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Abstract
Recent experimental studies in the social sciences have demonstrated that perspective-taking
conversations are effective at reducing prejudicial attitudes and support for discriminatory poli-
cies. We ask if such interventions can directly affect policy views without changing prejudice.
Unfortunately, the identification of the controlled direct effect—the natural causal quantity of
interest for this question—has required strong selection-on-observables assumptions for any
mediator. We leverage a recent experimental study with multiple survey waves of follow-up to
identify and estimate the controlled direct effect using the changes in the outcome and mediator
over time assuming parallel trends in the potential outcomes. This design allows us to weaken
the identification assumptions to allow for linear and time-constant unmeasured confounding
between the mediator and the outcome. We develop a semiparametrically efficient and doubly
robust estimator for these quantities along with a sensitivity analysis for the key identifying as-
sumption of parallel trends. Contrary to what traditional methods find, our approach estimates a
controlled direct effect of perspective-taking conversations when subjective feelings are neutral
but not positive or negative, and this result is robust to moderate departures from parallel trends.
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1 Introduction

Many scholars and citizens view discrimination on the basis of identity as incompatible with an egal-

itarian society. Thus, a large literature in the social sciences has explored the relationship between

prejudicial views about identity groups and support for policies that discriminate against those groups

(Kinder and Sears, 1981; Sniderman et al., 1991; Sidanius, Pratto and Bobo, 1996; Kinder and Sanders,

1996;Nelson, 1999; Krysan, 2000; Rabinowitz et al., 2009). Across awide variety of settings, thiswork

has shown that people who hold negative views about a group tend to be more supportive of poli-

cies that discriminate against that group. This robust finding has led to a somewhat implicit hope

that improving the dominant group’s prejudicial feelings about a group would decrease support for

discriminatory policies and ultimately lead to a more equal society.

Given the theory that prejudice causes discriminatory policy, the social sciences have focused on

theories that can explain how societies might reduce prejudice (Paluck and Green, 2009). One of the

most prominent of these theories, often called the contact hypothesis, holds that intergroup contact

can reduce prejudice (Allport, 1954; Pettigrew and Tropp, 2006). The contact hypothesis has been

impactful in the policy world, influencing policies such as desegregation and international peace-

building efforts (see Paluck, Green and Green, 2019, and references therein for a review). However,

support for the contact hypothesis is mixed, especially when focusing on high-quality evidence from

randomized control trials (Paluck, Green andGreen, 2019). If interventionsmay ormay not be able to

reduce prejudicial feelings, or if they reduce prejudicial feelings under specific conditions, it becomes

essential to understand if and in what circumstances these interventions might be able to reduce

support for discriminatory policies directly, without necessarily affecting prejudicial views about the

group.

In this paper, we focus on the effects of interventions that encourage respondents to take the

perspective of a minority group (Dovidio et al., 2004; Paluck, 2009; Broockman and Kalla, 2016; Si-

monovits, Kézdi and Kardos, 2018). These interventions mimic the core theoretical mechanisms of

contact theory by encouraging participants to better identify with the discrimination that the mi-

nority group faces. Several studies in political science have shown that these perspective-taking in-
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terventions can improve general attitudes toward those groups and increase support for politicians

or policies that benefit the group (Broockman and Kalla, 2016; Simonovits, Kézdi and Kardos, 2018;

Adida, Lo and Platas, 2018). In this context, we seek to understand if perspective-taking interven-

tions can have a direct effect on support for anti-discrimination policies for fixed values of subjective

feelings about a group. Previous studies of perspective-taking have attempted to estimate these di-

rect effects. For example, Adida, Lo and Platas (2018) showed that perspective-taking toward Syrian

refugees can increase support for admitting those refugees to the United States and explored how the

direct effect varied by a subjective rating of the refugees in the intervention. Paluck (2009) showed

that a soap opera with prejudice-reducing messages affected perceptions of social norms and behav-

ior toward outgroups without changing their personal prejudicial beliefs. Unfortunately, inferring

direct effects from these studies requires strong “no unmeasured confounders” assumptions that may

not hold.

We focus on the experimental setting of Broockman and Kalla (2016), who found that a door-

to-door perspective-taking canvassing intervention reduced support for legal discrimination against

transgender people (those who identify with a gender different from their sex assigned at birth). The

intervention consisted of a 10-minute conversation that encouraged respondents to think about a

time when they were judged negatively for being different and asked them to reflect on if and how

the conversation changed their minds. We aim to determine if this intervention has a direct effect

on policy views for fixed feelings of subjective warmth toward transgender people. These direct

effects are crucial for understanding persuasion in diverse democracies since they show whether or

not personal tolerance of outgroups is required to increase support for legal tolerance of those same

groups.

1.1 Methodological challenges

We focus on estimating the controlled direct effect (CDE) of the perspective-taking intervention,

which is a popular quantity of interest since it relies on weaker identification assumptions than tradi-

tional mediation quantities like the natural direct effect (Robins, 1986, 1999; Petersen, Sinisi and van

3



der Laan, 2006;Goetgeluk, Vansteelandt andGoetghebeur, 2008; VanderWeele, 2015; Frölich andHu-

ber, 2017; Zhou andWodtke, 2019; Blackwell and Strezhnev, 2022) and has been targeted by previous

studies of perspective-taking interventions (Adida, Lo and Platas, 2018). Unfortunately, extant meth-

ods for estimating controlled direct effects require a strong and often implausible assumption of “no

unmeasured confounders” for the mediator-outcome relationship. For example, there are likely un-

measured factors such as cultural beliefs that influence both subjective feelings about disadvantaged

groups and views on policies about those groups, even conditional on covariates. These unmeasured

confounders would bias the standard methods for estimating CDEs even in an experimental setting

when researchers randomize treatment.

Fortunately, the Broockman and Kalla study featured a multiwave design, allowing us to relax the

no unmeasured confounders assumption. The researchers recruited respondents from a list of reg-

istered voters with a mailer for a baseline survey that measured both the mediator and the outcome

and then conducted posttreatment surveys at three days, three weeks, six weeks, and three months

after administering treatment. With this design, we can focus on the changes in the mediator and

outcome before and after treatment, which will purge any linear, time-constant, unmeasured con-

founding between the mediator and the outcome. In this way, our approach is similar to the parallel

trends assumptions in difference-in-differences (DID) designs (Heckman, Ichimura and Todd, 1997;

Abadie, 2005).

This paper shows how to identify two conditional versions of the controlled direct effect lever-

aging different flavors of parallel trends assumptions. The two identification results differ in what

additional assumptions are required to establish them. For both estimands, we develop doubly ro-

bust, semiparametrically efficient estimators for these effects, leveraging propensity score and out-

come regression modeling. Furthermore, we show that the cross-fitting strategy of Chernozhukov

et al. (2018) is valid in this setting, allowing for weaker conditions on the estimators for the nui-

sance parameters, easy incorporation of flexible machine learning estimators, and a simple variance

estimator.

Given the importance of the parallel trends assumption for identification of the CDE, we also de-
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velop a sensitivity analysis for departures from this assumption (Robins, Rotnitzky and Scharfstein,

1999). We bound the strength of unmeasured confounding for the trends in the outcome and media-

tor, which implies an interpretable set of bounds on the CDE. We can vary the strength of the bound

to see how the amount of unmeasured confounding affects our estimated effects. We then compare

these results to the amount of unmeasured confounding that would be implied by omitting observed

covariates from the study.

We use these tools to show that there is a controlled direct effect of the perspective-taking in-

tervention on support for anti-discrimination policies fixing the value of subjective or prejudicial

feelings about transgender people, at least for the group who begins with neutral feelings about that

population. Naive methods of estimating average controlled direct effects (ACDEs), such as simply

adding the mediator and intermediate confounder to a difference-in-differences model, fail to find

this same result. In general, we find that there is considerable variation in the overall and direct ef-

fect of treatment across baseline feelings about transgender people and that there is some evidence

that the direct effects vary by race. Finally, we find that direct effects appear to persist until the end

of the three-month follow-up survey. These results imply that direct effects on policy not through

prejudicial feelings might be most potent on respondents with less polarized feelings about the target

group. The sensitivity analysis shows that this result is robust to a moderate amount of unmeasured

confounding for the trends in the outcome.

A handful of other studies have connected DID designs to direct effects more broadly. Deuchert,

Huber and Schelker (2019), Huber, Schelker and Strittmatter (2022), and Holm and Breen (2024)

use a principal stratification approach to identify and estimate different mediation quantities under

monotonicity and parallel trends assumptions without intermediate covariates. Crucially, those set-

tings focus on the natural direct and indirect effects, the traditional mediation quantities that allow

for a decomposition of the overall effect. Instead, we focus on the controlled direct effect, which can

generally be identified under weaker conditions, allowing us to sidestep monotonicity assumptions,

incorporate nonbinary mediators, and allow baseline and intermediate confounders. Concurrently

with our work, Shahn et al. (2022) developed estimation techniques for estimating the parameters of
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a structural nested mean model under a DID-style assumption similar to ours. Their setting differs

from ours in that they focus on estimating the effects of time-varying treatments on outcomes mea-

sured between each treatment, using that “in-between” outcome to differentiate between the effects

of the treatment and mediator. In our setting, we only observe the outcome after the realization of

both the treatment and the mediator.

1.2 Roadmap

The paper proceeds as follows. Section 2 introduces the data and the primary quantities of interest

and establishes the core identification results. We introduce the primary estimation strategy in Sec-

tion 3. In this section we also show howwe leverage cross-fitting and develop our sensitivity analysis.

Section 4 presents the results of our empirical application, and Section 5 concludes with a discussion.

2 Data, Estimands, and Assumptions

We now describe the empirical setting of the Broockman and Kalla (2016) experiment. The experi-

menters recruited respondents from a list of registered voters inMiami, Florida (𝑛 = 68, 378) and sent

participants a link to an (ostensibly unrelated) online baseline survey via postalmail. The authors then

randomly assigned subjects that responded to the survey (𝑛 = 1825) to receive door-to-door canvass-

ing from a nonprofit organization, either the perspective-taking intervention (treatment, 𝐷𝑖 = 1) or

information about recycling (control, 𝐷𝑖 = 0). After the experiment, they sent subjects who came to

their doors under either condition (𝑛 = 501) to complete online follow-up surveys three days, three

weeks, six weeks, and three months after the intervention.

Our goal is to estimate the direct effect of a treatment (a perspective-taking intervention) on an

outcome (views of policies about transgender people) with a mediating variable (subjective feelings

about transgender people) set to a particular value. The primary outcome of interest is a seven-point

scale measuring support for transgender nondiscrimination laws six weeks after treatment (wave 3),

which we denote as 𝑌𝑖2. We denote the baseline outcome as 𝑌𝑖1.

To construct our mediator, we focused on the transgender feeling thermometer, measured on
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Figure 1: Distribution of the mediator at baseline, prior to discretizing

Wave 2

Baseline Cool Neutral Warm

Cool 53 (54.64%) 33 (34.02%) 11 (11.34%)
Neutral 17 (9.83%) 98 (56.65%) 58 (33.53%)
Warm 6 (5.50%) 11 (10.09%) 92 (84.40%)

Table 2: Joint distribution of the baseline and posttreatment mediator after binning into three cate-
gories. Row percentages in parentheses.

a scale of 0–100, where higher values indicate “warmer” feelings toward the group. As we show

in Figure 1, thermometer scores often show a significant amount of clumping at “even” numbers

such as 0, 50, and 100, and much of the informational content could be summarized as a person

feeling coolly, warmly, or neutral about a group. Thus, we create our main mediator of interest, 𝑀𝑖2,

by transforming the three-week posttreatment scores into a three-level discrete variable such that

𝑀𝑖2 = 1 for participants who score below 50 on the thermometer (cooler feelings), 𝑀𝑖2 = 2 for

participants who score exactly 50 (neutral feelings), and 𝑀𝑖2 = 3 for participants who score above 50

points (warm feelings). We define the baseline mediator, 𝑀𝑖1, similarly. While we focus on a three-

level mediator here, our theoretical results are valid for any discrete mediator. Table 2 shows the

joint distribution of the baseline and posttreatment mediator after binning. Below, we investigate an

alternative categorization that accounts for clumping at 0 and 100, but the results are broadly similar.
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Figure 2: Directed acyclic graph indicating the causal structure of the application and timeline of
measurements. Thick red arrows are components of the quantity of interest, the controlled direct ef-
fect. Bi-directed arrows between the mediators and outcomes indicate that we allow for unmeasured
confounding between those variables.

The multiwave surveys also provide a host of covariates. We define a set of baseline/pretreatment

covariates as X𝑖 , which include basic demographics (for example, age, race, and gender), political

leanings, and gender-related attitudes. We additionally have posttreatment covariates, Z𝑖 , measured

in wave 1 (3 days after treatment), that include changes in various political and gender attitudes from

baseline. These posttreatment covariates are measured before the mediator, 𝑀𝑖2. We present a com-

plete list of all covariates in Table SM.3 in the Supplemental Materials. We assume the observed

data O𝑖 = (X𝑖,Z𝑖, 𝐷𝑖, 𝑀𝑖1, 𝑀𝑖2, 𝑌𝑖1, 𝑌𝑖2) is independent and identically distributed across 𝑖. Figure 2

shows a directed acyclic graphwith the causal structure andmeasurement timing for this application.

