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Dynamic strategies are an essential part of politics. In the context of campaigns, for example, candidates continuously
recalibrate their campaign strategy in response to polls and opponent actions. Traditional causal inference methods, however,
assume that these dynamic decisions are made all at once, an assumption that forces a choice between omitted variable bias
and posttreatment bias. Thus, these kinds of “single-shot” causal inference methods are inappropriate for dynamic processes
like campaigns. I resolve this dilemma by adapting methods from biostatistics, thereby presenting a holistic framework for
dynamic causal inference. I then use this method to estimate the effectiveness of an inherently dynamic process: a candidate’s
decision to “go negative.” Drawing on U.S. statewide elections (2000–2006), I find, in contrast to the previous literature and
alternative methods, that negative advertising is an effective strategy for nonincumbents. I also describe a set of diagnostic
tools and an approach to sensitivity analysis.

What candidate would plan all of their rallies,
write all of their speeches, and film all of their
advertisements at the beginning of a cam-

paign, then sit back and watch them unfold until Election
Day? Clearly this is absurd, and yet it is the only setup that
the usual ways of making causal inferences allows us to
study. While political science has seen enormous growth
in attention to causal inference over the past decade, these
advances have heavily focused on snapshots where the dy-
namic nature of politics is crammed into a single point in
time. As political science finds itself with a growing num-
ber of motion pictures—panel data, time-series cross-
sectional data—a tension has emerged between substance
and method. Indeed, applied to dynamic data, the best
practices of single-shot causal inference methods provide
conflicting advice and fail to alleviate omitted variable or
posttreatment bias.

This article focuses on a specific dynamic process:
negative advertising in 176 U.S. Senate and gubernatorial
elections from 2000 until 2006. Candidates in these races
change their tone over the course of the campaign, react-
ing to their current environment. A single-shot causal-
inference method compares campaigns that are similar
on a host of pre-election variables in order to elimi-
nate omitted variable bias. While this is often the best
approach with single-shot data, such an approach ig-
nores the fundamentally dynamic nature of campaigns:
races that become close over the course of the campaign

Matthew Blackwell is Assistant Professor of Political Science, University of Rochester, Harkness Hall 307, Rochester, NY 14627-0146
(m.blackwell@rochester.edu).

are more likely to go negative than those that are safe.
Attempting to correct for this dynamic selection by con-
trolling for polls leads to posttreatment bias since ear-
lier campaign tone influences polling. The inappropri-
ate application of single-shot causal inference therefore
leaves scholars between a rock and a hard place, steeped
in bias with either approach. This dilemma is not limited
to negative advertising or campaigns—every field of po-
litical science has a variable of interest that evolves over
time.

This article solves this dilemma by presenting a
framework for dynamic causal inference and a set of tools,
developed in biostatistics and epidemiology (Robins,
Hernán, and Brumback 2000), to estimate dynamic causal
effects. These tools directly model dynamic selection and
overcome the above problems of single-shot causal infer-
ence. Actions (such as campaign tone) are allowed to vary
over time along with any confounding covariates (such
as polling). Thus, we can study the effects of the action
history (candidate’s tone across the entire campaign) as
opposed to a single action (simply “going negative”).

To estimate dynamic causal effects, this article ap-
plies inverse probability of treatment weighting (IPTW)
to a class of semiparametric models called marginal
structural models (MSM). These models dictate the form
of the relationship between the large number of possible
action histories and the outcome and serve to reduce the
number of causal parameters. The dynamic causal effects
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are encoded as parameters of the MSM and, under certain
assumptions, IPTW estimates them free of the biases in-
herent in single-shot methods. With this approach, each
unit is weighted by the inverse of the estimated probabil-
ity of its observed action history. This weighting creates
a pseudosample where dynamic selection is eliminated,
circumventing the dilemmas posed by single-shot causal
inference. Since these methods require strong assump-
tions, this article also develops a novel diagnostic tool,
the history-adjusted balance, and describes a sensitivity-
analysis framework to address potential causes of concern.

Once I correct for the biases due to time, I find that
negative advertising is an effective strategy for Democratic
nonincumbents. This stands in contrast to the previous
literature on negative advertising, which, according to
Lau, Sigelman, and Rovner (2007, 1176), “does not bear
out the idea that negative advertising is an effective means
of winning votes.” The previous approaches to estimating
the effectiveness of negative advertising relied on single-
shot methods, and when I apply these methods to the
present data, I find similar noneffects. These single-shot
results are worrisome since, as I show below, polls in the
middle of a campaign are one of the most important
predictors of the decision to go negative. This crucial
selection issue is inherently dynamic and has been largely
ignored by previous work on this topic.

The article proceeds as follows. The second section
describes how dynamic causal inference extends single-
shot methods. The third section introduces marginal
structural models and the assumptions that they use.
The following section describes a weighting approach
to estimating dynamic causal effects, and the fifth sec-
tion applies the techniques to estimating the effectiveness
of “going negative” in campaigns. The sixth section dis-
cusses useful diagnostics and a sensitivity-analysis frame-
work for marginal structural models. The last section
concludes with directions for future research.

Single-Shot and Dynamic Causal
Inference

The goal of a single-shot causal inference approach is to
estimate the effect of a single action on an outcome at a
single point in time.1 With the example of campaigns, we
might be interested in the effect of a Democratic candidate
running a negative campaign or a positive one on his or
her share of the two-party vote. There are many situations
in political science, including campaigns, where actions

1Action here is synonymous with treatment , a more common term
in the causal inference literature.

evolve over time and react to the current state of affairs. In
this case, a campaign can “go negative” at multiple points
over the course of the campaign. Perhaps a candidate at-
tacks early, before her opponent has a footing, or perhaps
she runs negative ads late, responding to smear tactics.
These two situations, as far apart as they are, would both
register as “going negative” in a single-shot model since
they ignore time and implicitly assume that all actions
occur at once. This is an acceptable framework for many
problems because actions really do occur once. When
actions unfold over time, however, the incorporation of
time and its implications become necessary.

Actions versus Action Sequences

Dynamic causal inference, in contrast, allows the ac-
tions to vary over time. In this framework, we investi-
gate the effect of an action sequence on the outcome of
interest. In this framework, we have sequences such as
(positive1, negative2), where a candidate stays positive in
the first part of the campaign and then goes negative later.
We might ask how this differs from initiating negativity
earlier in the race: (negative1, negative2). This framework
has two primary advantages over single-shot methods in
dynamic situations. First, the comparison of action se-
quences naturally handles a richer set of causal questions,
which include both the presence and timing of actions.
As Pierson (2000) points out, when an action occurs is
often as important as if it occurs at all. Second, and more
important, this framework clarifies and resolves certain
dilemmas posed by single-shot methods.

