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3. Data (un)availability



NAME OF COMMITTEE (In Full)
Obama for America

A. Full Name (Last, First, Middle Initial)
Sharon Anderson

Mailing Address 1668 finwick dr

Transaction ID : C19176830

Date of Receipt
W] [0 D ] s [VIVTVTY

08 12 2012

City State Zip Code
pfafftown NC 27040-9043
FEC ID number of contributing C
federal political committee.
Amount of Each Receipt this Period

Name of Employer Occupation 11.00
The Norman Group Intl Consultant - . .
Receipt For: 2012 Election Cycle-to-Date ¥

Primary _l General

Other (specify) w 271.00

3 3 -
B. Full Name (Last, First, Middle Initial) Transaction ID : C20196560
Riaz Hussain Date of Receipt
Mailing Address 540 N Webster Ave mim s oo s YTV Ty
o8 30 2012
City State Zip Code
Scranton PA 18510
FEC ID number of contributing
federal political committee. C
Amount of Each Receipt this Period

Name of Employer Occupation
University of Scranten Professor s s 3_5 00
Receipt For: 2012 Election Cycle-to-Date v

Primary ‘ General

Other (specify) W 225.00

C. Full Name (Last, First, Middle Initial)
Dave Baird

Mailing Address 1376 Lincoln St

Transaction 1D : C20090710
Date of Receipt
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A measurement question

When do campaigns take off or fall flat?
When do campaign contributions take off or fall flat?

Tools: Bayesian nonparametric model for overdispersed count data.
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Why contributions?

. Lots of variation
2. Costly participation

3 . Data availability
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The challenges

Modeling daily contribution counts



The challenges

Modeling daily contribution counts

Choosing the number of changepoints



Number of
Contributions

Overdispersion in campaign contributions
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Bayesian model for overdispersed counts

For observations t in {1, ..., T}

[ytlnti ﬁ/ p/ X] ~ POiSSOﬂ(ntAt) (data)
Ay = exp(X,p) (link function)
[n:p] ~ Gamma(p, p) (random effect)

marginal distribution of v

[v:1B, p, X] ~ NegBin(p, p/(p + A1)
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Generalize to a mixture model

[y:lse, e, B, p, X] ~ Poisson(n;A;)

—> Ay = exp(X;Bk)
regimes s, =k
{,..,K) S~— [n:lp, 8,] ~ Gamma(py, pi)

Pr(spq = kls, = k) =px
Pr(s;yy =k+1ls,=k)=1-p;
Pr(sy,y =jlsi=k)=0

(data)

(link function)

(random effect)

(Vj ¢ ik, k+1})
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Traditional changepoint models
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Must be in the last regime
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Bayesian nonparametric priors

* Model assumptions: y; ~ G i.i.d. from an unknown distribution

G.

* Parametric structure on our priors puts limitations on the
posterior inferences.

* Bayesian nonparametrics: priors over distributions and, thus, an
infinite number of parameters.
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Dirichlet process prior

* Dirichlet process prior clusters units into a countably infinite set
of groups.

* Obviously we only observe a finite number of these groups, but
the number is determined by the data and the prior, not
exclusively from the prior.

regimes: s; € {1, ..., oo}

Pr(s;q =kls;=k)= t_’}ih

Pr(sia =k +115,=K) = 4
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Dirichlet process prior
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Dirichlet process prior

(infinite) w
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changepoint

Number of regimes can vary



Your lunch is never free

* DPP has a rich-get-richer property:

03
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Your lunch is never free

* DPP has a rich-get-richer property:

_ &
Ct—1+b

Pr(s;1 = ks, = k)

* No free lunch theorem: All nonparametric priors place
assumptions on the clustering algorithm and no algorithm is
optimal across the space of all problems.



Monte Carlo evidence
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The rise and fall of Herman Cain
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The rise and fall of Herman Cain
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The rise and fall of Herman Cain
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The rise and fall of Herman Cain
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The rise and fall of Herman Cain

0.8
0.6
Probability of
Changepoint 04 4
0.2 L
A0 © —ocme=o o I.Ll l L_ J.LJ oo
r T T T 1
Jan I Apr |1 Jul 1l Oct |l Jan 12
500
Fox News Debate Announces candidacy  YVins FLstraw poll
400
300
Number of
Contributions
200
100 b
. »
04 a P Yy




The rise and fall of Herman Cain
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The rise and fall of Herman Cain
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Changepoint

All Senate changepoints
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More attention around changepoints
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The path forward.

Run on all (digitzed) Congressional races to find more sys-
tematic variation.

Compare changepoints for time-series of different types of

+ voters, PACs.

Generalize the Bayesian nonparametric approach beyond

* count data.