Let 𝑌𝑖𝑡 (𝑑, 𝑚) be the potential outcome for a unit with treatment set to 𝐷𝑖 = 𝑑 and mediator set

to 𝑀𝑖𝑡 = 𝑚. We assume the usual consistency assumption that we observe the potential outcome

of the observed treatment and mediator, or 𝑌𝑖𝑡 = 𝑌𝑖𝑡 (𝐷𝑖, 𝑀𝑖𝑡). There are potential versions of the

intermediate covariates and posttreatment mediator as well, Z𝑖 (𝑑) and 𝑀𝑖2(𝑑), with similar consis-

tency assumptions. We make a standard no anticipation assumption that 𝑀𝑖1 and 𝑌𝑖1 are unaffected

by future values of 𝐷𝑖 or 𝑀𝑖2. Given the DID setup, we have 𝑌𝑖1 = 𝑌𝑖1(0, 𝑀𝑖1). A key feature of

differences-in-differences designs is analyzing changes in the outcome over time to adjust for time-

constant confounding. To that end, let Δ𝑌𝑖 (𝑑, 𝑚) = 𝑌𝑖2(𝑑, 𝑚) −𝑌𝑖1(0, 𝑀𝑖1) be the potential outcome

changes, where we connect this to the observed changes over time as Δ𝑌𝑖 = 𝑌𝑖2(𝐷𝑖, 𝑀𝑖2) − 𝑌𝑖1. We

could allow𝑌𝑖2 to depend on the baselinemediator explicitly, but our estimands will always condition

on the baseline mediator, so we make that dependence implicit for notational simplicity.
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2.1 Quantities of interest

Our goal is to estimate the direct effect of treatment, fixing the value of the posttreatment mediator

to a particular value. We introduce a few different estimands to this end. The first is the controlled

direct effect conditional on the mediator taking that value at baseline:

𝜏𝑚 = 𝔼{𝑌𝑖2(1, 𝑚) − 𝑌𝑖2(0, 𝑚) | 𝑀𝑖1 = 𝑚},

for some 𝑚 ∈ M. We refer to this as the baseline-conditional average controlled direct effect or

ACDE-BC. In the context of our application, this is the effect of the perspective-taking interven-

tion for a fixed level of subjective feelings about transgender people for units with that same level of

subjective feelings at baseline. Conditioning on the baseline level of the mediator creates a separate

DID-like setting for each stratum of 𝑀𝑖1, since within each stratum, all observations begin in period

1 with 𝐷𝑖1 = 0 and 𝑀𝑖1 = 𝑚, and so Δ𝑌𝑖 (𝑑, 𝑚) represents changes over time for a fixed value of the

mediator. This approach also allows us to ignore any carryover effects of 𝑀𝑖1 on 𝑌𝑖2.

The ACDE-BC is useful when assessing the effect for a particular value of the mediator, but it is

also helpful to have a summary measure of the direct effect at differing levels of the mediator. Letting

𝜌𝑚 = ℙ(𝑀𝑖1 = 𝑚), we can marginalize over the distribution of the baseline mediator with

𝜏 =
∑︁
𝑚∈M

𝜏𝑚𝜌𝑚 =
∑︁
𝑚∈M

𝔼[𝑌𝑖2(1, 𝑚) − 𝑌𝑖2(0, 𝑚) | 𝑀𝑖1 = 𝑚]𝜌𝑚,

which we call the marginalized ACDE-BC. This estimand treats each level of the baseline mediator

as a separate DID study and aggregates them based on their size. In this way, it is similar to a con-

ditional version of the average factorial effect in a factorial experiment or the average marginalized

component effect in conjoint studies.

We also investigate the controlled direct effect on those who were treated and hold their value of

the mediator constant over time,

𝛾𝑚 = 𝔼{𝑌𝑖2(1, 𝑚) − 𝑌𝑖2(0, 𝑚) | 𝐷𝑖 = 1, 𝑀𝑖1 = 𝑚, 𝑀𝑖2 = 𝑚},

which is similar to the average treatment effect on the treated in single-treatment settings. We call

this the path-conditional average controlled direct effect or ACDE-PC, and we can marginalize it
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similarly to 𝜏𝑚 and 𝜏. In our application, this estimand has the same interpretation as the ACDE-BC,

except that the effect is only among those units whowould (and do) remain at their baseline subjective

feelings about transgender people before and after treatment. Below, we identify this quantity under

an alternative set of assumptions that may bemore plausible in some empirical settings. We note that,

like causal mediation quantities, the ACDE-PC is a cross-world quantity because we can write it as

𝛾𝑚 = 𝔼{𝑌𝑖2(1, 𝑚) | 𝐷𝑖 = 1, 𝑀𝑖1 = 𝑚, 𝑀𝑖2(1) = 𝑚} − 𝔼{𝑌𝑖2(0, 𝑚) | 𝐷𝑖 = 1, 𝑀𝑖1 = 𝑚, 𝑀𝑖2(1) = 𝑚},

where the second term is an average of the potential outcomes under control 𝑌𝑖2(0, 𝑚) with a con-

ditioning statement that depends on a treated potential value of the mediator 𝑀𝑖2(1). As we will

see below, this cross-world property makes identifying this quantity incompatible with intermediate

confounders.

2.2 Assumptions

We build our identification from two key features of the experimental design: randomization and

panel data. Randomization allows us to identify the overall effect of treatment, and the panel nature

of the data allows us to leverage the key identifying assumption of a difference-in-differences design

that there are parallel trends in specific potential outcomes over time. Let Y(•) = {𝑌𝑖𝑡 (𝑑, 𝑚) : 𝑡 =

1, 2 𝑑 = 0, 1 𝑚 ∈ M} be the set of all potential outcomes, with similar notation defined for 𝑀𝑖2(𝑑)

and Z𝑖 (𝑑).

Assumption 1 (Treatment Randomization). {Y(•), 𝑀𝑖2(•),Z𝑖 (•), 𝑀𝑖1} ⊥⊥ 𝐷𝑖 .

Assumption 2 (Mediator Parallel Trends). For 𝑑 ∈ {0, 1}, and 𝑚, 𝑚′, 𝑚′′ ∈ M

𝔼{𝑌𝑖2(0, 𝑚) − 𝑌𝑖1(0, 𝑚) | 𝐷𝑖 = 𝑑,X𝑖, 𝑀𝑖1 = 𝑚,Z𝑖, 𝑀𝑖2 = 𝑚
′}

= 𝔼{𝑌𝑖2(0, 𝑚) − 𝑌𝑖1(0, 𝑚) | 𝐷𝑖 = 𝑑,X𝑖, 𝑀𝑖1 = 𝑚,Z𝑖, 𝑀𝑖2 = 𝑚
′′}.

Assumption 1 comes from the design of the experiment, though it is possible to generalize this

assumption to a selection-on-observables or parallel trends assumption for an observational study.

Assumption 2 states that the over-time trends in the potential outcomes under control and mediator

level𝑚 are mean-independent of the mediator value in period 2, conditional on some covariates that
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might be pretreatment (X𝑖) or posttreatment (Z𝑖). This assumption would identify the effect of𝑀𝑖2 in

a DID studywhere we viewed𝑀𝑖2 as the treatment of interest, with𝐷𝑖 becoming a baseline covariate.

For example, suppose a unit switches their subjective feelings about transgender people from neutral

to positive (say, 𝑀𝑖1 = 𝑚 to 𝑀𝑖2 = 𝑚′) before and after treatment. The mediator parallel trends

assumption states that those who switch would have had the same mean changes in the potential

outcomes under control and mediator level 𝑚 over time as those who do not switch their subjective

feelings, conditional onX𝑖 andZ𝑖 . Note that this places no restrictions on the baselinemediator, sowe

allow for unmeasured confounding between the outcome and the baseline mediator. Thus, we allow

pretreatment subjective feelings to be arbitrarily related to baseline attitudes about laws relating to

transgender people. Unfortunately, this assumption is not enough to identify the ACDE-BC.

Assumption 3 (No Direct Effect Moderation by the Mediator). For 𝑑 ∈ {0, 1}, and 𝑚, 𝑚′, 𝑚′′ ∈ M.

𝔼{𝑌𝑖2(1, 𝑚) − 𝑌𝑖2(0, 𝑚) | 𝐷𝑖 = 1,X𝑖, 𝑀𝑖1 = 𝑚,Z𝑖, 𝑀𝑖2 = 𝑚
′}

= 𝔼{𝑌𝑖2(1, 𝑚) − 𝑌𝑖2(0, 𝑚) | 𝐷𝑖 = 1,X𝑖, 𝑀𝑖1 = 𝑚,Z𝑖, 𝑀𝑖2 = 𝑚
′′}.

Assumption 3 imposes a homogeneity assumption on the treated group such that strata defined

by the posttreatment mediator have the same ACDE-BC, conditional on all covariates. Intuitively,

this assumption means that treatment cannot induce variation in the mediator that is correlated with

the controlled direct effect. In our context, this assumption could be violated if, for example, feeling

cold vs. warm toward transgender people in the treatment arm is related to having a stronger or

weaker controlled direct effect of treatment on support for anti-discrimination policies. One way to

view these violations is as time-varying confounding between𝑀𝑖2 and𝑌𝑖2 induced by treatment. As is

typical for DID designs, our approach can only handle time-constant unmeasured confounding. We

do note that this mean-independence of the treatment effect is still significantly weaker than other

no-interactions assumptions used to identify mediation effects that require no interaction between

𝐷𝑖 and 𝑀𝑖2 at the individual level (Robins, 2003). Shahn et al. (2022) avoid this assumption by using

an intermediate outcome between𝐷𝑖 and𝑀𝑖2 that would allow them tomake parallel trends assump-

tions with respect to the mediator in the treated group; that is, 𝑌𝑖2(1, 𝑚) −𝑌𝑖1(1, 𝑚). Given that 𝑀𝑖2

has a less clear assignment time, we believe intermediate outcomes are less helpful in this context.
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Assumptions 2 and 3 together imply that a “parallel trends” assumption holds for changes like

Δ𝑌𝑖 (𝑑, 𝑚) = 𝑌𝑖2(𝑑, 𝑚) −𝑌𝑖1(0, 𝑀𝑖1), which is a sufficient condition for our identification assumption

below. (Recall that the random 𝑀𝑖1 in the baseline potential outcome𝑌𝑖1(0, 𝑀𝑖1) will not impact our

analysis since we will always condition on the baseline mediator.) While there may be special cases

where this weaker condition holds and our assumptions do not, separating these into more primitive

assumptions helps clarify them. Furthermore, these assumptions are implied by (but do not imply) the

following sequential ignorability assumption with changes in the outcome as the dependent variable,

Δ𝑌𝑖 (𝑑, 𝑚) ⊥⊥ 𝑀𝑖2 | 𝑀𝑖1 = 𝑚, 𝐷𝑖 = 𝑑,X𝑖,Z𝑖 . (1)

Our assumptions are weaker since (a) they only restrict the averages of the potential outcomes rather

than their entire distributions, and (b) they only restrict the potential outcomes for the samemediator

status as the baseline mediator,𝑚. This sequential ignorability version of the assumptions does retain

the core benefit of a differences-in-differences design: both 𝐷𝑖 and 𝑀𝑖 can still be correlated with

time-constant factors that affect both 𝑌𝑖1 and 𝑌𝑖2 in the same way. That is, they still allow for time-

constant unmeasured confounding, albeit in a restricted, linear fashion.

As an example of how this unmeasured confounding might manifest, suppose a time-constant

unmeasured confounder,𝑈𝑖 , is correlated with 𝑀𝑖2. Further, suppose we have the following models

for our potential outcomes:

𝑌𝑖1(𝑑, 𝑚) = 𝑓1𝑑𝑚 (X𝑖) + 𝑔(𝑈𝑖) + 𝜀𝑖1, 𝑌𝑖2(𝑑, 𝑚) = 𝑓2𝑑𝑚 (X𝑖,Z𝑖 (𝑑)) + 𝑔(𝑈𝑖) + 𝜀𝑖2,

where we assume that 𝜀𝑖𝑡 are i.i.d. and independent of all variables O𝑖 . Here, the functions 𝑓1𝑑𝑚 and

𝑓2𝑑𝑚 capture the observed time-varying confounding and treatment effect heterogeneity, whereas 𝑔

reflects the time-constant unmeasured confounding. Under this model, the usual sequential ignora-

bility assumption for 𝑌𝑖2(𝑑, 𝑚) and 𝑀𝑖2 conditional on just X𝑖 and Z𝑖 would not hold because of the

unmeasured confounder,𝑈𝑖 . However, because that confounder enters into the model for potential

outcomes in a linear, additive, and time-constant manner, it will be unrelated to the changes in the

potential outcomes over time.
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The homogeneous effects restriction of Assumption 3may be too strong for certain empirical ap-

plications. Furthermore, it requires a cross-sectional restriction at odds with the spirit of difference-

in-differences. In settings where the posttreatment mediator might be correlated with the controlled

direct effect, we propose an alternative identifying assumption based on parallel trends among con-

trols only. This assumption will identify the ACDE-PC, 𝛾𝑚 .

Assumption 4 (Mediator Parallel Trends with No Intermediate Confounders). For all 𝑚, 𝑚′, 𝑚′′ ∈

M and 𝑑 ∈ {0, 1},

𝔼{Δ𝑌𝑖 (0, 𝑚) | 𝐷𝑖 = 𝑑,X𝑖, 𝑀𝑖1 = 𝑚, 𝑀𝑖2 = 𝑚
′} = 𝔼{Δ𝑌𝑖 (0, 𝑚) | 𝐷𝑖 = 𝑑,X𝑖, 𝑀𝑖1 = 𝑚, 𝑀𝑖2 = 𝑚

′′}.

This assumption states that parallel trends holds for the mediator in the control group condition-

ing just on the pretreatment covariates and the baseline value of the mediator. In other words, condi-

tional on pretreatment covariates, the observed value of the second-period mediator is unrelated to

the trends in the potential outcomes in the control condition—or in the context of our application,

that observed changes in subjective feelings are unrelated to counterfactual changes in support for

laws under control. Combined with randomization of 𝐷𝑖 , this implies that every group defined by

their values of 𝐷𝑖 and 𝑀𝑖2 would have followed the same average trend if, possibly contrary to fact,

they had remained at 𝑀𝑖2 = 𝑚 and stayed in the control condition. Given the lack of intermediate

covariates, this is similar to a standard difference-in-differences design with a multileveled treatment

(combining 𝐷𝑖 and 𝑀𝑖2).

The exclusion of posttreatment covariates in this identifying assumption is a significant limita-

tion, so it is essential to consider why we must exclude them. To identify the ACDE, we will need

to impute the trends for (𝐷𝑖 = 0, 𝑀𝑖2 = 𝑚) group among those with, say, (𝐷𝑖 = 1, 𝑀𝑖2 = 𝑚).

