivative of the last identity on both sides of the equality gives:

[𝜕𝑉 𝐴𝑖 (𝛽,𝑉)] [𝑉𝑖𝛼 (𝛽, 𝐴𝑖 (𝛽,𝑉))] = 1

𝑉𝑖𝛽 (𝛽, 𝐴𝑖 (𝛽,𝑉)) + [𝜕𝛽𝐴𝑖 (𝛽,𝑉)]𝑉𝑖𝛼 (𝛽, 𝐴𝑖 (𝛽,𝑉)) = 0

so we have
𝜕𝑉 𝐴𝑖 (𝛽,𝑉) =

1
𝑉𝑖𝛼 (𝛽, 𝐴𝑖 (𝛽,𝑉))

𝜕𝛽𝐴𝑖 (𝛽,𝑉) = −
𝑉𝑖𝛽 (𝛽, 𝐴𝑖 (𝛽,𝑉))
𝑉𝑖𝛼 (𝛽, 𝐴𝑖 (𝛽,𝑉))

When 𝑉 = 0, then the optimization in ℓ∗
𝑖
is just over ℓ𝑖 , so we have 𝐴𝑖 (𝛽, 0) = �̂�𝑖 (𝛽) and

ℓ∗
𝑖
(𝛽, 0) = ℓ𝑖 (𝛽, �̂�𝑖 (𝛽)). The latter is the profile likelihood for 𝛽. Note that

𝜕𝑉ℓ
∗
𝑖 (𝛽, 𝐴𝑖 (𝛽,𝑉)) = [𝑉𝑖 (𝛽, 𝐴𝑖 (𝛽,𝑉))] [𝜕𝑉 𝐴𝑖 (𝛽,𝑉)] − 𝐴𝑖 (𝛽,𝑉) − [𝜕𝑉 𝐴𝑖 (𝛽,𝑉)]𝑉

= −𝐴𝑖 (𝛽,𝑉)

Thus, we have �̂�𝑖 (𝛽) = −𝜕𝑉ℓ∗𝑖 (𝛽, 0) and 𝜕𝑉ℓ∗𝑖 (𝛽0, 0) = −𝛼𝑖0.

We now expand 𝜕𝑉ℓ∗𝑖 (𝛽, 0) around (𝛽0, 𝑉𝑖) for 𝛽 ∈ B𝛽0 (𝜖𝛽), which gives:

�̂�𝑖 (𝛽) = −𝜕𝑉ℓ∗𝑖 (𝛽, 0) = −𝜕𝑉ℓ∗𝑖 − (𝜕𝑉𝛽′ℓ∗𝑖 ) (𝛽 − 𝛽0) + (𝜕𝑉𝑉ℓ∗𝑖 )𝑉𝑖 −
1
2
(𝜕𝑉𝑉𝑉ℓ∗𝑖 )𝑉2𝑖 + 𝑅(𝛽),

where

𝑅𝑖 (𝛽) =
1
2
(𝛽 − 𝛽0)⊤(𝜕𝑉𝛽𝛽′ℓ∗𝑖 (𝛽,𝑉𝑖)) (𝛽 − 𝛽0) + (𝜕𝑉𝑉𝛽′ℓ∗𝑖 (𝛽0, 𝑉𝑖)) (𝛽 − 𝛽0)𝑉𝑖

+ 1
6
(𝜕𝑉𝑉𝑉𝑉ℓ∗𝑖 (𝛽0, ¥𝑉𝑖))𝑉3𝑖

where 𝛽 is between 𝛽 and 𝛽0 and 𝑉𝑖 and ¥𝑉𝑖 are between 𝑉𝑖 and 0.
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Using the above identities, it is possible to derive the following:

𝜕𝑉𝑉ℓ
∗
𝑖 = −1/𝑉𝑖𝛼, 𝜕𝑉𝑉𝑉ℓ

∗
𝑖 = 𝑉𝑖𝛼𝛼/𝑉3𝑖𝛼, 𝜕𝛽ℓ

∗
𝑖 = 𝑆𝑖

𝜕𝑉𝛽ℓ
∗
𝑖 = 𝑉𝑖𝛽/𝑉𝑖𝛼, 𝜕𝛽𝛽′ℓ

∗
𝑖 = 𝑆𝑖𝛽 +𝑉𝑖𝛽𝑉⊤

𝑖𝛽/𝑉𝑖𝛼

𝜕𝑉𝛽𝛽′ℓ
∗
𝑖 =

𝑆𝑖𝛽𝛼

𝑉𝑖𝛼
+
𝑉𝑖𝛽𝛼𝑉

⊤
𝑖𝛽

𝑉2
𝑖𝛼

+
𝑉𝑖𝛽𝑉

⊤
𝑖𝛽𝛼

𝑉2
𝑖𝛼

−
𝑉𝑖𝛽𝑉

⊤
𝑖𝛽

𝑉3
𝑖𝛼

𝜕𝑉𝑉𝛽ℓ
∗
𝑖 =

𝑉𝑖𝛽𝛼

𝑉2
𝑖𝛼

−
𝑉𝑖𝛼𝛼𝑉𝑖𝛽

𝑉3
𝑖𝛼

𝜕𝑉𝑉𝑉𝑉ℓ
∗
𝑖 =

𝑉𝑖𝛼𝛼𝛼

𝑉4
𝑖𝛼

− 3𝑉𝑖𝛼𝛼
𝑉5
𝑖𝛼

Combining these with the above expansion gives us:

�̂�𝑖 (𝛽) − 𝛼𝑖0 = − 𝑉𝑖
𝑉𝑖𝛼

−
𝑉⊤
𝑖𝛽
(𝛽 − 𝛽0)
𝑉𝑖𝛼

+
𝑉𝑖𝛼𝛼𝑉

2
𝑖

2𝑉3
𝑖𝛼

+ 𝑅(𝛽)

Let 𝔼𝛼 is the expectation conditional on the fixed effects. We have 𝔼𝛼 [𝑉𝑖] = 0 and so by

Lemma 3, we have 𝑉𝑖 = 𝑂𝑝 (𝑇−1/2), 𝑉2
𝑖
= 𝑂𝑝 (𝑇−1), and 𝑉3

𝑖
= 𝑂𝑝 (𝑇−3/2). For the partial deriva-

tive terms, we define𝑉 𝑖𝑡𝛼 = 𝔼𝛼 [𝑉𝑖𝑡𝛼] and𝑉 𝑖𝛼 = 𝔼𝑇 [𝑉 𝑖𝑡𝛼]. We also define the mean deviations as

𝑉𝑖𝛼 = 𝑉𝑖𝛼−𝑉 𝑖𝛼. We define similar quantities for𝑉𝑖𝛼𝛼 and𝑉𝑖𝛽. As above, we have𝑉𝑖𝛼 = 𝑂𝑝 (𝑇−1/2).

We can derive the following using standard asymptotic results:

𝑉−1
𝑖𝛼 = 𝑉

−1
𝑖𝛼 +𝑉−2

𝑖𝛼 𝑉𝑖𝛼 +𝑂𝑝 (𝑇−1)

𝑉−2
𝑖𝛼 = 𝑉

−2
𝑖𝛼 +𝑉−3

𝑖𝛼 𝑉𝑖𝛼 +𝑂𝑝 (𝑇−1)

𝑉−3
𝑖𝛼 = 𝑉

−3
𝑖𝛼 +𝑉−4

𝑖𝛼 𝑉𝑖𝛼 +𝑂𝑝 (𝑇−1)

Let 𝜓𝑖1 = 𝑉𝑖/𝑉 𝑖𝛼. We have 𝑉𝑖/𝑉𝑖𝛼 = 𝜓𝑖1 + 𝜓𝑖1(𝑉𝑖𝛼/𝑉 𝑖𝛼) +𝑂𝑝 (𝑇−3/2). For the next two terms,
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we have
𝑉⊤
𝑖𝛽
(𝛽 − 𝛽0)
𝑉𝑖𝛼