Confounders in a Single-Shot World

In order to separate a causal effect from a mere association,
we must be confident that the observed correlations are
not due to some other variable. In political science, we call
this assumption no omitted variables, and it is made, im-
plicitly or explicitly, in almost all empirical research in po-
litical science. It states that we have measured and appro-
priately controlled for any variable that could potentially
cause bias in our causal estimates. We call this bias con-
founding and the variables that cause it confounders. For
instance, if we were to run a regression of the Democratic
vote share in Senate elections on a measure of Demo-
cratic negativity, we would also want to control for vari-
ables that might cause a correlation between negativity
and vote shares. In this case, the incumbency status of the
Democrat would be a confounder because incumbents
are less likely to go negative and also more likely to win
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FIGURE 1 Directed Acyclic Graphs Showing
Single-Shot and Dynamic Causal
Inference Frameworks
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(a) Single-shot causal inference.
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(b) Dynamic causal inference.

Note: Each arrow represents a causal relationship.

an election. Figure 1a shows a graphical representation
of the causal relationship between confounders, actions,
and the outcome. We would want to include confounders
like these in our analysis, be it using a linear model, a
generalized linear model, or a matching estimator.

How do we choose which of our variables are con-
founders? A common definition is this: a confounder is
any variable that (a) is correlated with the outcome, (b)
causes, or shares a common cause with, the action, and
(c) is not affected by the action. Thus, in any regression
or matching estimation of a causal effect, we would want
to control for or match on any preaction variables in the
sense that they are causally prior to the action of inter-
est. In negative advertising, these variables would either
affect or be correlated with the decision to go negative,
but never be affected by the decision to go negative. We
avoid controlling for postaction variables because doing
so can induce bias in estimating the causal effect. This is
known in the causal inference literature as posttreatment
bias (Ho et al. 2006).

There are two related sources of posttreatment bias.
First, conditioning on postaction variables can “block”
part of the action’s overall effect. For instance, suppose
a researcher controlled for polling results from the day
of the election when attempting to estimate the effect
of incumbency. This will understate the effect of incum-
bency since most of the effect flows through the standing
of candidates late in the race. Second, conditioning on a

postaction variable can induce selection bias even when
no bias exists absent the conditioning. For instance, sup-
pose at the start of a campaign we randomly assigned high
and low budgets to different Democratic candidates for
Senate. If we condition on the polls sometime during the
campaign, we can seriously bias our estimates of the effect
of campaign budgets. Those leading Democrats who had
high budgets are likely to differ strongly from leaders with
small budgets. For example, if higher budgets help a can-
didate, then those low-budget leaders are actually much
stronger candidates than the high-budget leaders, since
they were able to lead in the polls without the additional
funding. Thus, comparing high- and low-budget leaders
would give a misleading estimate of the causal effect of
campaign finance, even though it was randomly assigned.

The Problem of Time-Varying Confounders

When we force an inherently dynamic situation into
a single-shot framework, the above discussion of con-
founders and posttreatment bias becomes muddled. Take
negative advertising, for example: how should we treat
polling data from over the course of the campaign? It is
surely preaction in the sense that polling affects the deci-
sion to go negative, and it is correlated with the outcome,
the election results. At the same time, polling is postac-
tion since it is affected by negativity earlier in the race.
Polling is an example of a time-varying confounder, which
is a confounder that both affects future treatment and is
affected by past treatment.

The single-shot advice to include preaction con-
founders and exclude postaction variables appears to rec-
ommend both courses of action in this situation, leaving
a researcher without a palatable solution. In fact, both of
these approaches will bias causal estimates, albeit in differ-
ent ways. In the above hypothetical regression of Demo-
cratic vote share on Democratic negativity, we could omit
polling data from the regression on the grounds that it
is posttreatment, yet this would lead to omitted variable
bias. Note in Figure 1b that polling in period 2 affects neg-
ativity in period 2, perhaps because candidates who are
trailing are more likely to go negative. If we exclude polling
from our regression (or matching analysis), it might seem
that negativity is a bad strategy even though this is wholly
due to candidates going negative when they are in trouble.
Thus, we must include polling in our analyses. Doing
so, however, also biases our estimates, since the polls in
period 2 are partially a result of negativity in period 1. For
instance, a candidate who stays positive early and whose
polls decline might have done better if she had gone neg-
ative early. If we control for polling in period 2, we block
that part of the effect in our analysis and introduce
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posttreatment bias into our estimates. Either approach,
ignoring or including polling, will lead to some form of
bias. These problems with time-varying confounders can-
not be solved by single-shot methods even if we assume,
as I do below, no omitted variables in each time period.
They are fundamental to situations where actions unfold
over time. The assumptions and methods presented here
represent a solution to this dilemma under the weakest
possible assumptions on the causal structure of the data.2

A Weighting Approach to Dynamic Causal
Inference

A key characteristic of single-shot methods, such as re-
gression and matching, is that they provide no way of
removing omitted variable bias due to time-varying con-
founders without inducing posttreatment bias. These es-
timators divide up the data into comparable subsets and
estimate causal effects within these subsets. The overall
effect is simply a combination of these stratum-specific
effects. This broad approach is called stratification, and it
breaks down in dynamic settings as described above: strat-
ifying removes omitted variable bias but induces post-
treatment bias for time-varying confounders.

An alternative to stratification estimators are in-
verse probability of treatment weighting (IPTW) estimators,
which reweight the data to alleviate the omitted variable
bias.3 To see how these weights work, note that, in negative
campaigning, certain strategies are used more often than
others: candidates tend to go negative when they are trail-
ing and stay positive when they are leading. In Figure 1b,
we represent this in the arrows from polling to negativity.
This, of course, causes confounding. To remove this time-
varying confounding, we can give less weight to common
strategies so that, in the reweighted data, all strategies
have the same weight: as many trailers go negative as
stay positive. Thus, in the reweighted data, the action se-
quences are balanced across time-varying confounders,
and there is no omitted variable bias. Crucially, Robins
(1999) shows that IPTW estimators do not introduce post-

2We could change our quantity of interest to avoid this problem, but
we would be restricting our analysis to the effect of the last action.
Furthermore, the assumptions used to identify this quantity of
interest would likely be as strong as the assumptions used to identify
the full set of causal quantities.

3IPTW estimators have a long history in statistics, beginning with
the Horvitz-Thompson estimator (Horvitz and Thompson 1952),
which has been applied to many problems outside of causal in-
ference, including survey sampling. For an introduction to these
estimators for causal inference in political science, see Glynn and
Quinn (2010).

treatment bias because they avoid stratifying the outcome
by time-varying confounders.

Alternatives to IPTW estimators for dynamic causal in-
ference include structural nested models, structural equa-
tion modeling, synthetic control methods, and principal
stratification, but each of these methods has a disadvan-
tage when compared to the weighting approach. The IPTW

estimator described below is far more general than the lat-
ter three approaches, while being less model dependent
than structural nested models. Robins (2000) points out
that while these structural nested models can estimate
more flexible causal quantities of interest than IPTW, they
also require models for each time-varying confounder in
the data.4 While this weighting approach is less flexible
than structural nested models, it is much more flexible
than other related methods. Structural equation model-
ing requires a constant effects assumption in order to esti-
mate dynamic causal effects.5 Synthetic control methods
for comparative case studies, for example, focus on a sin-
gle intervention for each unit and thus limit the number
of possible estimable quantities (Abadie, Diamond, and
Hainmueller 2010). Principal stratification (Frangakis
and Rubin 2002) can recover causal-effect estimates when
a posttreatment variable defines the available sample,
such as censoring by death. Frangakis and Rubin (2002)
note, however, that this approach is more appropriate for
nonmanipulable posttreatment variables. When the rele-
vant posttreatment variable is manipulable and truly part
of the treatment, as is the case here, principal stratifica-
tion needlessly restricts the quantities of interest under
investigation.