We typically accomplish this by adjusting for covariates through weighting or regression, and those

methods would require assumptions on both the treated and control potential outcome trends as

in Assumptions 2 and 3. If we include posttreatment confounders, however, our adjustment would

require information about the joint distribution of the potential outcomes of the posttreatment co-

variates, Z𝑖 (1) and the potential outcomes Δ𝑌𝑖 (0, 𝑚). Unfortunately, we cannot identify this joint
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distribution (without strong additional assumptions) due to the fundamental problem of causal in-

ference. We could assume Z𝑖 is unaffected by 𝐷𝑖 , but then it ceases to be posttreatment. We could

alternatively assume parallel trends holds for Z𝑖 (1, 𝑚) with respect to Δ𝑌𝑖 (0, 𝑚), conditional on X𝑖 ,

𝑀𝑖1 = 𝑚 and 𝐷𝑖 = 1, but this seems to call into question why it would be needed to block confound-

ing for 𝑀𝑖2. Thus, in this setting, we can either restrict our parallel trends assumption to the control

treatment of 𝐷𝑖 or allow for posttreatment confounders, but not both simultaneously.

2.3 Identification

We now describe the various functions of the observed data we will use in identification. First, let

𝜋𝑑𝑚2 (𝑚1, x, z) = ℙ(𝑀𝑖2 = 𝑚2 | 𝑀𝑖1 = 𝑚1, 𝐷𝑖 = 𝑑,X𝑖 = x,Z𝑖 = z) be the generalized propensity

score for 𝑀𝑖2. We define𝑊𝑖1𝑚 to be an indicator for the baseline mediator being equal to 𝑚 so that

𝑊𝑖1𝑚 = 1when𝑀𝑖1 = 𝑚 and 0 otherwise, with𝑊𝑖2𝑚 defined similarly for𝑀𝑖2. We use the convention

that when 𝜋𝑑𝑚 (·) omitsZ𝑖 , the function represents the propensity score just as a function ofX𝑖 . Next,

we define the regressions of the differenced outcome on the treatment, mediator, and covariates as

𝜇𝑑𝑚2 (𝑚1, x, z) = 𝔼[Δ𝑌𝑖 | 𝑀𝑖2 = 𝑚2, 𝑀𝑖1 = 𝑚1, 𝐷𝑖 = 𝑑,X𝑖 = x,Z𝑖 = z] .

Since our focus is on estimands where the mediator is the same before and after treatment, we omit

the baseline value from the function when it matches the posttreatment mediator: 𝜋𝑑𝑚 (X𝑖,Z𝑖) =

𝜋𝑑𝑚 (𝑚,X𝑖,Z𝑖) and 𝜇𝑑𝑚 (X𝑖,Z𝑖) = 𝜇𝑑𝑚 (𝑚,X𝑖,Z𝑖). Finally, let 𝛿 = ℙ(𝐷𝑖 = 1) and 𝜆𝑑𝑚 = ℙ(𝑀𝑖1 =

𝑚, 𝐷𝑖 = 𝑑, 𝑀𝑖2 = 𝑚) be the marginal probabilities of treatment and a particular path, respectively.

We make the following standard positivity assumption:

Assumption 5 (Positivity). For all (x, z) in the support of (X𝑖,Z𝑖), 𝑚 ∈ M , and 𝑑 ∈ {0, 1}, we have

𝜋𝑑𝑚 (x, z) > 𝜀 > 0.

Wenow state themain two identification results for each estimand. One relies on inverse propen-

sity score weighting, and the other relies on outcome regressions. All proofs are in Supplemental

Materials B.
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Proposition 1. Under Assumptions 1, 2, 3, and 5, we have

𝜏𝑚 = 𝔼

[(
𝐷𝑖𝑊𝑖2𝑚

𝛿𝜋1𝑚 (X𝑖,Z𝑖)
− (1 − 𝐷𝑖)𝑊𝑖2𝑚

(1 − 𝛿)𝜋0𝑚 (X𝑖,Z𝑖)

)
Δ𝑌𝑖 | 𝑀𝑖1 = 𝑚

]
, (2)

and,

𝜏𝑚 = 𝔼

[
𝑊𝑖1𝑚𝐷𝑖

𝜌𝑚𝛿
𝜇1𝑚 (X𝑖,Z𝑖) −

𝑊𝑖1𝑚 (1 − 𝐷𝑖)
𝜌𝑚 (1 − 𝛿)

𝜇0𝑚 (X𝑖,Z𝑖)
]
. (3)

Under Assumptions 1, 4, and 5, we have

𝛾𝑚 = 𝔼

[
𝑊𝑖1𝑚𝑊𝑖2𝑚

𝜆1𝑚

(
𝐷𝑖 − (1 − 𝐷𝑖)

𝛿𝜋1𝑚 (X𝑖)
(1 − 𝛿)𝜋0𝑚 (X𝑖)

)
Δ𝑌𝑖

]
, (4)

and

𝛾𝑚 = 𝔼

[
𝑊𝑖1𝑚𝐷𝑖𝑊𝑖2𝑚

𝜆1𝑚
(𝜇1𝑚 (X𝑖) − 𝜇0𝑚 (X𝑖))

]
. (5)

These results resemble standard identification results based on weighting and outcome regres-

sions with changes in the outcomes before and after treatment, Δ𝑌𝑖 , replacing levels of the outcome,

𝑌𝑖2.

2.3.1 Connections to other identification results

While we have focused so far on the direct effects of treatment, mediation analyses often target indi-

rect effects as well. The presence of posttreatment confounders, Z𝑖 , usually precludes the possibility

of identifying mediation quantities like the natural indirect effect (Robins, 2003; Avin, Shpitser and

Pearl, 2005) and this is true for our controlled direct effect parameter 𝜏𝑚 . For example, Deuchert, Hu-

ber and Schelker (2019) use a principal strata approach to provide sufficient conditions for identifying

the natural direct and indirect effects for subgroups under parallel trends assumptions. In particular,

their Theorem 1 on the direct effect for those whose mediators are unaffected by treatment is similar

to our identification of 𝛾𝑚 . Our results go further in showing how to estimate the direct effects in the

presence of intermediate confounding, in addition to allowing for non-binary mediators.

We can also compare the identification results to those based on a standard sequential ignora-

bility assumption for outcome levels rather than outcome changes. This design would maintain that
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𝑌𝑖2(𝑑, 𝑚) ⊥⊥ 𝑀𝑖2 | 𝐷𝑖 = 𝑑,X𝑖,Z𝑖 and we would identify 𝜏𝑚 using an IPW approach as 𝔼[𝜔𝑖𝑚𝑌𝑖2] ,

where

𝜔𝑖𝑚 =
𝑊𝑖1𝑚𝐷𝑖𝑊𝑖2𝑚

𝜌𝑚𝛿𝜋1𝑚 (X𝑖,Z𝑖)
− 𝑊𝑖1𝑚 (1 − 𝐷𝑖)𝑊𝑖2𝑚

𝜌𝑚 (1 − 𝛿)𝜋0𝑚 (X𝑖,Z𝑖)
,

meaning that the difference between our IPWDID identification result and the sequential ignorability

identification result is 𝔼[𝜔𝑖𝑚𝑌𝑖1]. This estimand represents the identified “controlled direct effect” of

treatment on a pretreatment measurement of the outcome, which should be zero under sequential

ignorability. Thus, one way to view the DID approach we present is leveraging the known null effect

of treatment on the past to correct biases in standard sequential ignorability approaches—a technique

referred to in the statistics literature as negative control (Lipsitch, Tchetgen Tchetgen and Cohen,

2010; Sofer et al., 2016).

This analysis assumes we use the same conditioning set under a parallel trends approach and a

sequential ignorability approach, but what if we condition on the lagged dependent variable (LDV)

in the latter? Several authors have shown a bracketing relationship between the DID approach and

this LDV approach in the case of a single treatment variable (Angrist and Pischke, 2009; Ding and Li,

2019). In Supplemental Materials A, we derive the difference between the DID target of inference and

LDV target of inference for the ACDE-BC and the ACDE-PC. In the latter case, we show that when

either parallel trends or sequential ignorability with an LDV holds, the two approaches should bound

the true ACDE-PC in the limit, as in Ding and Li (2019).

3 Estimation

We now turn to the estimation of the controlled direct effects. Given the identification results, we

could construct plug-in estimators based on the IPW or outcome regression approaches where we

model either 𝜋𝑑𝑚 or 𝜇𝑑𝑚 and plug in our estimates into a sample version of the expectations in Sec-

tion 2.3. However, both IPW and outcome regression approaches can be biased, unstable, or both

when these models are incorrectly specified. We develop a set of doubly robust estimators to cre-

ate efficient and stable estimators. These estimators are doubly robust in that we will specify two

models—for the propensity scores and the outcome regression—and the resulting estimator will be
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consistent and asymptotically normal when one, but not necessarily both, of the models are correctly

specified. Finally, we integrate a cross-fitting procedure into our estimation approach so that we can

use data-adaptive machine learning models to make estimates less sensitive to particular functional

form assumptions.

To derive a doubly robust and semiparametrically efficient estimator, we first derive the effi-

cient influence functions (EIFs) for our parameters based on the maintained assumptions. We will

build these EIFs from estimating equations 𝜓𝑚 (O𝑖 ; 𝜼𝜏) for 𝜏𝑚 and 𝜙𝑚 (O𝑖 ; 𝜼𝛾) for 𝛾𝑚 , where 𝜼𝜏 =

(𝜋𝑑𝑚, 𝜇𝑑𝑚, 𝜌𝑚, 𝛿) is the vector of nuisance parameters for 𝜏𝑚 , 𝜼𝛾 = (𝜋𝑑𝑚, 𝜇𝑑𝑚, 𝜆𝑑𝑚, 𝛿) is the vector

of nuisance parameters for 𝛾𝑚 . Letting V𝑖 = (X𝑖,Z𝑖), the estimating equations for the ACDE-BC

have the form 𝜓𝑚 (O𝑖 ; 𝜼𝜏) = 𝜓1𝑚 (O𝑖 ; 𝜼𝜏) − 𝜓0𝑚 (O𝑖 ; 𝜼𝜏), where

𝜓1𝑚 (O𝑖 ; 𝜼𝜏) =
𝑊𝑖1𝑚

𝜌𝑚

[
𝐷𝑖𝑊𝑖2𝑚

𝛿𝜋1𝑚 (V𝑖)
(Δ𝑌𝑖 − 𝜇1𝑚 (V𝑖)) +

𝐷𝑖

𝛿
(𝜇1𝑚 (V𝑖))

]
. (6)

𝜓0𝑚 (O𝑖 ; 𝜼𝜏) =
𝑊𝑖1𝑚

𝜌𝑚

[
(1 − 𝐷𝑖)𝑊𝑖2𝑚

(1 − 𝛿)𝜋0𝑚 (V𝑖)
(Δ𝑌𝑖 − 𝜇0𝑚 (V𝑖)) +

1 − 𝐷𝑖
1 − 𝛿 (𝜇0𝑚 (V𝑖))

]
. (7)

For the ACDE-PC, the estimating equations take the form 𝜙𝑚 (O𝑖 ; 𝜼𝛾) = 𝜙1𝑚 (O𝑖 ; 𝜼𝛾) − 𝜙0𝑚 (O𝑖 ; 𝜼𝛾),

where

𝜙1𝑚 (O𝑖 ; 𝜼𝛾) =
𝑊𝑖1𝑚𝐷𝑖𝑊𝑖2𝑚

𝜆1𝑚
(Δ𝑌𝑖 − 𝜇0𝑚 (X𝑖)) (8)

𝜙0𝑚 (O𝑖 ; 𝜼𝛾) =
(
𝑊𝑖1𝑚 (1 − 𝐷𝑖)𝑊𝑖2𝑚

𝜆1𝑚

) (
𝜋1𝑚 (X𝑖)𝛿

𝜋0𝑚 (X𝑖) (1 − 𝛿)

)
(Δ𝑌𝑖 − 𝜇0𝑚 (X𝑖)) (9)

These estimating equations combine imputation (via the outcome regressions) withweighting (via

the propensity scores). They are generalizations of similar doubly robust approaches to estimating

ACDEs under sequential ignorability (Murphy et al., 2001; Orellana, Rotnitzky and Robins, 2010;

van der Laan and Gruber, 2012) and are similar to doubly robust approaches to the estimation of

the effect of point exposures under difference-in-differences designs (Sant’Anna and Zhao, 2020). In

Supplemental Materials B.3, we show that, under suitable regularity conditions, these functions are

the efficient influence function after recentering.
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We now present two estimators based on these EIFs. Doubly robust estimators like ours contain

two steps: estimating the “nuisance” functions (propensity scores and outcome regressions) and then

plugging these estimates into sample versions of the identification formulas to estimate the quan-

tity of interest. The first step of the doubly robust estimator is to estimate these nuisance func-

tions with what are often called “working models,” a name that emphasizes that we do not neces-

sarily assume they are correctly specified. For the propensity score estimates, which we refer to as

�̂�𝑑𝑚2 (𝑚1, x, z), common approaches would be to use a logistic regression for a binary mediator or a

multinomial logistic regression for more general discrete mediators. However, our setup allows for

more flexible machine learning models. We assume another working model for the outcome regres-

sion, 𝜇𝑑𝑚2 (𝑚1, x, z), which might be a simple ordinary least squares regression or something more

complicated like the Lasso or a random forest.

Our final estimator for the ACDEs will be

�̂�𝑚 = ℙ𝑛{𝜓𝑚 (O𝑖 ; �̂�𝜏)} �̂�𝑚 = ℙ𝑛{𝜙𝑚 (O𝑖 ; �̂�𝛾)},

where �̂�𝜏 and �̂�𝛾 are the estimated nuisance functions and ℙ𝑛 ( 𝑓 (O𝑖)) = 𝑛−1
∑𝑛
𝑖=1 𝑓 (O𝑖). We first

establish a doubly robust consistency result for these estimators.

Theorem 1. (a) Under Assumptions 1, 2, 3, 5, and suitable regularity conditions, �̂�𝑚 , is consistent for 𝜏𝑚

when, for 𝑑 ∈ {0, 1}, either �̂�𝑑𝑚
𝑝
→ 𝜋𝑑𝑚 or 𝜇𝑑𝑚

𝑝
→ 𝜇𝑑𝑚 . When all models are correctly specified, �̂�𝑚

is semiparametrically efficient. (b) Under Assumptions 1, 4, and 5, �̂�𝑚 is consistent for 𝛾𝑚 when either

�̂�𝑑𝑚
𝑝
→ 𝜋𝑑𝑚 or 𝜇𝑑𝑚

𝑝
→ 𝜇𝑑𝑚 . When all models are correctly specified, �̂�𝑚 is semiparametrically efficient.