=
𝑉⊤
𝑖𝛽
(𝛽 − 𝛽0)

𝑉 𝑖𝛼
+𝑂𝑃 (𝑇−1/2∥𝛽 − 𝛽0∥)

𝑉𝑖𝛼𝛼𝑉
2
𝑖

2𝑉3
𝑖𝛼

=
𝑉𝑖𝛼𝛼𝑉

2
𝑖

2𝑉3𝑖𝛼
+𝑂𝑃 (𝑇−3/2) =

𝑉𝑖𝛼𝛼𝜓
2
𝑖1

2𝑉 𝑖𝛼
+𝑂𝑃 (𝑇−3/2)

Again based on the bounded derivative and moment conditions and Lemma 3, we have

𝑉𝑖𝛼𝛼 = 𝑂𝑃 (𝑇−1/2) and ∥𝑉𝑖𝛽∥ = 𝑂𝑝 (𝑇−1/2). Combined with the above, we have:

�̂�𝑖 (𝛽) − 𝛼𝑖0 = −𝜓𝑖1 − 𝜓𝑖2 + 𝑅𝑖 (𝛽) +𝑂𝑝

(
𝑇−1/2∥𝛽 − 𝛽0∥ + 𝑇−3/2

)
,

where

𝜓𝑖2 =
1
𝑉 𝑖𝛼

(
𝑉𝑖𝛼𝜓𝑖1 +𝑉

⊤
𝑖𝛽 (𝛽 − 𝛽0) +𝑉 𝑖𝛼𝛼𝜓2𝑖1

)
,

and 𝜓𝑖2 = 𝑂𝑝 (𝑇−1).

We now plug in 𝛽 to get �̂�𝑖 = �̂�𝑖 (𝛽). Note that ∥𝛽 − 𝛽0∥ = 𝑂𝑝 ((𝑁𝑇)−1/2) = 𝑂𝑝 (𝑇−1). Now

by part (i) of Lemma 4 we have

|𝑅𝑖 (𝛽) | ≤ ∥𝛽 − 𝛽0∥2∥𝜕𝑉𝛽𝛽′ℓ∗𝑖 (𝛽,𝑉𝑖)∥ + |𝑉𝑖 | ∥𝛽 − 𝛽0∥ ∥𝜕𝑉𝑉𝛽′ℓ∗𝑖 (𝛽0, 𝑉𝑖)∥

+
��𝑉3𝑖 �� ��𝜕𝑉𝑉𝑉𝑉ℓ∗𝑖 (𝛽0, ¥𝑉𝑖)��

= 𝑂𝑃 (𝑇−2)𝑂𝑝 (1) +𝑂𝑝 (𝑇−1/2)𝑂𝑝 (𝑇−1)𝑂𝑝 (1) +𝑂𝑝 (𝑇−3/2)𝑂𝑝 (1) = 𝑂𝑃 (𝑇−3/2)

Combining this with the above, we have

�̂�𝑖 − 𝛼𝑖 = −𝜓𝑖1 − 𝜓𝑖2 +𝑂𝑝 (𝑇−3/2)

For part (iii), we now derive a maximal inequality over units. We have

max
𝑖

|�̂�𝑖 − 𝛼𝑖0 | ≤ max
𝑖

|𝜓𝑖1 | +max
𝑖

|𝜓𝑖2 | +max
𝑖

|𝑅𝑖 (𝛽) |

54



By Lemma 3, we have:

𝔼𝛼

[(
max
𝑖

|𝑉𝑖 |
)8]

= 𝑇−4𝔼𝛼

max𝑖
(
1
√
𝑇

𝑇∑︁
𝑡=1

𝑉𝑖𝑡

)8
≤ 𝑇−4

∑︁
𝑖

𝔼𝛼


(
1
√
𝑇

𝑇∑︁
𝑡=1

𝑉𝑖𝑡

)8
≤ 𝑇−4𝑁𝐵 = 𝑂 (𝑇−3)

Thus, we have max𝑖 |𝑉𝑖 | = 𝑂𝑝 (𝑇−3/8), max𝑖 |𝑉2𝑖 | = 𝑂𝑝 (𝑇−3/16), and max𝑖 |𝑉3𝑖 | = 𝑂𝑝 (𝑇−9/8).