A Framework for Dynamic Causal
Inference

To show how IPTW can estimate causal effects in a dy-
namic setting, it is useful to extend the single-shot causal-
inference framework to explicitly include time.6 Suppose
i indexes the campaign, with i = 1, . . . , N. Let t denote
the week of the campaign, taking possible values 1, . . . , T ,
where T is the final week before Election Day. We refer

4For a more detailed discussion of the advantages and disadvan-
tages of IPTW approaches versus g-estimation and structural nested
models, see Robins (2000).

5See Glynn (2012) for a description of this problem in the context
of mediation in linear structural equation models.

6The following section rests heavily on the potential outcomes-
based model of causal inference championed by Rubin (1978) and
extended to dynamic settings by Robins (1986, 1997).
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to t = 1 as the “baseline” time period; it is the time pe-
riod before the campaign begins, assumed to be the first
week after the primary. In each period, campaigns can
either go negative, denoted Ait = 1, or remain positive,
Ait = 0.

Campaigns face a rapidly evolving environment. To
account for this, let Xit represent the characteristics of the
campaign in week t that affect the Democrat’s decision to
go negative in week t. This would include recent polling
or Republican negativity in the previous weeks. This def-
inition assumes that the decision to go negative occurs
“after” the variables in Xit , so that they are preaction for
week t.7 Instead of containing all variables occurring at
time t, the set of covariates describes the information set-
ting for the action decision at time t. Simply put, Xit is the
most recent set of variables that could possibly affect Ait .8

The baseline covariates, Xi1, include background infor-
mation that remains static over the course of the study.
For campaigns, these could be perceived competitiveness
of the election, number of ads shown in the primary,
incumbency status, or challenger quality. The choice of
relevant covariates of course depends on the outcome,
Y , which in this case is the Democratic percent of the
two-party vote.

Dynamic settings require references to the history of
a variable. A history is the set of all instances of that
variable up to some point in time. In this example, it
may be the sequence of campaign tone or poll results
in each week. Underlines indicate the history of a vari-
able, so that Ait would be the negativity up through time
t: Ait ≡ (Ai1, Ai2, . . . , Ait). The covariate history, Xit ,
is defined similarly. One possible realization of Ait is
at ≡ (a1, . . . , at), where each at can take the values 0
or 1. Furthermore, let Ai = AiT be the sequence of neg-
ativity over the course of the entire campaign. Let a be a
representative campaign tone history and A as the set of
all possible values of a ; that is, all the possible ways a can-
didate could go negative over the course of the campaign.
Let Xi , xt , and x be defined similarly for the covariate
history.

Each possible negativity sequence, a , has an associ-
ated potential electoral outcome. Let Yi (a) be the Demo-
cratic percent of the two-party vote if we forced candidate
i to implement the campaign a. Note that there are 2T pos-

7The causal ordering here is notationally arbitrary as its rever-
sal would require only a change in subscript. More crucially, re-
searchers must determine what information is pre- and postaction
in a given period for the substantive question at hand.

8Note that these variables are possibly affected by past treatment,
but I suppress the potential outcome notation for the covari-
ates for exposition as it adds no consequences for the present
discussion.

sible sequences a . As before, any individual candidate can
experience at most one of these potential outcomes, which
is the one associated with her observed action history. The
rest of the potential outcomes will be counterfactual; they
are what would have happened if the unit had followed
a different sequence. Suppose campaigns only lasted two
weeks. In this world, Yi (0, 1) would be the Democratic
vote share if candidate i were to remain positive in week
one and go negative in week two. To complete the def-
inition of the potential outcomes, we connect them to
the observed outcomes, Yi . When some unit is observed
to have followed action sequence a , then we observe the
potential outcome for that sequence, or Yi (a) = Yi when
Ai = a .9

We say that Xt contains a time-varying confounder if
it (1) affects the election outcome, (2) affects future neg-
ativity, and (3) is affected by past negativity. In estimating
the effect of Democrats going negative, the advertising
tone of the Republican would be a time-dependent con-
founder. Democrats are more likely to go negative if their
opponent has gone negative, and their opponent’s actions
are likely related to the outcome. Note that Xt could in-
clude past values of Y , in which case the lagged dependent
variable would be a time-dependent confounder.

The Assumptions

The goal of dynamic causal inference is to estimate
the means of the potential outcomes under various ac-
tion sequences. These are population-based quantities
of interest: what would happen if every Democrat re-
mained positive? In the sample, however, the candidates
who actually went negative always might be different
from those who did not. Thus, the sample of units who
followed the strategy would be an unrepresentative sam-
ple of the potential outcome under that strategy. In or-
der to rid our analysis of the above selection problems,
we must be able to identify and measure all possible
confounders.

Assumption 1 (Sequential Ignorability). For any
action sequences a , covariate history Xt , and time t,
if At−1 = at−1, then Y (a) ⊥⊥ At |Xt, At−1 = at−1.

Here, B ⊥⊥ C |D means that B is independent of
C , conditional on D, and notation for units has been

9This is commonly referred to as the consistency assumption in
the epidemiology literature (Robins 1997). It implicitly assumes
what Rubin (1978) refers to as the stable unit treatment value
assumption, or SUTVA. Recent work has further formalized and
clarified this assumption (Cole and Frangakis 2009; Pearl 2010;
VanderWeele 2009).
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FIGURE 2 Directed Acyclic Graphs
Representing Different
Assumptions about
Sequential Ignorability,
Where U Is an
Unobserved Variable

X1 A1 X2 A2 Y

(a) Sequential ignorability holds.

X1 A1 X2 A2 Y

U1 U2

(b) Sequential ignorability fails to hold.

suppressed. The assumption of sequential ignorability
extends the conditional ignorability assumption to time-
varying actions. It states that action decision at time t
is independent of the potential outcomes, conditional
on the covariate and action histories up to that point.
That is, conditional on the past, those who go negative
are similar to those who stay positive. Figure 2a shows
a causal directed acyclic graph (DAG) in which sequen-
tial ignorability holds, while Figure 2b shows a situation
where the assumption fails to hold due to an omitted vari-
able U . If decisions are made by a coin flip, then clearly
this assumption will hold. If units act based on the co-
variate history, however, then it will fail to hold unless
the analyst can observe all of those covariates. For in-
stance, the assumption would be violated if campaigns
made the decision to go negative based on polling data,
but the analyst did not have access to that polling data.
The goal for researchers, then, is to collect all the covari-
ates that might influence the decision to go negative in
some week. While this is a daunting task in an observa-
tional study, it is no harder than satisfying conditional
ignorability in the single-shot case, and the sixth sec-
tion shows how to relax the assumption in a sensitivity
analysis.

Finally, in order to compare the various action se-
quences, each must have some positive probability of
occurring. It is nonsensical to estimate the effect of a
sequence that could never occur.