Theorem1 ensures that our estimatorswill be consistent for their intended estimandswhen either

the propensity score model for the posttreatment mediator or the outcome regressions are correctly

specified. While we focus on the case with a randomized treatment, this result extends to handling

a treatment that satisfies selection on observables or a parallel trends assumption. In that case, we

would require an additional propensity score and outcome regression model that adjust the con-

founding between treatment and the outcome due to X𝑖 . In that case, one could employ the multiply

robust estimators of Zhou (2022) and Zhou and Yamamoto (2023) with the changes over time as the
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dependent variable. When using parametric regression estimators for those approaches approach,

covariate selection should be consistent across outcome regression specifications to ensure model

compatibility.

3.1 Variance estimation and crossfitting

As we have shown, we first need to fit a series of working models to obtain estimators from the

doubly robust estimator �̂�𝑚 . When we “double dip” and use the same observations to fit the outcome

regressions and propensity scores as we use in the sample mean 𝑛−1
∑𝑛
𝑖=1 𝜓𝑚 (O𝑖 ; �̂�𝜏), our estimates

can become less stable, and we must account for using the data twice in our uncertainty estimates.

We can avoid both of these issues using cross-fitting/sample-splitting (Chernozhukov et al., 2018),

a simple way to make nuisance parameter estimates independent of the final estimates of the quan-

tities of interest. We first randomly split the sample into 𝐾 equal-sized groups and use 𝐾 − 1 of the

groups to fit the working models, then use those fitted models to obtain predicted values for the re-

maining group to form an estimate of �̂�𝑚 . To recover the lost efficiency of estimating with 1/𝐾 of the

original sample, we use cross-fitting to repeat this procedure for each of the 𝐾 groups and average

the resulting estimates. Finally, to account for the variability of this splitting process, we repeat this

process several times and take the median of the estimates across the different splits as recommended

by Chernozhukov et al. (2018).

To be specific, we randomly partition the data into 𝐾 groups by drawing (𝐵1, . . . , 𝐵𝑛) indepen-

dently of the data, where 𝐵𝑖 is distributed uniformly over {1, . . . , 𝐾}. We take 𝐵𝑖 = 𝑏 to mean that

unit 𝑖 is split into group 𝑏. Let𝜓𝑚 (O𝑖, �̂�𝜏,−𝑏) be the value of the influence functionwhen the nuisance

parameters are estimated without the group 𝐵𝑖 = 𝑏. We also let ℙ𝑏𝑛 denote the conditional empirical

distribution for the group 𝐵𝑖 = 𝑏,

ℙ𝑏𝑛{ 𝑓 (O𝑖)} =
∑
𝑖=1 𝑓 (O𝑖)𝕀(𝐵𝑖 = 𝑏)∑

𝑖=1 𝕀(𝐵𝑖 = 𝑏)

Then, we can define the cross-fitting estimator as

�̂�𝑚 =

𝐾∑︁
𝑏=1

{
1
𝑛
𝕀(𝐵𝑖 = 𝑏)

}
ℙ𝑏𝑛{𝜓𝑚 (O𝑖 ; �̂�𝜏,−𝑏)} = ℙ𝑛

{
𝜓𝑚 (O𝑖 ; �̂�𝜏,−𝐵𝑖 )

}
,

19



with �̂�𝑚 defined similarly. Let ∥ 𝑓 ∥ =

(
𝔼[( 𝑓 (O𝑖))2]

)1/2
for any function 𝑓 . Let 𝜓𝑚 (O𝑖 ; 𝜼𝜏) and

𝜙𝑚 (O𝑖 ; 𝜼𝛾) be the centered EIFs for 𝜏𝑚 and 𝛾𝑚 , respectively. We describe these EIFs in detail in the

Supplemental Materials.

Theorem 2. (a) Let Assumptions 1, 2, 3, and 5 hold and suppose that (i)
�̂�𝜏 − 𝜼𝜏

 = 𝑜𝑝 (1), (ii)

∥𝜇𝑑𝑚 − 𝜇𝑑𝑚 ∥ × ∥�̂�𝑑𝑚 − 𝜋𝑑𝑚 ∥ = 𝑜𝑝 (𝑛−1/2). Then,
√
𝑛(�̂�𝑚 − 𝜏𝑚) will converges in distribution to

N(0,𝔼[𝜓𝑚 (O𝑖 ; 𝜼𝜏)2]) and is thus semiparametrically efficient. (b) Under the same assumptions with As-

sumption 4 replacing Assumptions 2 and 3,
√
𝑛(�̂�𝑚−𝛾𝑚) will converge in distribution toN(0,𝔼[𝜙𝑚 (O𝑖 ; 𝜼𝛾)2])

and is thus semiparametrically efficient.

An additional benefit of this cross-fitting procedure is that it allows for “plug-and-play” integra-

tion with machine learning algorithms so that we can replace, for example, a standard logistic regres-

sion model for a propensity score with a data-adaptive algorithm such as the logistic Lasso. Bradic,

Ji and Zhang (2021) provide the rate conditions on these types of algorithms needed to ensure con-

sistent and asymptotic normality of dynamic treatment effects like the ones we study here. Other

work has shown that many algorithms will achieve the necessary rates, including regression trees,

random forests, neural nets, and boosting in sparse linear models (see Chernozhukov et al., 2018, and

citations therein). In our empirical application, we leverage a version of the Lasso for outcome re-

gressions and a random forest approach to estimate the generalized propensity score for a three-level

discrete mediator.

3.2 Sensitivity analysis

The parallel trends assumptions might be quite strong in applications like ours, even after controlling

for covariates. It is crucial, then, to understand how robust our findings are to violations of these

key assumptions. Following Robins, Rotnitzky and Scharfstein (1999) and Blackwell (2014), we can

conduct a sensitivity analysis that allows for restricted violations of the parallel trends assumption.

In particular, suppose we assume that the average trends in the potential outcomes do, in fact, vary

by the value of the post-treatment mediator by some amount,

|𝔼 [Δ𝑌𝑖 (0, 𝑚) | 𝐷𝑖 = 𝑑,X𝑖, 𝑀𝑖1 = 𝑚] − 𝔼 [Δ𝑌𝑖 (0, 𝑚) | 𝐷𝑖 = 𝑑,X𝑖, 𝑀𝑖1 = 𝑚, 𝑀𝑖2 = 𝑚] | ≤ Γ. (10)
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This restriction controls the violation of parallel trends by allowing the group of respondents who

stay at 𝑀𝑖1 = 𝑀𝑖2 = 𝑚 to have average potential outcome trends under control different from the

overall population by Γ, conditional on treatment status and the baseline covariates.

Under Assumptions 1 and 5 and restriction (10), it is straightforward to show that the ACDE-PC

can be bounded by 𝛾𝑚 ∈ [𝐿𝛾𝑚 ,𝑈𝛾𝑚] , where

𝐿𝛾𝑚 = 𝔼

[
𝑊𝑖1𝑚𝑊𝑖2𝑚

𝜆1𝑚

(
𝐷𝑖 − (1 − 𝐷𝑖)

𝛿𝜋1𝑚 (X𝑖)
(1 − 𝛿)𝜋0𝑚 (X𝑖)

)
Δ𝑌𝑖

]
− 2Γ,

𝑈𝛾𝑚 = 𝔼

[
𝑊𝑖1𝑚𝑊𝑖2𝑚

𝜆1𝑚

(
𝐷𝑖 − (1 − 𝐷𝑖)

𝛿𝜋1𝑚 (X𝑖)
(1 − 𝛿)𝜋0𝑚 (X𝑖)

)
Δ𝑌𝑖

]
+ 2Γ.

We focus here on the ACDE-PC, but we could easily apply a similar procedure to the ACDE-BC as

well. This result is presented in terms of the inverse probability weighting approach to identification,

but a similar result holds for the regression imputation identification as well. Thus, a valid sensitivity

analysis procedure will be to calculate bounds �̂�𝛾𝑚 = �̂�𝑚 − 2Γ and 𝑈𝛾𝑚 = �̂�𝑚 + 2Γ. To obtain

a confidence interval for 𝛾𝑚 under these assumptions, we use the procedure of Imbens and Manski

(2004), which accounts for how the true parameter cannot be close to both the upper and lower bound

at the same time.

A key part of any sensitivity analysis is benchmarking how substantively large the deviations from

parallel trends are in (10). We take the strategy of observing how much unmeasured confounding

would result from omitting observed covariates. In particular, we pretend as though our analysis

only has access to X𝑖,−𝑘 , which is X𝑖 omitting the 𝑘th. Under the assumption that parallel trends

holds for X𝑖 , we can then estimate the bound Γ that would arise from omitting 𝑋𝑖𝑘 from

𝔼[Δ𝑌𝑖 (0, 𝑚) | 𝐷𝑖 = 0,X𝑖,−𝑘 , 𝑀𝑖1 = 𝑚, 𝑀𝑖2 = 𝑚] − 𝔼[Δ𝑌𝑖 (0, 𝑚) | 𝐷𝑖 = 0,X𝑖,−𝑘 , 𝑀𝑖1 = 𝑚]

= 𝔼[Δ𝑌𝑖 | 𝐷𝑖 = 0,X𝑖,−𝑘 , 𝑀𝑖1 = 𝑚, 𝑀𝑖2 = 𝑚]

− 𝔼
[
𝔼[Δ𝑌𝑖 | 𝐷𝑖 = 0,X𝑖, 𝑀𝑖1 = 𝑚, 𝑀𝑖2 = 𝑚] | 𝐷𝑖 = 0,X𝑖,−𝑘 , 𝑀𝑖1 = 𝑚

]
.

To approximate this bound while taking into account sampling uncertainty, we estimate these re-

gressions and find the 95th percentile of the absolute value of the differences between them as an

estimate of how much of a violation of parallel trends would be caused by omitting 𝑋𝑖𝑘 . This will

help us reason about how large the value of Γ is that could overturn a finding.
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3.3 Simulation evidence

In Supplemental Materials C, we present results from a simulation experiment that show the finite-

sample performance of our estimator compared with traditional DID estimators. We show that when

our models are correctly specified, the doubly robust estimators all outperform those DID estimators

in terms of bias and estimation error. These results also hold when the models are incorrectly spec-

ified, at least for large samples. The coverage rates of confidence intervals based on cross-fitting are

very close to nominal levels under correctly specified models, but we do see undercoverage when the

models are incorrect.

4 Results

We now apply these methods to estimate whether a pro-transgender intervention changes support

for nondiscrimination laws, holding constant feelings of warmth towards transgender people. The

main finding in Broockman and Kalla (2016) is that the canvassing intervention increased support

for nondiscrimination laws in the third and fourth post-intervention periods. (The authors specu-

late that the absence of treatment effects in the first two periods could be due to respondents’ lack

of knowledge about the meaning of the term ‘transgender’ and so included a definition in the subse-

quent waves.) While Broockman and Kalla (2016) report treatment effects based on cross-sectional

differences between treatment and control groups after the intervention, we instead use changes in

the outcome Δ𝑌𝑖 .

For the ACDE-BC and ACDE-PC estimators, we use adaptive estimation for the nuisance func-

tions with the lasso approach of Belloni and Chernozhukov (2013) from the hdm R package for the

outcome regression and random forests from the rangerRpackage for the propensity scores for𝑀𝑖2.

For the lasso estimator, we pass all the covariates plus first-order interactions and squared terms for

continuous variables (though we do not include these flexible terms for the standard DID estimates).

The lasso in particular requires this kind of basis expansion to capture nonlinear functional forms. As

dictated by our identifying assumptions, we omit intermediate covariates for estimating the ACDE-

PCs. We restrict our sample to individuals for which all covariates are observed (𝑁 = 369). We
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use 𝐾 = 5 folds for cross-fitting and repeat the cross-fitting procedure 20 times and combined the

estimates using the median approach of Chernozhukov et al. (2018).

4.1 Main estimates
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Marginal m = Cool m = Neutral m = Warm
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e

Estimand Type
DID w/ X, no mediator

DID w/ X, Z + mediator

ACDE-BC

ACDE-PC

Thick bars = 90% CIs, Thin bars = 95% CIs

Figure 3: Controlled direct effect estimates using different estimation strategies.

We present the results in Figure 3. We group the estimates by the subset of the baseline mediator

used for estimation, including the estimatesmarginalized over that variable. We present two standard

regression DID estimates. The first uses the basic regression DID approach to estimate the overall

ATT with no conditioning on intermediate covariates or the mediator (green circles). The second

(orange triangles) shows how those regression DID estimates change if we include Z𝑖 and 𝑀𝑖2 in the

regression. Finally, we show the doubly robust ACDE (DR-ACDE) estimates of �̂�𝑚 (purple squares)

and �̂�𝑚 (pink lines). TheDID results just conditioning on baseline covariates replicate themain results

of the original study: the perspective-taking intervention increased support for nondiscrimination

laws. The magnitude of the DID estimate (0.304) is very similar to the cross-sectional estimate of the

effects from the original study (0.36). However, oncewe add intermediate covariates and themediator

into our DID analysis, the effect attenuates by almost 40% (0.188). Such a changemight lead an analyst

to conclude that feelings about transgender people mediate the effect of the intervention. Of course,

this ignores the potential for posttreatment bias in conditioning on the intermediate confounders.
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Our approach to estimating controlled direct effects show a different andmore nuanced set of re-

sults. For both of the marginal ACDEs, we see that the direct effect estimates are similar in magnitude

to the overall ATT. These effects also have much larger standard errors due in part to the estimation

of the nuisance functions. The uncertainty in these results makes it difficult to compare to the overall

DID estimates.