Furthermore, recall that �̂�𝑖 = �̂�𝑖 (𝛽) and that ∥𝛽 − 𝛽0∥ is 𝑂𝑝 ((𝑁𝑇)−1/2) = 𝑂𝑝 (𝑇−1). Finally,

recall that inf𝑖 |𝑉𝑖𝑡𝛼 | > 0, which implies that inf𝑖 |𝑉 𝑖𝛼 | > 0. These facts combined with part (ii)

of Lemma 4 imply for some constants 𝐶1

max
𝑖

|𝜓𝑖1 | = max
𝑖

���𝑉−1
𝑖𝛼 𝑉𝑖

��� < 𝐶max
𝑖

|𝑉𝑖 | = 𝑂𝑝 (𝑇−3/8)

max
𝑖

|𝜓𝑖2 | = max
𝑖

���𝑉−1
𝑖

(
𝑉 𝑖𝛽 (𝛽 − 𝛽0) +𝑉 𝑖𝛼𝛼𝜓2𝑖1

)���
< 𝐶

(
∥𝛽 − 𝛽0∥max

𝑖
∥𝑉 𝑖𝛽∥ +max

𝑖

���𝑉 𝑖𝛼𝛼���max
𝑖

��𝜓2𝑖1��)
= 𝑂𝑝 (𝑇−1 + 𝑇−3/4) = 𝑜𝑝 (𝑇−1/2),

max
𝑖

|𝑅𝑖 (𝛽) | = 𝑜𝑝 (𝑇−1),

Here, we used the fact that max𝑖 |𝑉 𝑖𝛼𝛼 | < 𝐸𝛼 [𝑀 (𝑍𝑖𝑡)], which is uniformly bounded over 𝑖 and

𝑡. These three combined impliesmax𝑖 |�̂�𝑖 − 𝛼𝑖0 | = 𝑂𝑝 (𝑇−3/8). □

Proof of Lemma 4. Part (i). Let 𝜉𝑖𝑡 be one of 𝑉𝑖𝑡𝛽𝑘 , 𝑉𝑖𝑡𝛼𝛼, 𝑉𝑖𝑡𝛼𝛼𝛼, 𝑉𝑖𝛽𝑘𝛼, or 𝑉𝑖𝑡𝛽𝑘𝛽 𝑗𝛼 and note that
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𝐸 [|𝜉𝑖𝑡 |8+𝜈] < 𝐸 [𝑀 (𝑍𝑖𝑡)8+𝜈] < ∞ by Assumption 3(ii). We have:

𝔼𝛼


(

sup
(𝛽,𝛼)∈B0 (𝜖)

1
𝑇

𝑇∑︁
𝑡=1

|𝜉𝑖𝑡 (𝛽, 𝛼) |
) (8+𝜈) ≤ 𝔼𝛼


(
1
𝑇

𝑇∑︁
𝑡=1

𝑀 (𝑍𝑖𝑡)
) (8+𝜈)

≤ 𝔼𝛼

[
1
𝑇

𝑇∑︁
𝑡=1

𝑀 (𝑍𝑖𝑡) (8+𝜈)
]

=
1
𝑇

𝑇∑︁
𝑡=1

𝔼𝛼 [𝑀 (𝑍𝑖𝑡) (8+𝜈)] = 𝑂𝑝 (1)

Thus, sup(𝛽,𝛼)∈B0 (𝜖)
1
𝑇

∑𝑇
𝑡=1 |𝜉𝑖𝑡 (𝛽, 𝛼) | = 𝑂𝑝 (1). From the expression for 𝜕𝑉𝑉𝛽 given above, we

have

sup
(𝛽,𝛼)∈B0 (𝜖)

��𝜕𝑉𝑉𝛽𝑘ℓ∗𝑖 (𝛽, 𝛼)�� ≤ sup
(𝛽,𝛼)∈B0 (𝜖)