Assumption 2 (Positivity). For any sequences at =
(at−1, at) and xt , and time t, if Pr(At−1 = at−1, Xt =
xt) > 0, then Pr(At =at |Xt = xt, At−1 = at−1) > 0.

This assumption outlines the types of strategies we
can study. Positivity can break down when some se-
quences fail to occur in the actual data even though they
are theoretically possible. In negative advertising, for in-
stance, candidates with extremely safe seats never go neg-
ative, even though nothing is stopping them from doing
so. Unfortunately, we will be unable to estimate the effect
of going negative for these candidates. These empirical vi-
olations of positivity are closely related to the assumption
of common support often invoked in the matching litera-
ture. The sixth section discusses these practical problems
with positivity and how to restrict the analysis to the
common support.

Marginal Structural Models for the
Potential Outcomes

In the single-shot approach, estimating a causal effect
only involves two quantities, one corresponding to each
action: E [Yi (1)] and E [Yi (0)]. In dynamic causal in-
ference, there is one potential outcome for each action
sequence. A key consequence is that even with a small
number of time periods, there will be an overwhelming
number of possible action sequences. With two potential
outcomes, we can nonparametrically estimate the mean
outcome in the treated and control groups by taking sam-
ple means. With just 10 periods, however, there would be
1,024 possible action sequences, making it unlikely that
there will be even one unit following any particular se-
quence. Thus, the nonparametric approach of single-shot
methods will be useless here.

To overcome this curse of dimensionality, we can
use a parametric model to relate the action sequences
to the potential outcomes. That is, we will suppose that
“similar” action sequences should have “similar” poten-
tial outcomes. Imposing this structure on the problem
reduces the dimensionality of the problem at the expense
of possible model misspecification. Robins, Hernán, and
Brumback (2000) introduced a parsimonious class of
semiparametric models for this problem called marginal
structural models (MSM). In this class of models, we as-
sume a parametric form for the mean of the potential
outcome

E[Y (a)] = g (a ; �), (1)

while leaving the rest of the distribution of Y (a) unspec-
ified. This model is semiparametric in the sense that it
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leaves unrestricted the relationship between the outcome
and the covariates, though it does require a model of the
relationship between the actions and the covariates.

The function g defines our assumptions about which
action sequences should have similar potential outcomes.
We may have, for instance,

g (a ; �) = �0 + �1c(a), (2)

where c(a) = �T
t=0at is the cumulative action. This model

assumes that units with the same number of total periods
acted should have similar potential outcomes, with �1 as
the causal effect of an additional period of the action. In
the context of negative campaigning, �1 is the effect of an
additional week of negativity. An assumption here is that
going negative for the first five weeks of the campaign
is the same as going negative for the last five weeks of
the campaign. Depending on the application, this might
be a more or less plausible assumption, and, in general,
these types of modeling assumptions will always produce
some amount of bias. The greater flexibility we allow for
g (a ; �), however, the more variable our estimates become.
The substance of the problem and the amount of data
on hand will determine what model makes sense for the
potential outcomes.

Supposing that Equation (2) was the correct model
for the potential outcomes, we want to estimate its causal
parameters. One approach would be to estimate

E[Y |A = a] = �0 + �1c(a), (3)

which omits any covariates Xt and simply regresses the
outcome on the observed action. This approach replaces
the potential outcomes Y (a) with the observed outcomes
Y , holding the model fixed. If Xt affects the action and the
outcome, however, the associational parameter, �1, will
not equal the causal parameter, �1, due to omitted variable
bias. That is, differences in the observed outcomes could
be due to difference in the covariate history, not the action
sequence. We could instead condition on Xt by estimating

E[Y |A = a, Xt] = �0 + �1c(a) + �2 Xt, (4)

either through a regression that includes Xt or a matching
algorithm that matches on Xt . The key parameter, �1, will
still fail to equal the causal parameter of interest, �1, when
Xt is a time-varying confounder, since Xt is posttreatment
for At−1. Thus, Xt is in the difficult position of being both
an omitted variable and a posttreatment variable for the
action history. These traditional methods of estimating
�1 fail in the face of time-varying confounders, whether
or not we adjust for them, since either approach leads to
bias.

One might think that the two traditional estimation
procedures would at least provide bounds on the true

causal effect, with �1 falling between �1 and �1. When
the omitted variable bias and the posttreatment bias
have the same sign, however, this bounding will fail to
hold. This can occur, for instance, when strategic actors
attempt to compensate poor performance with beneficial
actions. Suppose that there is a strong, positive effect of
negative advertising and that trailing campaigns use it
to bolster their positions. The omission of polling in a
model would lead to an understatement of the negativity
effect, since candidates tend to be trailing when they go
negative. Positive campaigns would appear stronger than
negative campaigns, even though negativity boosts per-
formance. The inclusion of polling in a model would also
lead to an understatement of the effect, since it washes
away the increase in polls from past negativity. Thus, the
true effect of negativity would be higher than either of the
traditional methods would predict. Robins (1997) gives a
numerical example that has these features.

The Action Model and Inverse
Probability of Treatment Weighting

As shown above, the usual single-shot approaches break
down when the actions can vary over time. Fortunately,
inverse probability of treatment weighting (IPTW) can re-
cover unbiased estimates of causal effects, even in dynamic
settings. To see how IPTW works, note that, due to the omit-
ted variables, the distribution of the potential outcomes
differs from the distribution of the observed outcomes
(E [Y (a)] �= E [Y |A = a]). Regression and matching at-
tempt to avoid this problem by finding subsets of the data
where those distributions are the same and making com-
parisons within these subsets. This conditioning removes
the omitted variable bias, but it can induce posttreatment
bias. Methods that rely on weighting, such as IPTW, avoid
these by never explicitly conditioning on the confounders
in the outcome model.10

Robins, Hernán, and Brumback (2000) show that
under the above assumptions, a reweighted version of
the observed outcomes will have the same distribution
as the potential outcomes. In the campaigns context, the
reweighted outcomes for always-positive campaigns will

10This approach is similar in spirit to Heckman selection models
(Achen 1986; Heckman 1976) in the sense that they separate out
the selection model (who goes negative) and the outcome model
(how negativity affects vote shares). These types of methods, how-
ever, rely on instrumental variables. Unfortunately, instrumental-
variable methods require effects to be constant in the population
in order to estimate the average causal effect (Angrist, Imbens,
and Rubin 1996). The approach described here makes no such
assumptions.
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look like the outcomes if we forced all Democrats to re-
main positive. The weights in a given week are defined as

Wit = 1

Pr(Ait |Ait−1, Xit)
. (5)

In words, the denominator of Wit is the probability of
observing the action that unit i actually took in that week,
conditional on the past. To generate an overall weight
for each race, we simply take the product of the weekly
weights over time:

Wi =
T∏

t=1

Wit . (6)

A simple example helps to explain the construction
of the weights. Suppose that there were only two weeks in
a campaign, with a poll update in between the weeks. A
candidate decides to go negative or stay positive in the first
week, sees the outcome of the poll, decides to go negative
in the second week, and then observes the election results.
A candidate who stays positive in week one, trails in the
polls, and then goes negative in week two would have the
following weight:

Wi = 1

Pr(pos1)
· 1

Pr(neg2|trail, pos1)
. (7)

The first term in the denominator is simply the probability
of being positive in the first week. The second term is the
probability she would have gone negative in the second
week, conditional on trailing and having been positive in
the first week. The resulting denominator is the probabil-
ity of observing the campaign (pos1, neg2), conditional
on the time-varying covariate, polls.