Figure 3 also shows significant treatment effect heterogeneity by baseline feelings about transgen-

der people. In particular, the conditional ATT for those feeling neutral toward transgender people

is much larger than for the other two groups. This group also shows a stark difference between the

“controlling for Z𝑖 and 𝑀𝑖2” approach and the DR ACDE estimation strategy. The estimated ACDEs

are statistically significant and more than 50% larger in magnitude than the conditional ATT in this

case, whereas the DID + mediator approach is statistically insignficant and 50% smaller. Thus, these

two different approaches would lead to significantly different conclusions about the role that sub-

jective feelings play in the effect of the intervention. For this neutral group, at least, we can say that

there continues to be a direct effect of the intervention for fixed subjective views, and there is no

strong evidence that subjective views are a large part of the mechanism for this effect. The extent of

statistical uncertainty makes it difficult to make any general conclusions for the other baseline levels

of the mediator since all confidence intervals cross 0.

These results are substantively important for the study of political behavior since they show

that perspective-taking conversations can have political effects even when subjective feelings are

unchanged. This result points to the ability of political campaigns to persuade citizens about le-

gal discrimination without necessarily altering their personal feelings about the group. Showing a

disconnection between policy views and emotional orientations is vital since several studies in po-

litical science have shown that people form subjective feelings toward outgroups in childhood and

rarely change them durably (Sears and Funk, 1999). These results are a positive sign for the health

of democracies and how they can increase tolerant public policies without necessarily increasing in-

terpersonal tolerance. However, we acknowledge that our effects are substantial among those with

neutral feelings toward transgender people at baseline, which may point to a significant limitation of
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these effects.

4.2 Additional results

Sensitivity analysis Wenow present the results of the sensitivity analysis described in Section 3.2.

Figure 4 shows bounds on the estimate ACDE-PC as we allow for increasing violations of mediator

parallel trends. Essentially, this is allowing the group that stays neutral before and after treatment

to have a different trend in Δ𝑌𝑖 (0, 𝑚) conditional on the baseline covariates. From this, we can see

that the group of respondents who stay neutral can have a trend up to 0.22 points different from

the overall population and the confidence interval would still exclude zero. That amount of unmea-

sured confounding would represent roughly 0.165 standard deviations of the observed trend in the

“remained neutral” group. As a point of comparison, we can look at what covariates would produce

that amount of parallel trends violation if they were omitted (shown as X marks along the zero line).

Most of the covariates X𝑖 would be below this threshold and only a handful of strong confounders

(an indicator for a Black respondent, thermometer scores for African American, the social dominance

orientation, and prior exposure to trans people) could produce violations this big.

Heterogeneous effects Different subpopulations may have a stronger or weaker ACDE of the in-

tervention than others, so we explored heterogeneous treatment effects based on race and gender

identification in Table SM.4. Generally speaking, these effects are quite noisy due to the small sub-

group sizes, but most of the variation across groups appears swamped by sampling noise. We do

find that for the baseline neutral group, the large ACDE-BC appears driven by white respondents

(�̂�𝑚 = 1.34, 𝑆.𝐸. = 0.55) versus non-white respondents (�̂�𝑚 = 0.50, 𝑆.𝐸. = 0.33). We also observe

large differential effects by gender for this baseline group, with women having a higher direct effect

(�̂�𝑚 = 0.98, 𝑆.𝐸. = 0.34) than non-women (�̂�𝑚 = 0.55, 𝑆.𝐸. = 0.45), though this difference is smaller

than the difference in the overall effects of the intervention for these two groups.

Different measurement timing choices Given the multiwave nature of the study, we can also

investigate how the effect varies as we vary when the outcome and mediator were measured. Given
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Figure 4: ACDE-PC estimates for 𝑚 = Neutral group as we weaken the parallel trends assumption.
The X marks indicate the estimated severity of parallel trends violation would occur from omitting
each of the covariates in X𝑖 , with some of the covariates with larger values labeled.

that we need one posttreatment wave to measure the intermediate covariates, we can use the feeling

thermometer mediator at either wave 2 or wave 3, and the outcome can be measured at either wave

3 or 4. In the main results above, we focused on using the mediator at wave 2 and the outcome at

wave 3, the latter of which was the first wave that produced a significant ATE in the original study.

Table SM.6 shows that the ACDE-BC for the baseline neutral group are all similar in direction and

magnitude for the different wave combinations. This result is consistent with a persistent direct effect

of the treatment even during the fourth wave of the study, which was three months after treatment.

Thus, for some respondents, we can create lasting changes in views on discrimination even without

altering their prejudicial views about a group.

Alternative definition of the mediator Our main results used a three-category classification

of the feeling thermometer, which allowed us to handle the “clumping” of the feeling thermometer

without creating strata too small for inference. We also investigated a five-category classification that
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grouped respondents into feeling thermometers of (i) exactly 0, (ii) between 1 and 49, (iii) exactly

50, (iv) between 51 and 99, and (v) exactly 100. This alternative measure incorporates the clustering

we see at 0 and 100. In Table SM.8, we show these results, which are broadly consistent with our

three-category measure results, though with considerably larger uncertainty due to the mediator

categories being much smaller. One difference from our main effects is a very large ACDE-BC for

the warmest group (𝑚 = 100), possibly due to ceiling effects on the feeling thermometer score. For

respondents with the maximum feeling thermometer at baseline, any positive effect on the outcome

must be a direct effect since their subjective feelings cannot be raised any further. However, we must

be cautious in interpreting this effect since there are only 35 respondents in this baseline category.
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Figure 5: ACDE estimates for 𝑚 = Neutral across different covariate specifications for the adap-
tive/ML (blue triangles) and standard (red circles) estimation of the nuisance functions.

Advantages of flexible estimation Finally, we also investigate how using adaptive estimation

techniques for the nuisance functions impacts the stability of our estimates across different speci-

fication choices. In particular, we varied the choice of variables to pass to either a standard set of

models (OLS for the outcome regression and a multinomial logistic regression for the propensity

scores) or the adaptive estimators described above. The sets of variables are (a) only demographics in

the baseline covariates, (b) demographics and LGBT opinion indices in the baseline covariates, (c) the
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complete set of baseline covariates, and (d) the complete set of covariates plus squared terms for all

continuous variables and all first-order interactions. In this last specification, the number of covari-

ates is far larger than the number of units, so we only used the adaptive design for this specification.

Figure 5 presents the results, which show that the adaptive design has a massive impact on the stabil-

ity of estimates and their uncertainty across these specifications. The increase in uncertainty when

adding additional controls is overwhelming for the standard estimators but has almost no impact

on the adaptive approach. Thus, the combination of cross-fitting and adaptive nuisance estimation

perhaps provides a path toward much less model-dependent estimates and fewer opportunities for

intentional or unintentional p-hacking.

5 Conclusion

This paper seeks to estimate the direct effect of a perspective-taking intervention on support for anti-

discrimination policies for fixed values of prejudicial feelings about transgender people. To do so, we

leverage a multiwave experimental study that allows us to introduce a novel identification strategy

for controlled direct effects under a difference-in-difference design. Our key identifying assump-

tions allow for the mediator to be related to the baseline levels of the potential outcomes, which is

far weaker than the selection-on-observables assumption traditionally used to identify the controlled

direct effects. Our assumptions require so-called parallel trends assumptions, meaning that the me-

diator must be unrelated to the changes in the potential outcomes over time. This approach highlights

how access to baselinemeasures of the outcome can allow researchers to weaken critical assumptions

in evaluating causal mechanisms. We have also built on recent work on doubly robust estimators to

propose a doubly robust, semiparametrically efficient estimator for our proposed quantities. These

estimators allow researchers to take full advantage of adaptive machine learning algorithms for esti-

mating nuisance functions like propensity scores and outcome regressions. Finally, we also developed

a sensitivity analysis procedure for the key parallel trends assumption that allows us to gauge how

much unmeasured confounding in the trends it would take to overturn our results.

The empirical results support the presence of a controlled direct effect for respondents who felt
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neutrally about transgender people at baseline. These estimates may indicate that persuasion about

public policy does not necessarily require persuasion about subjective feelings, at least for less po-

larized individuals. In addition, we find that these effects persisted until the end of the three-month

follow-up period and that they are robust tomoderate violations of parallel trends. Finally, our results

show that proper adjustment for intermediate covariates can lead to different substantive conclusions.

There are several avenues for future substantive and methodological research in this area. Sub-

stantively, our results indicate that researchers may benefit from exploring interventions that directly

increase support for legal tolerance rather than reducing personal tolerance. Researchers might also

benefit from exploring the role of citizens with middling or neutral views about minority groups.

Methodologically, we have focused here on a situation with effectively two time periods and two

causal variables (a treatment and a mediator). However, it should be possible to generalize this ap-

proach to handle treatment history of arbitrary length. This extension might allow for the identifi-

cation of and inference of causal effects in marginal structural models with weaker assumptions on

confounding between the outcome and the treatment history. In addition, in situations with more

pretreatment measurements, it may be possible to use those past measurements to measure and cor-

rect for deviations from the parallel trends assumptions. Finally, one could develop a sensitivity

analysis approach to the effect homogeneity assumptions to understand how much our conclusions

depend on this restriction (see, for example, Brookhart and Schneeweiss, 2007, for such an analysis

for instrumental variables). These are the critical identification assumptions for our approach, and

attention to them is crucially important.
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Supplemental Materials (to appear online)

A Bounding with a lagged dependent variable approach

In this sectionwe contrast the targets of inference under the difference-in-differences framework and

the sequential ignorability with lagged dependent variable framework. For simplicity, we assume a

binary mediator and that 𝑀𝑖1 = 0 throughout and suppress any such conditioning statement. Let

𝐹𝑌1 (𝑦 | 𝑑, 𝑚, x, z) be the cumulative density function of 𝑌𝑖1 given 𝐷𝑖 = 𝑑, 𝑀𝑖2 = 𝑚, X𝑖 = x, and

Z = z, 𝐺𝑌1 (𝑦 | 𝑑, x, z) be the same distribution function without conditioning on 𝑀𝑖2, and let

𝜇(𝑑, 𝑚, x, z, 𝑦) = 𝔼[𝑌𝑖2 | 𝐷𝑖 = 𝑑, 𝑀𝑖2 = 𝑚,X𝑖 = x,Z𝑖 = z, 𝑌𝑖1 = 𝑦].

Next, we describe the targets of inference for both the DID and LDV approaches. These are

quantities that, under each set of assumptions, identify the ACDE but remain valid observational

quantities evenwhen those assumptions do not hold. Our bracketing result will order these quantities

and so is valid regardless of whether or not the identification assumptions actually hold. First, we

write the quantity that, under parallel trends, would identify 𝔼[𝑌𝑖2(0, 0)]:

𝜇0,DID = 𝔼[𝑌𝑖1 | 𝐷𝑖 = 0, 𝑀𝑖2 = 0] +
∫
x,z

𝔼[Δ𝑌𝑖 | 𝐷𝑖 = 0, 𝑀𝑖2 = 0,X𝑖 = x,Z𝑖 = z]𝑑𝑃(x, z | 𝐷𝑖 = 0),

with 𝜇1,DID being defined similarly. Under Assumption 1 and 2, �̃�DID = 𝜇1,DID−𝜇0,DID would identify

the ACDE, 𝜏. Under a lagged dependent variable, the g-computational formula gives the following

identification formula for 𝔼[𝑌𝑖2(0, 0)]:

𝜇0,LDV =

∫
x,z,𝑦

𝔼[𝑌𝑖2 | 𝐷𝑖 = 0, 𝑀𝑖2 = 0,X𝑖 = x,Z𝑖 = z, 𝑌𝑖1 = 𝑦]𝑑𝐺𝑌1 (𝑦 | x, z)𝑑𝑃(x, z | 𝐷𝑖 = 0),

with 𝜇1,LDV defined similarly. If LDV sequential ignorability holds,𝑌𝑖2(𝑑, 𝑚) ⊥⊥ 𝑀𝑖2 | 𝐷𝑖 = 𝑑,X𝑖,Z𝑖, 𝑌𝑖1,

then �̃�LDV = 𝜇1,LDV − 𝜇0,LDV would identify the ACDE.

Theorem 3. The difference between 𝜇0,DID and 𝜇0,LDV is

�̃�DID − �̃�LDV =

∫
x,z,𝑦

Δ1(𝑦)
(
𝑑𝐹𝑌1 (𝑦 | 1, 0, x, z) − 𝑑𝐺𝑌1 (𝑦 | 1, x, z)

)
𝑑𝑃(x, z | 𝐷𝑖 = 0)

−
∫
x,z,𝑦

Δ0(𝑦)
(
𝑑𝐹𝑌1 (𝑦 | 0, 0, x, z) − 𝑑𝐺𝑌1 (𝑦 | 0, x, z)

)
𝑑𝑃(x, z | 𝐷𝑖 = 0),

(11)

where Δ𝑑 (𝑦) = 𝜇(𝑑, 0, x, z, 𝑦) − 𝑦.
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Proof. Using iterated expectations, we can write 𝜇0,DID as

𝜇0,DID =

∫
x,z,𝑦

𝑦𝑑𝐺𝑌1 (𝑦 | x, z)𝑑𝑃(x, z | 𝐷𝑖 = 0)

+
∫
x,z,𝑦

𝔼[Δ𝑌𝑖 | 𝐷𝑖 = 0, 𝑀𝑖2 = 0,X𝑖 = x,Z𝑖 = z, 𝑌𝑖1 = 𝑦]𝑑𝐹𝑌1 (𝑦 | 0, 0, x, z)𝑑𝑃(x, z | 𝐷𝑖 = 0)

=

∫
x,z,𝑦

𝑦𝑑𝐺𝑌1 (𝑦 | x, z)𝑑𝑃(x, z | 𝐷𝑖 = 0)

+
∫
x,z,𝑦

Δ0(𝑦)𝑑𝐹𝑌1 (𝑦 | 0, 0, x, z)𝑑𝑃(x, z | 𝐷𝑖 = 0)

Combining this with the definition of 𝜇0,LDV, we obtain

𝜇0,DID − 𝜇0,LDV =

∫
x,z,𝑦

Δ(𝑦)𝑑𝐹𝑌1 (𝑦 | 0, 0, x, z)𝑑𝑃(x, z | 𝐷𝑖 = 1)

−
∫
x,z,𝑦

Δ0(𝑦)𝑑𝐺𝑌1 (𝑦 | x, z)𝑑𝑃(x, z | 𝐷𝑖 = 0).