(����𝑉𝑖𝛽𝑘𝛼 (𝛽, 𝛼)𝑉𝑖𝛼 (𝛽, 𝛼)2

���� + �����𝑉𝑖𝛼𝛼 (𝛽, 𝛼)𝑉𝑖𝛽𝑘 (𝛽, 𝛼)𝑉3
𝑖𝛼
(𝛽, 𝛼)

�����
)

< sup
(𝛽,𝛼)∈B0 (𝜖)

(��𝑉𝑖𝛽𝑘𝛼 (𝛽, 𝛼)�� + ��𝑉𝑖𝛼𝛼 (𝛽, 𝛼)𝑉𝑖𝛽𝑘 (𝛽, 𝛼)��)
= 𝑂𝑝 (1)

The second inequality follows from inf𝑖 |𝑉𝑖𝑡𝛼 (𝛽, 𝛼) | > 0. The other statements in part (i) follow

analogously.

For the maximal results in part (ii), we follow a similar strategy:

𝔼


(

sup
(𝛽,𝛼)∈B0 (𝜖)

max
𝑖

1
𝑇

𝑇∑︁
𝑡=1

|𝜉𝑖𝑡 (𝛽, 𝛼) |
) (8+𝜈) = 𝔼

max𝑖
(

sup
(𝛽,𝛼)∈B0 (𝜖)

1
𝑇

𝑇∑︁
𝑡=1

|𝜉𝑖𝑡 (𝛽, 𝛼) |
) (8+𝜈)

≤ 𝔼


𝑁∑︁
𝑖=1

(
sup

(𝛽,𝛼)∈B0 (𝜖)

1
𝑇

𝑇∑︁
𝑡=1

|𝜉𝑖𝑡 (𝛽, 𝛼) |
) (8+𝜈)

≤ 𝔼


𝑁∑︁
𝑖=1

(
1
𝑇

𝑇∑︁
𝑡=1

𝑀 (𝑍𝑖𝑡)
) (8+𝜈)

≤ 𝔼

[
𝑁∑︁
𝑖=1

1
𝑇

𝑇∑︁
𝑡=1

𝑀 (𝑍𝑖𝑡) (8+𝜈)
]
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=

𝑁∑︁
𝑖=1

1
𝑇

𝑇∑︁
𝑡=1

𝔼[𝑀 (𝑍𝑖𝑡) (8+𝜈)] = 𝑂 (𝑁)

Thus, sup(𝛽,𝛼)∈B0 (𝜖)max𝑖
1
𝑇

∑𝑇
𝑡=1 |𝜉𝑖𝑡 (𝛽, 𝛼) | = 𝑂𝑝 (𝑁1/(8+𝜈)) = 𝑂𝑝 (𝑇1/(8+𝜈)). From above we

have,

sup
(𝛽,𝛼)∈B0 (𝜖)

max
𝑖

��𝜕𝑉𝑉𝛽𝑘ℓ∗𝑖 (𝛽, 𝛼)��
≤ sup

(𝛽,𝛼)∈B0 (𝜖)
max
𝑖

(����𝑉𝑖𝛽𝑘𝛼 (𝛽, 𝛼)𝑉𝑖𝛼 (𝛽, 𝛼)2

���� + �����𝑉𝑖𝛼𝛼 (𝛽, 𝛼)𝑉𝑖𝛽𝑘 (𝛽, 𝛼)𝑉3
𝑖𝛼
(𝛽, 𝛼)

�����
)

< sup
(𝛽,𝛼)∈B0 (𝜖)

max
𝑖

(��𝑉𝑖𝛽𝑘𝛼 (𝛽, 𝛼)�� + ��𝑉𝑖𝛼𝛼 (𝛽, 𝛼)𝑉𝑖𝛽𝑘 (𝛽, 𝛼)��)
= 𝑂𝑝

(
𝑇1/(8+𝜈) + 𝑇2/(8+𝜈)