Why Weighting Works

The weights in IPTW remove any confounding by ensur-
ing that the distribution of action sequences is the same
in each level of the confounder. In the reweighted data,
the action decisions are unrelated to the measured con-
founders, and, thus, they cannot account for any remain-
ing differences between action sequences. It is instruc-
tive to see how this works in the single-shot case. Let
PrW(neg|trail) be the reweighted probability of observing
a negative candidate, conditional on trailing in the polls.
We can find this probability by multiplying the original
probability by the weight for this type of observation and

divide by a normalizing constant:

PrW (neg|trail)

=
1

Pr(neg|trail)
· Pr(neg|trail)

1

Pr(neg|trail)
· Pr(neg|trail) + 1

Pr(pos|trail)
· Pr(pos|trail)

= 1

2
.

(8)

The denominator simply ensures that the reweighted
probabilities will sum to one. Using the same logic, it
is clear to see that PrW(pos|trail) = 1/2 as well. Thus, in
the reweighted data, a race is equally likely to go negative
as stay positive when they are trailing.

Intuitively, this weighting breaks the links between
the action decision and the factors that affect the action
decision. Candidates who are pursuing common strate-
gies, where Pr(Ait |Ait−1, Xit) is closer to 1, will have lower
weights than those candidates with less common strate-
gies. This weighting corrects the deviations from the ideal
experiment we would have liked to run. The sequential
ignorability assumption is crucial here because we cannot
correct for deviations we do not observe. Since there is
no connection between the action sequence and the con-
founders in the reweighted data, we can simply run what-
ever model we wanted to run in the first place, without
conditioning on time-varying confounders. And because
we never condition on these variables, we never introduce
posttreatment bias as with single-shot approaches.

Estimating the Weights

Of course, without randomization, the probability of go-
ing negative will be unknown, leaving Equation (5) to
be estimated. To do so, we must model the decision to
go negative in each week, conditional on the past. Since
the decision is dichotomous, a common approach is to
estimate the probability of going negative with a logit
model:

Pr(Ait = 1|Ait−1, Xit ; �)

= (1 + exp{−h(Ait−1, Xit ; �)})−1,
(9)

where h is a linear, additive function of the action his-
tory, covariate history, and parameters �. For instance,
we might have

h(Ait−1, Xit ; �) = �0 + �1 Ait−1 + �2 Xit + �3t, (10)

which models the action decision as a function of nega-
tivity in the last week (At−1), the most recent poll results
(Xit), and the week of the campaign (t).

An estimate of the weights requires an estimate of the
parameter vector � from this model. We can obtain these
estimates, �̂, from a pooled logistic regression, treating
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each campaign-week as a separate unit. These estimates
form the basis for the estimated weights,

Ŵi =
T∏

t=1

1

Pr(Ait |Ait−1, Xit ; �̂)
, (11)

where the denominator is now the predicted action prob-
ability (or fitted value) for unit i at each time period.11

Note that it is not necessary to estimate the same model for
all units. For example, incumbents and nonincumbents
might require different models because their approaches
to the negativity decision are so distinct.

Each observation i is then weighted by Ŵi in a
weighted generalized linear model for the outcome, with
form g (a ; �) from Equation (2).12 Robins (2000) shows
this estimation procedure is consistent for the causal pa-
rameters, �, under sequential ignorability, positivity, and
the correct model for the weights. The most straight-
forward way to estimate standard errors and confidence
intervals is to bootstrap the entire estimation procedure,
including the weights (Robins, Hernán, and Brumback
2000). For negative campaigning, this means resampling
the set of campaigns (not the set of campaign-weeks),
reestimating the weights, and running the weighted out-
come model on the resampled data.

Stabilized Weights

If campaigns have vastly different likelihoods of going
negative, then the estimated weights from Equation (11)
can have extreme variability, which results in low effi-
ciency. We can use a slightly different version of the
weights, called the stabilized weights, to decrease this vari-
ability and increase efficiency. The stabilized weights take
advantage of an interesting fact: the numerator of the
weights does not change the consistency of the estima-
tion procedure.13 While it was natural to use the value
1 as the numerator, we can replace it with other func-
tions of the action history that increase efficiency. The
usual choice used in the literature (Robins, Hernán, and

11These values are easily found using a combination of the glm and
predict functions in R (R Development Core Team 2011).

12The survey package in R can implement this weighting for a
large class of outcome models (Lumley 2004).

13As shown in Robins (2000), the numerator only alters the
marginal distribution of the action A, which does not affect the
marginal distribution of the potential outcomes, Y (A). This is be-
cause the marginal distribution of A does not affect the distribution
of Y conditional on A, which is the crucial ingredient for the dis-
tribution of the potential outcomes.

Brumback 2000) is

SWi =
T∏

t=1

Pr(Ait |Ait−1; �)

Pr(Ait |Ait−1, Xit ; �)
, (12)

where the numerator is a model for the marginal proba-
bility of action, conditional on past action. When actions
are randomized, these stabilized weights will be equal to
one since the action probability would be unaffected by
the covariates in the denominator.

Of course, the numerator of SWi is unknown, leaving
us with the task of estimating �. All this requires is an
additional logit model for the numerator to estimate the
probability of going negative without conditioning on
the time-varying covariates. If the outcome model will
include interactions with baseline covariates, then both
the numerator and the denominator should include those
variables. To construct these weights, one simply needs to
obtain predicted probabilities from each model for every
unit-period. Then, for each unit, take the product of those
probabilities across time periods and divide to obtain the
estimates ŜWi .

Estimating the Effect of Going
Negative

Pundits and theorists often bemoan the growth in nega-
tive campaign advertising in recent decades. Less often do
they discuss its effectiveness. An implicit assumption in
the air of political discourse is “Of course it works, politi-
cians do it.” The prospect of dirtying the waters with such
cheap and tawdry tactics is bad enough, and being useless
would only add insult to injury. A contingent of politi-
cal scientists has investigated just how useful negativity is
for candidates, without reaching a consensus. In a com-
prehensive review, Lau, Sigelman, and Rovner describe
the state of the literature: “All told, the research literature
does not bear out the idea that negative campaigning is
an effective means of winning votes” (2007, 1176).

The usual approach to estimating the effectiveness of
negative advertising (see Lau and Pomper [2002, 2004]
for examples) is to regress election outcomes on a sum-
mary measure of the degree of negativity in a cam-
paign along with controls for various static attributes
of the race. A crucial problem for these investigations
is that campaign tone is a dynamic process, chang-
ing from week to week. Furthermore, there are strong
time-varying confounders. For instance, poll numbers
affect the decision to go negative, but going negative
also affects poll numbers. Thus, polling is both pre- and
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postaction: a classic time-varying confounder. As shown
above, ignoring the polls and conditioning on the polls
will both result in biased estimates. We can estimate the
effect of time-varying actions, though, using marginal
structural models and inverse probability of treatment
weighting.