Applying the same logic to 𝜇1,DID − 𝜇1,LDV yields the result. □

Our ACDE-PC estimand, on the other hand, has a more specific relationship with the sequential

ignorability approach. In fact, because the identification assumptions for that estimand are simply

parallel trends for a four-category outcome, we can apply the results of Ding and Li (2019) to obtain

a bracketing result between theDID estimand and the LDV estimand. Let �̃�DID and �̃�LDV be the targets

of inference for these two settings, identified in a similar manner to the two above. Following Ding

and Li (2019), we first invoke conditions on the data generating process:

Condition 1 (Stationarity). 𝜕𝜇(𝑑, 𝑚, x, z, 𝑦)/𝜕𝑦 < 1 for all 𝑦.

Condition 2 (Stochastic Monotonicity). Either (a) 𝐹𝑌1 (𝑦 | 𝑑, 1, x, z) ≥ 𝐹𝑌1 (𝑦 | 𝑑, 0, x, z) for all 𝑦; or

(b) 𝐹𝑌1 (𝑦 | 𝑑, 0, x, z) ≥ 𝐹𝑌1 (𝑦 | 𝑑, 1, x, z).

Condition 1 is a limit on the growth of the time series of the outcome and with a linear model,

it would require that the coefficient on the lagged dependent variable be less than one. This is a

commonly invoked assumption with panel and time-series data. Condition 2 characterizes the rela-

tionship between the lagged dependent variable and the mediator, with Condition 2(a) meaning that

the group with 𝑀𝑖2 = 1 has higher baseline outcomes across the entire distribution compared to the
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𝑀𝑖2 = 0 group and vice versa for Condition 2(b). We say Condition 1 and 2 are conditions rather

than assumptions because they are both empirically testable (Ding and Li, 2019).

Ding and Li (2019) have shown that under Conditions 1 and 2(a) we have �̃�DID ≥ �̃�LDV, and under

Conditions 1 and 2(b), we have �̃�DID ≤ �̃�LDV. Thus, if one of these two sets of conditions holds and

one of the two sets of identifying assumptions holds, then the two estimands will bracket the true

value of the ACDE-PC.

B Proofs

B.1 Identification

Proof of Proposition 1. Here, we first prove the IPW identification result for 𝜏𝑚 . The proof for 𝛾𝑚 is

very similar and so we omit it. Below we combine X𝑖 and Z𝑖 into a single vector X𝑖 since their role

in the proof is the same. We begin with the first term of 𝜏𝑚 . By randomization and the law of total

probability we have:

𝔼{𝑌𝑖2(1, 𝑚) | 𝑀𝑖1 = 𝑚} = 𝔼{𝑌𝑖2(1, 𝑚) | 𝐷𝑖 = 1, 𝑀𝑖1 = 𝑚}

=

∫
x
𝔼{𝑌𝑖2(1, 𝑚) | 𝐷𝑖 = 1, 𝑀𝑖1 = 𝑚,X𝑖 = x}𝑑𝑃(x | 𝐷𝑖 = 1, 𝑀𝑖1 = 𝑚)

= 𝔼(𝑌𝑖1(0, 𝑚) | 𝐷𝑖 = 1, 𝑀𝑖1 = 𝑚)

+
∫
x
𝔼{𝑌𝑖2(1, 𝑚) − 𝑌𝑖1(0, 𝑚) | 𝐷𝑖 = 1, 𝑀𝑖1 = 𝑚,X𝑖 = x}𝑑𝑃(x | 𝐷𝑖 = 1, 𝑀𝑖1 = 𝑚)

The first term is identified and, using Assumption 2 we can write the second term as:∫
x
𝔼{Δ𝑌𝑖 (1, 𝑚) | 𝐷𝑖 = 1, 𝑀𝑖1 = 𝑚,X𝑖 = x, 𝑀𝑖2 = 𝑚}𝑑𝑃(x | 𝐷𝑖 = 1, 𝑀𝑖1 = 𝑚)

Let 𝜋𝑑𝑚 (𝑘) = ℙ(𝑀𝑖2 = 𝑚 | 𝐷𝑖 = 𝑑, 𝑀𝑖1 = 𝑘). By consistency and then Bayes’ rule, this becomes,∫
x
𝔼{Δ𝑌𝑖 | 𝐷𝑖 = 1, 𝑀𝑖1 = 𝑚,X𝑖 = x, 𝑀𝑖2 = 𝑚}𝑑𝑃(x | 𝐷𝑖 = 1, 𝑀𝑖1 = 0)

=

∫
x
𝔼{Δ𝑌𝑖 | 𝐷𝑖 = 1, 𝑀𝑖1 = 𝑚,X𝑖 = x, 𝑀𝑖2 = 𝑚}

𝜋1𝑚 (𝑚)
𝜋1𝑚 (𝑚, x)

𝑑𝑃(x | 𝐷𝑖 = 1, 𝑀𝑖1 = 𝑚, 𝑀𝑖2 = 𝑚)

Once again applying the law of total probability and then using the definition of conditional proba-

bility, we can simplify this to:

𝔼

{
Δ𝑌𝑖

𝜋1𝑚 (𝑚,X𝑖)

���� 𝐷𝑖 = 1, 𝑀𝑖1 = 𝑚, 𝑀𝑖2 = 𝑚

}
(𝜋1𝑚 (𝑚)) = 𝔼

{
𝑊𝑖1𝑚𝐷𝑖𝑊𝑖2𝑚Δ𝑌𝑖

𝜌𝑚𝛿𝜋1𝑚 (𝑚,X𝑖)

}
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Thus, we can write the first term in the 𝜏𝑚 (using randomization on the first term):

𝔼{𝑌𝑖2(1, 𝑚) | 𝑀𝑖1 = 𝑚} = 𝔼(𝑌𝑖1(0, 𝑚) | 𝑀𝑖1 = 𝑚) + 𝔼

{
𝑊𝑖1𝑚𝐷𝑖𝑊𝑖2𝑚

𝜌𝑚𝛿𝜋1𝑚 (𝑚,X𝑖)
Δ𝑌𝑖

}
We now turn to the second term of the 𝜏𝑚 . Again using the law of total probability and Assump-

tion 2, we have:

𝔼{𝑌𝑖2(0, 𝑚) | 𝑀𝑖1 = 𝑚} = 𝔼{𝑌𝑖2(0, 𝑚) | 𝐷𝑖 = 0, 𝑀𝑖1 = 𝑚}

=

∫
x
𝔼{𝑌𝑖2(0, 𝑚) | 𝐷𝑖 = 0, 𝑀𝑖1 = 𝑚,X𝑖 = x}𝑑𝑃(x | 𝐷𝑖 = 0, 𝑀𝑖1 = 0)

= 𝔼(𝑌𝑖1(0, 𝑚) | 𝑀𝑖1 = 𝑚)

+
∫
x
𝔼{𝑌𝑖2(0, 𝑚) − 𝑌𝑖1(0, 𝑚) | 𝐷𝑖 = 0, 𝑀𝑖1 = 𝑚,X𝑖 = x}𝑑𝑃(x | 𝐷𝑖 = 0, 𝑀𝑖1 = 𝑚)

Once again, using the law of total probability and Assumption 2, this term becomes:∫
x
𝔼{𝑌𝑖2(0, 𝑚) − 𝑌𝑖1(0, 𝑚) | 𝐷𝑖 = 0, 𝑀𝑖1 = 𝑚,X𝑖 = x, 𝑀𝑖2 = 𝑚}𝑑𝑃(x | 𝐷𝑖 = 0, 𝑀𝑖1 = 𝑚)∫

x
𝔼{Δ𝑌𝑖 | 𝐷𝑖 = 0, 𝑀𝑖1 = 𝑚,X𝑖 = x, 𝑀𝑖2 = 𝑚}𝑑𝑃(x | 𝐷𝑖 = 0, 𝑀𝑖1 = 𝑚)

=

∫
x
𝔼{Δ𝑌𝑖 | 𝐷𝑖 = 0, 𝑀𝑖1 = 𝑚,X𝑖 = x, 𝑀𝑖2 = 𝑚}

𝜋0𝑚(𝑚)
𝜋0𝑚(𝑚, x)

𝑑𝑃(x | 𝐷𝑖 = 0, 𝑀𝑖1 = 𝑚, 𝑀𝑖2 = 𝑚)

Finally, using the law of total probability and the definition of conditional expectation, we can

write this term as:

𝔼

{
Δ𝑌𝑖

𝜌𝑚 (1 − 𝛿)𝜋0𝑚 (𝑚,X𝑖)

���� 𝐷𝑖 = 0, 𝑀𝑖1 = 𝑚, 𝑀𝑖2 = 𝑚

}
𝜋0𝑚 (𝑚)

= 𝔼

{
𝑊𝑖1𝑚 (1 − 𝐷𝑖)𝑊𝑖2𝑚

𝜌𝑚 (1 − 𝛿)𝜋0𝑚 (𝑚,X𝑖)
Δ𝑌𝑖

}
Combining this with the results on the first term gives the desired result for 𝜏𝑚 .

For the regression identification formulas, note that under our assumptions we have

𝔼[Δ𝑌𝑖 (1, 𝑚) | 𝑀𝑖0 = 𝑚] = 𝔼[Δ𝑌𝑖 (1, 𝑚) | 𝑀𝑖0 = 𝑚, 𝐷𝑖 = 1]

= 𝔼 [𝔼[Δ𝑌𝑖 (1, 𝑚) | 𝑀𝑖0 = 𝑚, 𝐷𝑖 = 1,X𝑖,Z𝑖] | 𝑀𝑖0 = 𝑚, 𝐷𝑖 = 1]

= 𝔼 [𝜇1𝑚 (𝑚,X𝑖,Z𝑖) | 𝑀𝑖0 = 𝑚, 𝐷𝑖 = 1]

= 𝔼

[
𝑊𝑖1𝑚𝐷𝑖

𝜌𝑚𝛿
𝜇1𝑚 (𝑚,X𝑖,Z𝑖)

]
.
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The first equality holds by randomization, the second by iterated expectations, the third by the defi-

nition of 𝜇𝑑𝑚 , and the fourth by the definition of conditional expectation. A similar result holds for

𝔼[Δ𝑌𝑖 (0, 𝑚) | 𝑀𝑖0 = 𝑚] which obtains the identification.

□

B.2 Multiple robustness

Proof of Theorem 1. We write 𝜓𝑚 (O𝑖 ; 𝜼𝜏) = 𝜓1𝑚 (O𝑖 ; 𝜼𝜏) − 𝜓0𝑚 (O𝑖 ; 𝜼𝜏), where

𝜓1𝑚 (O𝑖 ; 𝜼𝜏) =
(

𝑊𝑖1𝑚𝐷𝑖𝑊𝑖2𝑚

𝜌𝑚𝛿𝜋1𝑚 (𝑚,X𝑖,Z𝑖)

)
(Δ𝑌𝑖 − 𝜇1𝑚 (𝑚,X𝑖,Z𝑖)) +

𝑊𝑖1𝑚𝐷𝑖

𝜌𝑚𝛿
𝜇1𝑚 (𝑚,X𝑖,Z𝑖)

𝜓0𝑚 (O𝑖 ; 𝜼𝜏) =
(

𝑊𝑖1𝑚 (1 − 𝐷𝑖)𝑊𝑖2𝑚

𝜌𝑚 (1 − 𝛿)𝜋0𝑚 (𝑚,X𝑖,Z𝑖)

)
(Δ𝑌𝑖 − 𝜇0𝑚 (𝑚,X𝑖,Z𝑖)) +

𝑊𝑖1𝑚 (1 − 𝐷𝑖)
𝜌𝑚 (1 − 𝛿)

𝜇0𝑚 (𝑚,X𝑖,Z𝑖).

We demonstrate the double robustness result on the first expression 𝜓𝑖,𝑚,1 with the corresponding

result for 𝜓𝑖,𝑚,0 following similarly. The goal is to show that ℙ𝑛{𝜓1𝑚 (O𝑖 ; �̂�𝜏)}
𝑝
→ 𝔼[Δ𝑌𝑖 (1, 𝑚) |

𝑀𝑖1 = 𝑚] under the cases described in the Theorem. We first consider the case where the propensity

score model is correctly specified, so that �̂�𝜏
𝑝
→ (𝜋𝑑𝑚, 𝜇∗𝑑𝑚, 𝜌𝑚, 𝛿), where 𝜇

∗
1𝑚 and 𝜈∗1𝑚 are functions

that do not necessarily correspond to 𝜇1𝑚 and 𝜈1𝑚 . Note that �̂�
𝑝
→ 𝛿 and �̂�𝑚

𝑝
→ 𝜌𝑚 by the LLN.