)
= 𝑂𝑝 (𝑇2/(8+𝜈))

The other results follow analogously. □

Proof of Lemma 5. We prove this for 𝑉 𝑖 (𝛽, 𝛼) and 𝑉 𝑖𝛼 (𝛽, 𝛼), the rest follow from very similar

arguments. Let 𝐶π be a uniform bound on (π𝑖𝑡 (𝛽, 𝛼)/(1 − π𝑖𝑡 (𝛽, 𝛼))) in (𝛽, 𝛼) ∈ B0(𝜖), which

exists by the virtue of bounded propensity scores (Assumption 3(iii)). Furthermore, let 𝑀𝑖 =

max𝑡 𝑀 (𝑍𝑖𝑡) be a uniform bound for all 𝑉𝑖𝑡 (𝛽, 𝛼), which exists due to Assumption 3(ii). Then,

within B0(𝜖), for 𝑉 𝑖 we have:

���𝑉 𝑖 (𝛽, 𝛼)��� = ����� 𝑇∑︁
𝑡=𝑇−𝑘

[
(2𝐷𝑖𝑡 − 1)𝑉𝑖𝑡 (𝛽, 𝛼)

{
π𝑖𝑡 (𝛽, 𝛼)

1 − π𝑖𝑡 (𝛽, 𝛼)

}1−𝐷𝑖𝑡
] �����

≤
𝑇∑︁

𝑡=𝑇−𝑘
|𝑉𝑖𝑡 (𝛽, 𝛼) |

{
π𝑖𝑡 (𝛽, 𝛼)

1 − π𝑖𝑡 (𝛽, 𝛼)

}1−𝐷𝑖𝑡

< 𝐶π

𝑇∑︁
𝑡=𝑇−𝑘

|𝑉𝑖𝑡 (𝛽, 𝛼) | < 𝐶π𝑘𝑀𝑖

Thus, sup(𝛽,𝛼)∈B0 (𝜖)
���𝑉 𝑖 (𝛽, 𝛼)��� < 𝑀𝑖 = 𝐶π𝑘𝑀𝑖 . Since 𝔼[𝑀4

𝑖
] = 𝐶4π𝑘4𝔼[𝑀4

𝑖
], we obtain the result

for the first quantity.
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For 𝑉 𝑖𝛼 there are two terms. For the first term, we have

���𝑉2𝑖 (𝛽, 𝛼)��� = ����� 𝑇∑︁
𝑡=𝑇−𝑘

𝑇∑︁
𝑠=𝑇−𝑘

(2𝐷𝑖𝑡 − 1) (2𝐷𝑖𝑠 − 1)𝑉𝑖𝑡 (𝛽, 𝛼)𝑉𝑖𝑠 (𝛽, 𝛼)

×
(

π𝑖𝑡 (𝛽, 𝛼)
1 − π𝑖𝑡 (𝛽, 𝛼)

)1−𝐷𝑖𝑡
(

π𝑖𝑠 (𝛽, 𝛼)
1 − π𝑖𝑠 (𝛽, 𝛼)

)1−𝐷𝑖𝑠

�����
≤

𝑇∑︁
𝑡=𝑇−𝑘

𝑇∑︁
𝑠=𝑇−𝑘

|𝑉𝑖𝑡 (𝛽, 𝛼)𝑉𝑖𝑠 (𝛽, 𝛼) |
(

π𝑖𝑡 (𝛽, 𝛼)
1 − π𝑖𝑡 (𝛽, 𝛼)

)1−𝐷𝑖𝑡
(

π𝑖𝑠 (𝛽, 𝛼)
1 − π𝑖𝑠 (𝛽, 𝛼)

)1−𝐷𝑖𝑠

< 𝐶2π

𝑇∑︁
𝑡=𝑇−𝑘

𝑇∑︁
𝑠=𝑇−𝑘

|𝑉𝑖𝑡 (𝛽, 𝛼)𝑉𝑖𝑠 (𝛽, 𝛼) |

< 𝐶2π𝑘
2𝑀2

𝑖

Now, for the second term, we have:

𝜕𝑉 𝑖 (𝛽, 𝛼)
𝜕𝛼

=

𝑇∑︁
𝑡=𝑇−𝑘

(2𝐷𝑖𝑡 − 1)𝑉𝑖𝑡𝛼 (𝛽, 𝛼)
(

π𝑖𝑡 (𝛽, 𝛼)
1 − π𝑖𝑡 (𝛽, 𝛼)

)1−𝐷𝑖𝑡

+
𝑇∑︁

𝑡=𝑇−𝑘

(1 − 𝐷𝑖𝑡)
1 − π𝑖𝑡 (𝛽, 𝛼)

𝑉𝑖𝑡 (𝛽, 𝛼)2
(

π𝑖𝑡 (𝛽, 𝛼)
1 − π𝑖𝑡 (𝛽, 𝛼)

)1−𝐷𝑖𝑡

Let 𝐶π > (1 − π𝑖𝑡 (𝛽, 𝛼))−1, which exists by Assumption 3(iii). By the above argument, we

have:

�����𝜕𝑉 𝑖 (𝛽, 𝛼)𝜕𝛼

����� < 𝐶π𝑘𝑀𝑖 + 𝐶π𝐶π𝑘𝑀
2
𝑖

Then, we have

sup
(𝛽,𝛼)∈B0 (𝜖)

���𝑉 𝑖𝛼 (𝛽, 𝛼)��� < 𝑀𝑖 = (𝐶2π𝑘2 + 𝐶π𝐶π𝑘)𝑀2
𝑖 + 𝐶π𝑘𝑀𝑖

and

𝔼[𝑀4
𝑖 ] = 𝐶1𝔼[𝑀8

𝑖 ] + 𝐶2𝔼[𝑀7
𝑖 ] + 𝐶3𝔼[𝑀6

𝑖 ] + 𝐶4𝔼[𝑀5
𝑖 ] + 𝐶5𝔼[𝑀4

𝑖 ],
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where 𝐶1 through 𝐶5 are constants that depend on 𝐶π , 𝐶π , and 𝑘 . By Assumption 4(i), each of

the expectations on the right-hand side is uniformly bounded in 𝑁 , which implies that 𝔼[𝑀4
𝑖
]

is also uniformly bounded in 𝑁 . □
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C Additional Simulation Results
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Figure 7: Bias, standard error (Std. Error) and coverage probability of 90% confidence intervals
(Coverage) for the estimation of the final period effect 𝜏𝐹 and the cumulative effect 𝜏𝐶 under
the “low” heterogeneity (𝑎 = 1) – first two columns – and the “high” heterogeneity (𝑎 = 2) –
last two columns – scenario. The number of time-varying covariates is four. Solid lines in blue
show the proposed estimator (IPTW-FE), solid lines in grey show the estimator based on the
true propensity score (IPTW-True), and dashed lines in green show the estimator based on the
estimated propensity score without fixed effects (IPTW). Shapes correspond to the 𝑛 to 𝑇 ratio 𝜌
such that squares represent 𝜌 = 5 (the largest number of time periods), circles represent 𝜌 = 10,
and triangles represent 𝜌 = 50 (the smallest number of time periods)
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Figure 8: Simulation results for imputing the non-identified fixed effect estimates.
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D Additional Empirical Results

Here we present the main results when including all market-races that have no variation in

their treatment over time. To do so, we take the maximum and minimum values of �̂�𝑖 from

our propensity score model and use them as the 𝛼𝑖 for the units that have are always treated or

never treated, respectively. Figure 9 shows these results, which are very similar to the original

findings, at least for our approach. We can see that the regular IPTW approach is no longer

significant for the Democratic IG ads.

Dem. % of Two-Party Vote Democrat Turnout % Republican Turnout %
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ocratic IG Ads

Republican IG Ads

IPTW IPTW-FE Naive IPTW IPTW-FE Naive IPTW IPTW-FE Naive
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Figure 9: Estimated effects from the MSM where the IPTW weights are imputed for no-
variation in treatment market-races.
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