The goal of this application is to estimate the ef-
fect of going negative for Democratic candidates in
state wide elections. I use data on campaigns for Senate
and gubernatorial seats in the cycles of 2000, 2002, 2004,
and 2006. For each campaign, I code the advertising tone
using data from the University of Wisconsin Advertising
Project (Goldstein and Rivlin 2007). To ensure consis-
tency across years, I use a simple measure of negative
or contrast ads: does the ad mention the opposing candi-
date?14 I use this coding to construct a measure of whether
a candidate has “gone negative” in a given week of the
campaign based on what percentage of ads is negative.15

The WiscAds data also provide a proxy for weekly cam-
paign spending: the total number of ads aired in a week.
In addition to advertising data, I also collected weekly
polling data from various sources,16 along with baseline
covariates, such as predicted competitiveness of the race
(as measured by the Congressional Quarterly score), in-
cumbency status, number of ads run by each candidate
in their primaries, the length in weeks of the campaign,
measures of challenger quality and incumbent weakness,
and the number of congressional districts in the state.
Much of these data come from Lau and Pomper (2004)
with additional data collection. In this example, baseline
is the day after the final primary.

A Model for Going Negative

In order to estimate the causal parameters from an MSM,
we must construct the weights from the previous sec-
tion. In order to satisfy the assumption of sequential ig-
norability, we must gather as many covariates as possi-
ble that might influence the decision to go negative in
a given week and are correlated with the election out-
come. This is, of course, a difficult task, but we can often

14The WiscAds project failed to collect data in 2006, so I acquired
and computer-coded the data directly from CMAG, the consultant
group which provides the data to WiscAds.

15For the analysis below, I used a cutoff of 10%. The results appear
unaffected by this choice, as weeks tend to be dominated by only
a few ads. If there is one ad that is negative, it pushes the percent
negativity quite high.

16Polling data come from the Hotline daily political briefing for
2000 and 2002 and from http://www.pollster.com for 2004 and
2006.

leverage substantive knowledge to guide our models. The
dynamic reasons for a candidate to go negative might
be numerous, but it is likely that the state of the race,
as summarized by the polls in a given week, is at worst
a proxy for these factors and at best the most impor-
tant factor. Indeed, we might think that the candidates
doing the worst in the polls are the most likely to go
negative. This is why it is crucial to include both precam-
paign measures of competitiveness and dynamic mea-
sures of campaign performance in the form of polling
data. Without these data, it would be impossible to dif-
ferentiate between the effect of negative advertising on
the one hand and negative advertising simply indicating
weak candidates on the other. Previous literature on the
effectiveness of negative advertising has not had access to
the kind of polling data available in more recent elections,
hampering its ability to address these dynamic-selection
issues.

To address these concerns, I include the follow-
ing time-varying covariates in the weighting model: the
Democratic share of the polls in the last week, the share of
undecided voters in the last week, past negativity of both
Democrats and Republicans, the amount of advertising
by both candidates in the last week, and the week of the
campaign. It may be the case that these variables do not
encompass or proxy all of the factors that influence can-
didates, which is why it is crucial to assess any inferences
using sensitivity analysis, as I do in the next section. With
these covariates, I ran two separate pooled-logistic mod-
els for the decision to go negative: a separate numerator
and denominator model.17

These models largely fit with the intuition and theory
of campaigns, with high advertising and already negative
races being more likely to be negative. Figure 3 shows
that there is a strong relationship between polling and the
decision to go negative: nonincumbent Democrats in safe
seats rarely go negative, but those who are trailing often
do. To construct the weights, I combine predicted proba-
bilities from these models according to Equation (12).18

Due to empirical violations of positivity, I restricted
the analysis to common support on baseline covariates,

17In order to stabilize the weights further, I include all baseline
covariates in both the numerator and denominator models. This
means that IPTW will only balance the time-varying covariates,
leaving any remaining baseline imbalance. Since this imbalance
is time-constant, we can remove it through traditional modeling
approaches, and, thus, I include those covariates in the outcome
model below.

18The weight models are pooled logistic generalized additive models
(GAMs), which is what allows for the flexible modeling of the
polling. I used the mgcv package to fit this model (Wood 2011).
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FIGURE 3 The Marginal Relationship between
Lagged Polling Numbers and Going
Negative for Democratic
Nonincumbent Candidates
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Note: All other variables from the model are held at their mean, or
median, depending on the type of variable. The shaded region is
a 95% confidence band. Intuitively, trailing Democrats are more
likely to go negative than leading Democrats.

which mostly involved removing extremely uncompeti-
tive race.19

The Time-Varying Effects of Negativity

The effect of negative advertising is unlikely to be constant
across time. Ads closer to Election Day should have a
stronger impact than those earlier in the campaign, and
marginal structural models allow us to estimate these
time-varying effects. I break up the effect into an early
campaign effect (the primary through September) and
a late campaign effect (October and November). Vote
shares are continuous, so a linear MSM is appropriate for
the potential outcomes:

E [Yi (a)] = �0 + �1

(
T∑

T−5

Ait

)
+ �2 Zi

+ �3 Zi

(
T∑

T−5

Ait

)
+ �4 Ai T−6

+ �5 Zi Ai T−6 + �6 Xi ,

(13)

where Zi is an indicator for being a Democratic incum-
bent, Xi is a vector of baseline covariates, and T is the

19Note that weeks in which a candidate runs no ads are weeks when
a candidate cannot go negative. These weeks receive a stabilized
weight of one, meaning they do not contribute to the weight of
their overall campaign. A more thorough analysis would treat the
number of ads and the tone of those ads as a joint treatment.

TABLE 1 Estimated Effects of an Additional
Week of Negative Advertising in the
Last Five Weeks of the Campaign on
the Democratic Percent of the
Two-Party Vote

Democratic Democratic
Estimator Incumbent Nonincumbent

Naı̈ve −0.92 (−1.88, −0.17) 0.43 (−0.21, 1.03)
Control −0.55 (−1.37, 0.11) 0.50 (−0.11, 1.11)
IPTW −0.57 (−1.42, 0.24) 0.64 (0.09, 1.12)

Note: Bootstrapped 95% confidence intervals are in parentheses,
with those crossing zero set in gray. Inverse probability weighting
estimates a strong, positive effect for nonincumbents and a strong,
negative effect for incumbents. Note that the competing models
fail to bound the IPTW-estimated effect.

week of the election. The summation terms calculate how
many of the last five weeks of the campaign the Democrat
went negative. This covers October and early November,
which is the homestretch of the campaign. The model
separately estimates the direct effect of earlier negativ-
ity and allows for incumbent status to modify both early
and late effects. Following the IPTW approach, I weight
each campaign using weights constructed from the above
going-negative model.

It is instructive to compare estimates from this model
with two competing approaches. First, the naı̈ve estimator
simply ignores all time-varying covariates and fits Equa-
tion (13) to the observed data without weights. Second,
the control estimator attempts to control for the covari-
ates by including them as additional regressors in Equa-
tion (13).20 These represent the two single-shot methods
used by applied researchers: the naı̈ve estimator to guard
against posttreatment bias and the control estimator to
guard against omitted variable bias.