Then by Slutsky’s Theorem, we can write ℙ𝑛{𝜓1𝑚 (O𝑖 ; �̂�𝜏)} as

𝔼

{(
𝑊𝑖1𝑚𝐷𝑖𝑊𝑖2𝑚

𝜌𝑚𝛿𝜋1𝑚 (𝑚,X𝑖,Z𝑖)

) (
Δ𝑌𝑖 − 𝜇∗1𝑚 (𝑚,X𝑖,Z𝑖)

)}
+ 𝔼

{
𝑊𝑖1𝑚𝐷𝑖

𝜌𝑚𝛿
𝜇∗1𝑚 (𝑚,X𝑖,Z𝑖)

}
+ 𝑜𝑝 (1)

= 𝔼

{(
𝑊𝑖1𝑚𝐷𝑖

𝜌𝑚𝛿

) (
𝜇1𝑚 (𝑚,X𝑖,Z𝑖) − 𝜇∗1𝑚 (𝑚,X𝑖,Z𝑖)

)}
+ 𝔼

{
𝑊𝑖1𝑚𝐷𝑖

𝜌𝑚𝛿
𝜇∗1𝑚 (𝑚,X𝑖,Z𝑖)

}
+ 𝑜𝑝 (1)

= 𝔼

{
𝑊𝑖1𝑚

𝜌𝑚
𝜇1𝑚 (𝑚,X𝑖,Z𝑖)

}
+ 𝑜𝑝 (1) = 𝔼[Δ𝑌𝑖 (1, 𝑚) | 𝑀𝑖1 = 𝑚] + 𝑜𝑝 (1)

The first equality follows from iterated expectations and the definition of 𝜋𝑑𝑚 , the second by ran-

domization of 𝐷𝑖 and the last by the fact that

𝜇𝑑𝑚 (𝑘,X𝑖,Z𝑖) = 𝔼[Δ𝑌𝑖 (𝑑, 𝑚) | 𝑀𝑖1 = 𝑘,X𝑖,Z𝑖],

and the definition of conditional expectation. This, combined with the equivalent result for 𝜓0𝑚 ,

establishes consistency when the propensity score model is correct.
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Now we turn to the setting where the outcome regressions are correctly specified so that �̂�𝜏
𝑝
→

(𝜋∗
𝑑𝑚
, 𝜇𝑑𝑚, 𝜌𝑚, 𝛿) With these, we can write ℙ𝑛{𝜓1𝑚 (O𝑖 ; �̂�𝜏)} as

𝔼

{(
𝑊𝑖1𝑚𝐷𝑖𝑊𝑖2𝑚

𝜌𝑚𝛿𝜋
∗
1𝑚 (𝑚,X𝑖,Z𝑖)

)
(Δ𝑌𝑖 − 𝜇1𝑚 (𝑚,X𝑖,Z𝑖))

}
+ 𝔼

{
𝑊𝑖1𝑚𝐷𝑖

𝜌𝑚𝛿
𝜇1𝑚 (𝑚,X𝑖,Z𝑖)

}
+ 𝑜𝑝 (1)

= 𝔼

{(
𝑊𝑖1𝑚𝐷𝑖𝑊𝑖2𝑚

𝜌𝑚𝛿𝜋
∗
1𝑚 (𝑚,X𝑖,Z𝑖)

)
(𝜇1𝑚 (𝑚,X𝑖,Z𝑖) − 𝜇1𝑚 (𝑚,X𝑖,Z𝑖))

}
+ 𝔼

{
𝑊𝑖1𝑚𝐷𝑖

𝜌𝑚𝛿
𝜇1𝑚 (𝑚,X𝑖,Z𝑖)

}
+ 𝑜𝑝 (1)

= 𝔼

{
𝑊𝑖1𝑚

𝜌𝑚
𝜇1𝑚 (𝑚,X𝑖,Z𝑖)

}
+ 𝑜𝑝 (1) = 𝔼[Δ𝑌𝑖 (1, 𝑚) | 𝑀𝑖1 = 𝑚] + 𝑜𝑝 (1).

This, combined with the equivalent result for 𝜓0𝑚 , establishes consistency when the outcome regres-

sions are correct. The result for 𝛾𝑚 also follows similarly.

□

B.3 Efficient influence function

Here we show that the influence functions for our doubly robust estimators are (uncentered) versions

of the efficient influence functions (EIFs) for our target parameters. EIFs are important to nonparamet-

ric and semiparametric estimators because the variance of the efficient influence function serves as

a lower bound for the mean squared error of any estimator across any distribution consistent with

the identification assumptions. This is a form of “minimax” lower bound: no estimator can achieve

a lower worst-case mean square error than this bound. If our estimators have that same influence

function, then we hope that these estimators will obtain this bound, at least asymptotically. We now

show that once we center the influence functions for our identification results, we obtain the EIFs

and the semiparametric efficiency bounds.

We now define the centered EIFs for our estimands. Let 𝜈𝑑𝑚 = 𝔼[𝑌𝑖2(𝑑, 𝑚) | 𝑀𝑖0 = 𝑚]. For

ACDE-BC, define the following:

𝜓1𝑚 (O𝑖 ; 𝜼𝜏) = 𝜓1𝑚 (O𝑖 ; 𝜼𝜏) −
𝑊𝑖1𝑚𝐷𝑖

𝜌𝑚𝛿
𝜈1𝑚

𝜓0𝑚 (O𝑖 ; 𝜼𝜏) = 𝜓0𝑚 (O𝑖 ; 𝜼𝜏) −
𝑊𝑖1𝑚 (1 − 𝐷𝑖)
𝜌𝑚 (1 − 𝛿)

𝜈0𝑚

𝜓𝑚 (O𝑖 ; 𝜼𝜏) = 𝜓1𝑚 (O𝑖 ; 𝜼𝜏) − 𝜓0𝑚 (O𝑖 ; 𝜼𝜏)
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For the ACDE-PC, define the centered version of the influence function as:

𝜙𝑚 (O𝑖 ; 𝜼𝛾) = 𝜙𝑚 (O𝑖 ; 𝜼𝛾) −
𝑊𝑖1𝑚𝐷𝑖𝑊𝑖2𝑚

𝜆𝑑𝑚
𝛾𝑚 .

Theorem 4. (a) Under Assumptions 1, 2, 3, 5, and suitable regularity conditions, the efficient influence

function for 𝜏𝑚 is 𝜓𝑚 (O𝑖 ; 𝜼𝜏), and the semiparametric efficiency bound is 𝔼[𝜓𝑚 (O𝑖 ; 𝜼𝜏)2]. (b) Under

Assumptions 1, 4, 5, and suitable regularity conditions, the efficient influence function for 𝛾𝑚 is 𝜙𝑚 (O𝑖 ; 𝜼𝛾),

and the semiparametric efficiency bound is 𝔼[𝜙𝑚 (O𝑖 ; 𝜼𝛾)2].

The regularity conditions here involve technical requirements to ensure pathwise differentiability

of the efficient influence function. See, for example, Bickel et al. (1998, Chapter 3) for more details

on these conditions.

Proof of Theorem 4. Define the collection of potential outcomes in each period asY𝑖2(•) = {𝑌𝑖2(0, 𝑚), 𝑌𝑖2(1, 𝑚)}𝑚∈M
and Y𝑖1(•) = {𝑌𝑖1(0, 𝑚)}𝑚∈M with representative values y2(•) and y1(•), respectively. Then the full

data is given by

H𝑖 = (Y𝑖2(•),Y𝑖1(•), 𝑀𝑖2,Z𝑖, 𝐷𝑖,X𝑖, 𝑀𝑖1) ,

and let h be a possible value of H. Then the density of H for some sigma-finite measure is

𝑞(h) =
∏
𝑚2∈M

∏
𝑚1∈M

𝑓 (y2(·), y1(·) | 𝑚2, 𝐷𝑖 = 1, 𝑚1, z, x)𝑤𝑚2𝑑𝑤𝑚1

× 𝑓 (y2(·), y1(·) | 𝑚2, 𝐷𝑖 = 0, 𝑚1, z, x)𝑤𝑚2 (1−𝑑)𝑤𝑚1

×𝜋1𝑚2 (𝑚1, z, x)𝑤𝑚2𝑑𝑤𝑚1𝜋0𝑚2 (𝑚1, z, x)𝑤𝑚2 (1−𝑑)𝑤𝑚1

× 𝑓 (z | 𝐷𝑖 = 1, 𝑚1, x)𝑑𝑤𝑚1 𝑓 (z | 𝐷𝑖 = 0, 𝑚1, x) (1−𝑑)𝑤𝑚1

× 𝑓 (x | 𝑚1)𝑤𝑚1𝛿𝑑 (1 − 𝛿) (1−𝑑)𝜌𝑤𝑚1
𝑚1

,

where 𝑤𝑚1 is 1 when 𝑀𝑖1 = 𝑚1 and 0 otherwise, with 𝑤𝑚2 defined similarly. In addition to the

propensity scores that have already been defined, this density contains the following:

• 𝑓 (y2(·), y1(·) | 𝑚2, 𝐷𝑖 = 𝑑, 𝑚1, z, x) is the density of the potential outcomes conditional on

𝑀𝑖2 = 𝑚2, 𝐷𝑖 = 𝑑, 𝑀𝑖1 = 𝑚1, Z𝑖 = z, and X𝑖 = x, where 𝑚1, 𝑚2 ∈ M , 𝑑 ∈ {0, 1}, z ∈ ℝ𝑘𝑧 ,

and x ∈ ℝ𝑘𝑥 .
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• 𝑓 (z | 𝐷𝑖 = 𝑑, 𝑚1, x) is the density of Z𝑖 conditional on 𝐷𝑖 = 𝑑, X𝑖 = x, and 𝑀𝑖1 = 𝑚1.

• 𝑓 (x | 𝑚1) is the density of X𝑖 conditional on 𝑀𝑖1 = 𝑚1.

We now the turn to the density of the observed data, O𝑖 = (𝑌𝑖2, 𝑌𝑖1, 𝑀𝑖2,Z𝑖, 𝐷𝑖,X𝑖, 𝑀𝑖1). We write

the density of the observed outcomes as

𝑓 (𝑦2, 𝑦1 | 𝑚2, 1, 𝑚1, z, x),

which marginalizes the 𝑓 (·) over the potential outcomes where 𝐷𝑖 ≠ 1, 𝑀𝑖2 ≠ 𝑚2, or 𝑀𝑖1 ≠ 𝑚1.

Consider a possible value of the observed data

o = (𝑦2, 𝑦1, 𝑗2, 𝑑, 𝑗1, 𝑧, 𝑥)′

The density of the observed dataO𝑖 can be written as

𝑞(o; 𝜃) =
∏
𝑚2∈M

∏
𝑚1∈M

[
𝑓 (𝑦2, 𝑦1 | 𝑚2, 1, 𝑚1, z, x)𝜋1𝑚2 (𝑚1, z, x)

]𝑑1(𝑚2= 𝑗2,𝑚1= 𝑗1)

×
[
𝑓 (𝑦2, 𝑦1 | 𝑚2, 0, 𝑚1, z, x)𝜋0𝑚2 (𝑚1, z, x)

] (1−𝑑)1(𝑚2= 𝑗2,𝑚1= 𝑗1)

×
[
𝑓 (z | 𝐷𝑖 = 1, 𝑚1, x)𝑑 𝑓 (z | 𝐷𝑖 = 0, 𝑚1, x) (1−𝑑)

]1(𝑚1= 𝑗1)

× 𝑓 (x | 𝑚1)1(𝑚1= 𝑗1)𝛿𝑑 (1 − 𝛿) (1−𝑑)𝜌1(𝑚1= 𝑗1)
𝑚1 .

We consider a regular parametric submodel for the joint distribution ofO𝑖 , with log likelihood

log 𝑞(o; 𝜃) =∑︁
𝑚2∈M

∑︁
𝑚1∈M

[
𝑑1(𝑚2 = 𝑗2, 𝑚1 = 𝑗1)

(
log 𝑓 (𝑦2, 𝑦1 | 𝑚2, 1, 𝑚1, z, x; 𝜃) + log 𝜋1𝑚2 (𝑚1, z, x; 𝜃)

)
+ (1 − 𝑑)1(𝑚2 = 𝑗2, 𝑚1 = 𝑗1)

(
log 𝑓 (𝑦2, 𝑦1 | 𝑚2, 0, 𝑚1, z, x; 𝜃) + log 𝜋0𝑚2 (𝑚1, z, x; 𝜃)

) ]
+

∑︁
𝑚1∈M

1(𝑚1 = 𝑗1) (𝑑 log 𝑓 (z | 1, 𝑚1, x; 𝜃) + (1 − 𝑑) log 𝑓 (z | 0, 𝑚1, x; 𝜃) + log 𝑓 (𝑥 | 𝑚1; 𝜃))

where, 𝑞(·; 𝜃0) = 𝑞(·) so that 𝜃0 is the true value of the parameters. This parametric submodel yields

the following score:

𝑆(o; 𝜃) = 𝑆𝑦 (𝑦2, 𝑦1, 𝑗2, 𝑠, 𝑗1, z, x; 𝜃) + 𝑆𝑚 ( 𝑗2, 𝑠, 𝑗1, z, x; 𝜃) + 𝑆𝑧 (z, 𝑗1, 𝑠, x; 𝜃) + 𝑆𝑥 (x, 𝑗1; 𝜃)
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where,

𝑆𝑦 (𝑦2, 𝑦1, 𝑗2, 𝑠, 𝑗1, z, x; 𝜃) =
∑︁
𝑚1∈M

∑︁
𝑑∈{0,1}

∑︁
𝑚2∈M

1 (𝑚1 = 𝑗1, 𝑑 = 𝑠, 𝑚2 = 𝑗2)
𝑑

𝑑𝜃
log 𝑓 (𝑦2, 𝑦1 | 𝑚2, 𝑑, 𝑚1, z, x; 𝜃)

𝑆𝑚 ( 𝑗2, 𝑠, 𝑗1, z, x; 𝜃) =
∑︁
𝑚1∈M

∑︁
𝑑∈{0,1}

∑︁
𝑚2∈M

1 (𝑚1 = 𝑗1, 𝑑 = 𝑠, 𝑚2 = 𝑗2)
¤𝜋𝑑𝑚2 (𝑚1, z, x; 𝜃)
𝜋𝑑𝑚2 (𝑚1, z, x; 𝜃)

𝑆𝑧 (z, 𝑠, 𝑗1, x; 𝜃) =
∑︁
𝑚1∈M

∑︁
𝑑∈{0,1}

1 (𝑚1 = 𝑗1, 𝑑 = 𝑠) 𝑑
𝑑𝜃

log 𝑓 (z | 𝑑, 𝑚1, x; 𝜃)

𝑆𝑥 (x, 𝑗1; 𝜃) =
∑︁
𝑚1∈M

1(𝑚1 = 𝑗1)
𝑑

𝑑𝜃
log 𝑓 (x | 𝑚1; 𝜃)

Let 𝐿20(𝐹𝑊 ) be the usual Hilbert space of zero-mean, square-integrable functions with respect to

the distribution 𝐹𝑊 . The tangent space of the model isH = H𝑦 + H𝑚 + H𝑧 + H𝑥 , where

H𝑦 = {𝑆𝑦 (𝑌𝑖2, 𝑌𝑖1, 𝑀𝑖2, 𝐷𝑖, 𝑀𝑖1,Z𝑖,X𝑖) : 𝑆𝑦 (𝑌𝑖2, 𝑌𝑖1, 𝑀𝑖2, 𝐷𝑖, 𝑀𝑖1,Z𝑖,X𝑖) ∈ 𝐿20(𝐹𝑌2,𝑌1 |𝑀2,𝐷,𝑀1,Z,X)}

H𝑚 = {𝑆𝑚 (𝑀𝑖2, 𝐷𝑖, 𝑀𝑖1,Z𝑖,X𝑖) : 𝑆𝑚 (𝑀𝑖2, 𝐷𝑖, 𝑀𝑖1,Z𝑖,X𝑖) ∈ 𝐿20(𝐹𝑀2 |𝐷,𝑀1,Z,X)}

H𝑧 = {𝑆𝑧 (Z𝑖, 𝐷𝑖, 𝑀𝑖1,X𝑖) : 𝑆𝑧 (Z𝑖, 𝐷𝑖, 𝑀𝑖1,X𝑖) ∈ 𝐿20(𝐹Z|𝐷,𝑀1,X)}

H𝑥 = {𝑆𝑥 (X𝑖, 𝑀𝑖1) : 𝑆𝑥 (X𝑖, 𝑀𝑖1) ∈ 𝐿20(𝐹X|𝑀1)},

The further restrictions on the tangent space are thatwe have𝔼[𝑆𝑚 (𝑀𝑖2, 𝐷𝑖, 𝑀𝑖1,Z𝑖,X𝑖) | 𝐷𝑖, 𝑀𝑖1,Z𝑖,X𝑖] =∑
𝑚2∈M ¤𝜋𝐷𝑖 ,𝑚2 (𝑀𝑖1,Z𝑖,X𝑖) and

𝔼[𝑆𝑚 (𝑀𝑖2, 𝐷𝑖, 𝑀𝑖1,Z𝑖,X𝑖)2 | 𝐷𝑖, 𝑀𝑖1,Z𝑖,X𝑖] =
∑︁
𝑚2∈M

¤𝜋𝐷𝑖𝑚2 (𝑀𝑖1,Z𝑖,X𝑖)2/𝜋𝐷𝑖𝑚2 (𝑀𝑖1,Z𝑖,X𝑖).