Table 1 shows the estimated effects of late campaign
negativity from all three models broken out by incumbent
status.21 The MSM finds that Democratic incumbents are
hurt by going negative, while nonincumbents are helped.
Nonincumbents see a 0.64 percentage point increase in
the Democratic percent of the two-party vote for every
additional week of negative advertising in the last five
weeks. Incumbents, on the other hand, drop 0.57 per-
centage points for the same change. As Figure 4 shows,
there is no evidence of a direct effect of earlier negativity

20Polls are included as the mean Democratic poll percentage, to-
tal number of ads as the average ads per week, and Republican
negativity as the overall duration of Republican negativity.

21Estimates here are produced using the svyglm function in the
survey package, version 3.22-4 (Lumley 2010). Standard errors
and confidence intervals come from bootstrapping this model.
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on the final vote in either group. Note that these results
control for polls taken at the beginning of the campaign.
It is surprising, then, to see effects that are even this large
since these baseline polls are highly predictive of the out-
come in Senate and gubernatorial elections.

When we compare the three estimators, we find that
using a dynamic causal inference approach leads to sub-
stantively different conclusions about negative advertis-
ing. For nonincumbents, for instance, the two single-shot
methods recover what the previous literature has found:
no significant effect of negativity (Lau and Pomper 2004;
Lau, Sigelman, and Rovner 2007). With the MSM, how-
ever, we find that negativity does have a large, statis-
tically significant, and positive effect. Interestingly, the
MSM-estimated effect is well outside of the bounds set by
the naı̈ve and control estimators. For these nonincum-
bents, the IPTW estimate is over 18% larger in magnitude
than either of the other methods. Thus, “trying it both
ways” would be an unsuccessful strategy in this case. For
incumbents, we find additional divergence from the liter-
ature. Similar to the effects of negativity for incumbents
estimated by Lau and Pomper (2004), the naı̈ve estimator
finds a large and harmful effect of negativity for incum-
bents. But this is likely driven by midcampaign confound-
ing, and once I account for this using an MSM, I find no
significant effect of negativity for incumbents. Overall,
a dynamic causal inference approach leads to different
conclusions about the effectiveness of negative advertis-
ing for U.S. statewide election than the previous literature
had found.

Assessing Model Assumptions

With single-shot causal inference methods such as match-
ing, balance checks are crucial diagnostics (Ho et al. 2006).
These checks ensure that the treated and control groups
are similar on their background covariates. Usually this
takes the form of simple comparisons of covariate means
in the treated and control group, though more sophis-
ticated techniques exist. Unfortunately, this simple ap-
proach is ill-suited to the dynamic setting since it is un-
clear what groups to compare. At a given week of the
campaign, negative and positive campaigns might dif-
fer on a time-varying confounder, but these differences
might be due to past negativity.

Under the above assumptions of the IPTW estima-
tor, the decision to go negative is unconfounded in the
weighted data, conditional on past negativity. We should
expect, then, that the observed actions will be indepen-
dent of time-varying covariates once we weight by SWi .

FIGURE 4 Inverse Probability of Treatment
Weighting Estimates of the
Time-Varying Effects of Negative
Campaigning with Bootstrapped
95% Confidence Intervals

Effect of a week of negative advertising on Democratic voteshare
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Note: Negative ads are more potent later in the campaign (Oc-
tober and November) than earlier in the campaign, but the di-
rection of the effect is negative for incumbents and positive for
nonincumbents.

This independence is, however, conditional on a unit’s ac-
tion history. For instance, suppose we had two campaigns
that had remained positive until week t. Then the deci-
sion to go negative in week t + 1 for these two campaigns
should not depend on time-varying covariates, such as
polling, in the weighted data. We can assess balance in the
weighted data, then, by checking for associations between
the action decision and the time-varying covariates that
affect that decision, conditional on the action history.
If, after reweighting the data and conditioning on past
negativity, the decision to go negative is still predictive of
past polling, then there is likely residual confounding of
the relationship between the outcome and negativity.

Figure 5 shows how the weights reduce this history-
adjusted imbalance in the campaign-advertising example.
It shows the change in the standardized history-adjusted
imbalance from the unweighted to the weighted data.22 In
the unweighted data, for instance, Democrats were much
more likely to go negative after an attack by Republi-
cans (R Negt−1). Once we apply the weights, however, the
differences move much closer to zero because IPTW gives

22These differences come from an unweighted and weighted pooled
regression of the time-varying covariate at t on (a) the baseline co-
variates, (b) Democratic negativity before week t, and (c) Demo-
cratic negativity in week t. The coefficient on (c), divided by its
standard error, is the standardized difference.
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FIGURE 5 The Change in History-Adjusted Balance between the
Weighted and Unweighted Data as Measured by
Standardized Differences between Those
Campaign-Weeks That Went Negative versus Those
That Remained Positive, Conditional on Baseline
Covariates
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Note: The differences are, all told, closer to zero in the weighted model. “R Neg” is whether
the Republican went negative, “Ads” are the number of ads run by the candidates, “R Neg
Total” is the total number of Republican negative weeks in the campaign, and “Polls” is
the averaged polling numbers for Democrats.

relatively more weight to races that went negative without
Republican negativity in the last week.

One stark observation from the diagnostic plot is that
confounding exists for incumbents even after weighting
for the time-varying confounders. This makes sense for
two reasons. First, data-quality issues plague incumbents
since their safer races attract less polling. Second, incum-
bents have stronger positivity problems with extremely
safe seats rarely going negative. Furthermore, incumbent
campaign-weeks with high total ad volumes almost al-
ways feature negativity. These issues prevent the weights
from fully eliminating the confounding in the data and
should give us pause when interpreting the estimates for
incumbents.

Cole and Hernán (2008) propose a series of model
checks based on the distribution of the weights, SWi .
They note that the confounding of time-varying covari-
ates is what pushes weights away from 1. A mean weight
far below 1 indicates that there are relatively few surprise
actions—those that are unlikely given the covariate his-
tory. This lack of surprises indicates that the probability
of going negative is close to 0 or 1 in some parts of the
covariate space, which is a violation of positivity. In some
sense, there are very few comparable cases for these units

with high weights. In the matching literature, this is called
a lack of common support. A good check for these issues
in the weight model is to check the distribution of stabi-
lized weights in each period to ensure that (1) the means
at each point in time are close to 1, and (2) the minimum
and maximum values are reasonably close to 1. The final
distributions of the weights by week are in Figure 6 . Their
means are all very close to 1, and the upper bounds are
fairly low, indicating well-behaved weights.

Sensitivity Analyses

Causal estimates from an MSM have excellent properties
when the assumptions of positivity and sequential ig-
norability hold. Of these, sequential ignorability is the
trickiest, as it requires that, conditional on the covariate
and action histories, the action decision is unrelated to
the potential outcome. Any residual differences in poten-
tial outcomes between treated and control groups we call
unmeasured confounding or omitted variable bias. Unless
we conduct an experiment and randomize the action, this
assumption must be justified through substantive knowl-
edge. Since it is impossible to test this assumption, it is
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FIGURE 6 Stabilized Weights Over the Course of
the Campaigns
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Note: The black lines are the weekly means, the gray rectangles are
the weekly inter-quartile ranges, and the thin gray lines denote the
range of the weights. Note that campaigns begin at various times
so that there are very few campaigns at 30 weeks out, but very
many at five weeks out. These weights appear well behaved as their
means are close to 1.

vital to include as much information as possible and to
conduct a sensitivity analysis of any estimated results.

Robins (1999) proposes a method to investigate the
sensitivity of estimates to the presence of unmeasured
confounding. Robins quantifies the amount of confound-
ing as

q(xt, at−1, a∗
t ) = E [Y (a)|xt, at−1, at]

−E [Y (a)|xt, at−1, a∗
t ].

(14)

This function measures the difference in potential out-
comes for some group that shares an action and covariate
history. For two campaigns that are observationally equiv-
alent up to week t, q measures the structural advantages
of those campaigns that go negative in week t compared
to those that remain positive in week t. For instance, the
confounding may take the form

q(xt, at−1, a∗
t ; �) = �[at − a∗

t ]. (15)

This is a simple and symmetric form of omitted vari-
able bias. When � equals zero, then there is no differ-
ence between those campaigns that go negative in week
t and those that stay positive, given campaign histories.
If � is positive, then negative campaigns are instrinsically
stronger than those that remain positive. That is, when �

is positive, then Y (a) is higher for at = 1 (negative cam-
paign weeks) than at = 0 (positive campaigns weeks). If
� is negative, then those candidates who are going nega-
tive are worse off. Note that these selection biases are all
conditional on the observed covariate history.

The above IPTW estimation procedure assumes that
� = 0, yet Robins (1999) shows that we can estimate
the parameters under any assumption about �. Thus,
by setting � to various levels, we can estimate the causal
effect under different assumptions about the degree of
omitted variable bias. To do so, we have to replace the
outcome with a bias-adjusted outcome,

Y� ≡ Y −
∑

k∈(0,1)

T∑
t=0

q(Xt, At−1, k; �)︸ ︷︷ ︸
bias at this history

× Pr(At = k|At−1, Xt)︸ ︷︷ ︸
probability of reaching this history

,

(16)

where the first term is simply the observed outcome,
Y , and the second term is the overall omitted variable
bias, built up from the bias in each time period. We can
then reestimate the parameters of the marginal structural
model with outcome Y� instead of Y to get bias-adjusted
estimates and bias-adjusted confidence intervals. Note
that when � = 0, the bias function is zero, so that Y0 = Y
and the usual estimation aligns with the assumption of
sequential ignorability. Of course, the probability term is
unknown and must be estimated. Fortunately, we have
already estimated this function as part of the estimation
of the weights, SWi .

Figure 7 shows how the estimated effect of late-
campaign negativity varies across different assumptions
about the omitted variable bias, encoded in the param-
eter �, which runs along the x-axis. The magnitude of
� describes how much stronger or weaker the negative
campaigns are, on average, in terms of their potential
outcomes. This figure also charts the change in the confi-
dence intervals under the various assumptions about bias,
with those that cross zero shaded lighter.

When negative campaigns are even 0.5 percentage
points stronger than positive campaigns on average, our
95% confidence intervals would overlap with zero for
nonincumbents. This might occur if campaigns were at-
tacking their opponents for (unmeasured) behavior such
as a scandal or an unpopular vote. Note that these imbal-
ances would have to occur within levels of the covariate
history and thus exist after conditioning on polls. If the
negative campaigns are instead weaker, perhaps because
campaigns go negative when they are in trouble, then
results only grow stronger for nonincumbents. The re-
sults for incumbents show the reverse pattern. The results
are fairly sensitive to the degree of confounding. Note,
though, that this confounding would have to be above
and beyond any information contained in polls and pre-
campaign measures of competitiveness.
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FIGURE 7 Sensitivity of the Results to Deviations from the
Sequential Ignorability Assumption
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Note: The parameter � indexes assumptions about confounding, where negative values
indicate that the observed negative campaigns are inherently weaker than predicted by the
observed variables. Positive values assume that those negative campaigns are stronger than
predicted.

It is clear that there is some sensitivity to the sequen-
tial ignorability assumption, and we could attempt to
gather more data (quantitative and qualitative) to justify
which direction this confounding is likely to lean. No-
tably, we could measure a larger set of dynamic campaign
features such as scandals and endorsements. It would also
help to draw on additional electoral cycles, such as 2008,
when incumbents faced strong challengers to overcome
the overlap and ignorability issues.

Conclusion

Political actions do not happen all at once. There are se-
quences of events that unfold over time. As we have seen,
this poses strong problems for extant single-shot causal
inference methods. This article brings to bear a frame-
work that explicitly models the dynamic sequences and
builds methods to test their effects. The original applica-
tion of MSMs was to epidemiological data. Robins (1997)
develops a set of methods called structural nested mod-
els with an application to HIV-treatment studies. In that
context, the units are patients and doctors change the
treatment over time if the patient status worsens. The
analogy to politics is suggestive: campaign managers and
candidates as doctors, working to save their patient, the
election. Of course, candidates face human opposed to vi-

ral opponents, yet this changes only the types of variables
needed to satisfy sequential ignorability.

The structural nested model of Robins (1997) pro-
vides an alternative approach to dynamic causal inference.
These techniques center on modeling the effect of going
negative at every possible history, which allows effects
that interact with time-varying covariates. The estima-
tion methods resemble backwards induction in game the-
ory. Unfortunately, these structural nested models require
models for entire sets of time-varying covariates and com-
plicated computation to estimate while researchers can
easily use off-the-shelf software to implement an MSM.

The focus of this article has been the effect of ac-
tion sequences, yet in many political science situations,
actors follow dynamic strategies—updating their actions
based on changing conditions. It is likely that the optimal
action is actually a strategy, since being able to respond
to the current state of affairs is more effective than fol-
lowing a predefined sequence of actions. Hernán et al.
(2006) demonstrates that marginal structural models and
inverse probability weighting can estimate the effective-
ness of strategies with a simple form such as “go negative
when polls drop below x%.” In addition, structural nested
models can estimate the effect of arbitrary strategies. As
might be expected, precisely estimating these effects re-
quires larger sample sizes than the effects of simple action
sequences.
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A crucial path for future research is model devel-
opment. In this article, I used a fairly simple model to
estimate different effects for early and late in the cam-
paign. This is a crude division of the data, and more
fine-grained modeling might help to smooth effects over
time. Indeed, we would expect that the effect of negativity
in week 5 should be quite similar to the effect of negativity
in week 6. Better MSMs should be able to handle this type
of structure.

Dynamic causal inference is a problem for more than
just campaigns. Each subfield of political science ana-
lyzes actions that occur over time and have multiple de-
cision points: foreign aid, interest rates, budget alloca-
tions, state policies, and even democracy. Indeed, many
of the assumptions in this article (or variations thereof)
are implicit in time-series cross-sectional models, where
the counterfactual framework is rarely discussed in ex-
plicit terms. Thus, there is a great opportunity for fu-
ture work that identifies areas with dynamic causal infer-
ence problems and attempts to clarify or improve existing
results.
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