We can write the ACDE as a function of the regular parametric submodel as

𝜏𝑚 (𝜃) =
∫
x

∫
z

∫
𝑦1,𝑦2

(𝑦2 − 𝑦1) 𝑓 (𝑦2, 𝑦1 | 𝑚, 1, 𝑚, z, x; 𝜃) 𝑓 (z | 1, 𝑚, x; 𝜃) 𝑓 (x | 𝑚; 𝜃)𝑑𝑦1𝑑𝑦2𝑑z𝑑x

−
∫
x

∫
z

∫
𝑦1,𝑦2

(𝑦2 − 𝑦1) 𝑓 (𝑦2, 𝑦1 | 𝑚, 0, 𝑚, z, x; 𝜃) 𝑓 (z | 0, 𝑚, x; 𝜃) 𝑓 (x | 𝑚; 𝜃)𝑑𝑦1𝑑𝑦2𝑑z𝑑x,

where 𝜏𝑚 (𝜃0) = 𝜏𝑚 .

Our proposed influence functionwill be the efficient influence function if it is in the tangent space

H and meets the following condition:

𝜕𝜏𝑚 (𝜃0)
𝜕𝜃

= 𝔼
[
𝜓𝑚 (O𝑖 ; 𝜼𝜏)𝑆(O𝑖 ; 𝜃0)

]
.
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We can derive the pathwise derivative as
𝜕𝜏𝑚 (𝜃0)
𝜕𝜃

=

∫
x

∫
z

∫
𝑦1,𝑦2

[
(𝑦2 − 𝑦1)𝑆(𝑦2, 𝑦1 | 𝑚, 1, 𝑚, z, x) 𝑓 (𝑦2, 𝑦1 | 𝑚, 1, 𝑚, z, x) 𝑓 (z | 1, 𝑚, x)

× 𝑓 (x | 𝑚)𝑑𝑦2𝑑𝑦2𝑑z𝑑x
]

+
∫
x

∫
z

∫
𝑦1,𝑦2

[
(𝑦2 − 𝑦1)𝑆(𝑦2, 𝑦1 | 𝑚, 0, 𝑚, z, x) 𝑓 (𝑦2, 𝑦1 | 𝑚, 0, 𝑚, z, x) 𝑓 (z | 0, 𝑚, x)

× 𝑓 (x | 𝑚)𝑑𝑦2𝑑𝑦2𝑑z𝑑x
]

+
∫
x

∫
z
(𝜇1𝑚 (𝑚, z, x))𝑆(z | 1, 𝑚, x) 𝑓 (z | 1, 𝑚, x) 𝑓 (x | 𝑚)𝑑z𝑑x

+
∫
x

∫
z
(𝜇0𝑚 (𝑚, z, x))𝑆(z | 0, 𝑚, x) 𝑓 (z | 0, 𝑚, x) 𝑓 (x | 𝑚)𝑑z𝑑x

+
∫
x

∫
z
(𝜇1𝑚 (𝑚, z, x))𝑆(x | 𝑚) 𝑓 (z | 1, 𝑚, x) 𝑓 (x | 𝑚)𝑑z𝑑x

+
∫
x

∫
z
(𝜇0𝑚 (𝑚, z, x))𝑆(x | 𝑚) 𝑓 (z | 0, 𝑚, x) 𝑓 (x | 𝑚)𝑑z𝑑x,

(12)

Upon inspection, 𝜓𝑚 (O𝑖 ; 𝜼𝜏) satisfies the condition and is inH . For example, the first line of (12)

can be rewritten

𝔼

[
𝑊𝑖1𝑚𝐷𝑖𝑊𝑖2𝑚

𝜌𝑚𝛿𝜋1𝑚 (X𝑖,Z𝑖)
(Δ𝑌𝑖 − 𝜇1𝑚 (𝑚,X𝑖,Z𝑖))𝑆𝑦 (𝑌𝑖2, 𝑌𝑖1, 𝑀𝑖2, 𝐷𝑖, 𝑀𝑖1,Z𝑖,X𝑖)

]
;

the third line can be written as

𝔼

[
𝑊𝑖1𝑚𝐷𝑖

𝜌𝑚𝛿
(𝜇1𝑚 (𝑚,X𝑖,Z𝑖) − 𝜈1𝑚)𝑆𝑧 (Z𝑖, 𝐷𝑖, 𝑀𝑖1,X𝑖)

]
;

and the fifth term as

𝔼

[
𝑊𝑖1𝑚𝐷𝑖

𝜌𝑚𝛿
(𝜇1𝑚 (𝑚,X𝑖,Z𝑖) − 𝜈1𝑚)𝑆𝑥 (X𝑖, 𝑀𝑖1)

]
.

Using the orthogonality of the score functions, we can combine these to show that they are equal to

𝔼[𝜓1𝑚 (O𝑖 ; 𝜼𝜏)𝑆(O𝑖 ; 𝜃0)]. Combining these steps with similar derivations for the other lines in (12)

Thus, by Theorem 3.1 of Newey (1990), 𝜓𝑚 (O𝑖 ; 𝜼𝜏) is the efficient influence function for 𝜏𝑚 and

the latter is a pathwise differentiable parameter. This also implies that the semiparametric efficiency

bound is 𝔼[𝜓𝑚 (O𝑖 ; 𝜼𝜏)2].

For our other estimand, note that
𝛾𝑚 = 𝔼 [𝔼 [Δ𝑌𝑖 | 𝑀𝑖1 = 𝑚, 𝐷𝑖 = 1, 𝑀𝑖2 = 𝑚, 𝑋𝑖]

− 𝔼 [Δ𝑌𝑖 | 𝑀𝑖1 = 𝑚, 𝐷𝑖 = 1, 𝑀𝑖2 = 𝑚, 𝑋𝑖] | 𝑀𝑖1 = 𝑚, 𝐷𝑖 = 1, 𝑀𝑖2 = 𝑚]
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Thus, under the regular parametric submodel, we can write this as

𝛾𝑚 (𝜃) =

∫
x

∫
𝑦1,𝑦2

(𝑦2 − 𝑦1) 𝑓 (𝑦2, 𝑦1 | 𝑚, 1, 𝑚, x; 𝜃)𝜋1𝑚 (𝑚, x; 𝜃) 𝑓 (x | 𝑚; 𝜃)𝑑𝑦1𝑑𝑦2𝑑x∫
x 𝜋1𝑚 (𝑚, x; 𝜃) 𝑓 (x | 𝑚; 𝜃)

−

∫
x

∫
𝑦1,𝑦2

(𝑦2 − 𝑦1) 𝑓 (𝑦2, 𝑦1 | 𝑚, 0, 𝑚, x; 𝜃)𝜋1𝑚 (𝑚, x; 𝜃) 𝑓 (x | 𝑚; 𝜃)𝑑𝑦1𝑑𝑦2𝑑x∫
𝑥
𝜋1𝑚 (𝑚, x; 𝜃) 𝑓 (x | 𝑚; 𝜃)

Thus,

𝜕𝛾𝑚 (𝜃0)
𝜕𝜃

=

∫
x

∫
𝑦1,𝑦2

(𝑦2 − 𝑦1)𝑆(𝑦2, 𝑦1 | 𝑚, 1, 𝑚, x) 𝑓 (𝑦2, 𝑦1 | 𝑚, 1, 𝑚, x)𝜋1𝑚 (𝑚, x) 𝑓 (x | 𝑚)𝑑𝑦1𝑑𝑦2𝑑x
𝔼[𝑊𝑖1𝑚𝐷𝑖𝑊𝑖2𝑚]/𝛿𝜌𝑚

−

∫
x

∫
𝑦1,𝑦2

(𝑦2 − 𝑦1)𝑆(𝑦2, 𝑦1 | 𝑚, 0, 𝑚, x) 𝑓 (𝑦2, 𝑦1 | 𝑚, 0, 𝑚, x)𝜋1𝑚 (𝑚, x) 𝑓 (x | 𝑚)𝑑𝑦1𝑑𝑦2𝑑x
𝔼[𝑊𝑖1𝑚𝐷𝑖𝑊𝑖2𝑚]/𝛿𝜌𝑚

+
∫
x (𝜇1𝑚 (𝑚, x) − 𝜇0𝑚 (𝑚, x) − 𝛾𝑚) ¤𝜋1𝑚 (𝑚, x) 𝑓 (x | 𝑚)𝑑x

𝔼[𝑊𝑖1𝑚𝐷𝑖𝑊𝑖2𝑚]/𝛿𝜌𝑚

+
∫
x (𝜇1𝑚 (𝑚, x) − 𝜇0𝑚 (𝑚, x) − 𝛾𝑚) 𝜋1𝑚 (𝑚, x)𝑆(x | 𝑚) 𝑓 (x | 𝑚)𝑑x

𝔼[𝑊𝑖1𝑚𝐷𝑖𝑊𝑖2𝑚]/𝛿𝜌𝑚

To verify that it is inH , we can rewrite 𝜙𝑚 (O𝑖 ; 𝜼𝛾) as

𝜙𝑚 (O𝑖 ; 𝜼𝛾) =
(
𝑊𝑖1𝑚𝐷𝑖𝑊𝑖2𝑚

𝜆1𝑚

)
(Δ𝑌𝑖 − 𝜇1𝑚 (𝑚,X𝑖))

−
(
𝑊𝑖1𝑚 (1 − 𝐷𝑖)𝑊𝑖2𝑚

𝜆1𝑚

) (
𝜋1𝑚 (𝑚,X𝑖)𝛿

𝜋0𝑚 (𝑚,X𝑖) (1 − 𝛿)

) (
Δ𝑌𝑖 − 𝜇𝑖,0𝑚

)
+ 𝑊𝑖1𝑚𝐷𝑖

𝜆1𝑚
(𝑊𝑖2𝑚 − 𝜋1𝑚 (𝑚,X𝑖)) (𝜇1𝑚 (𝑚,X𝑖) − 𝜇0𝑚 (𝑚,X𝑖) − 𝛾𝑚)

+ 𝑊𝑖1𝑚𝐷𝑖

𝜆1𝑚
𝜋1𝑚 (𝑚,X𝑖) (𝜇1𝑚 (𝑚,X𝑖) − 𝜇0𝑚 (𝑚,X𝑖) − 𝛾𝑚) .

From there, it is straightforward to verify that

𝜕𝛾𝑚 (𝜃0)
𝜕𝜃

= 𝔼
[
𝜙𝑚 (O𝑖 ; 𝜼𝛾)𝑆(O𝑖 ; 𝜃0)

]
.

Thus it is the efficient influence function for 𝛾𝑚 and the semiparametric efficiency bound is𝔼[𝜙𝑚 (O𝑖 ; 𝜼𝛾)2].

□
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B.4 Asymptotic distribution of the cross-fitting estimator

We now derive the asymptotic distribution of the cross-fitting estimator. To do so, we define the

statistical functional of interest as a function of the underlying probability distribution:

𝜏𝑚 (𝑃) =
∫
x,z

∫
𝑦2,𝑦1

(𝑦2 − 𝑦1)𝑑𝑃(𝑦2, 𝑦1 | 𝑚, 1, 𝑚, z, x)𝑑𝑃(𝑧, 𝑥 | 1, 𝑚)

−
∫
x,z

∫
𝑦2,𝑦1

(𝑦2 − 𝑦1)𝑑𝑃(𝑦2, 𝑦1 | 𝑚, 0, 𝑚, z, x)𝑑𝑃(𝑧, 𝑥 | 0, 𝑚)

We denote ℙ as the true distribution of the data so that

𝜏𝑚 (ℙ) = 𝔼

[
𝑊𝑖1𝑚𝐷𝑖

𝜌𝑚𝛿
𝜇1𝑚 (𝑚,X𝑖,Z𝑖) −

𝑊𝑖1𝑚 (1 − 𝐷𝑖)
𝜌𝑚 (1 − 𝛿)

𝜇1𝑚 (𝑚,X𝑖,Z𝑖)
]
= 𝜏𝑚

as the true value of the parameter. Let ℙ̂𝑛 be any distribution onO such that themarginal distribution

of (X𝑖,Z𝑖, 𝐷𝑖, 𝑀𝑖0) obtain their empirical distributions, but the nuisance functions are equal to their

estimated value from some potentially data-adaptive procedure (𝜇𝑑𝑚, �̂�𝑑𝑚). Under this distribution,

we have

𝜏𝑚 (ℙ̂𝑛) = ℙ𝑛

[
𝑊𝑖1𝑚𝐷𝑖

�̂�𝑚 �̂�
𝜇1𝑚 (𝑚,X𝑖,Z𝑖) −

𝑊𝑖1𝑚 (1 − 𝐷𝑖)
�̂�𝑚 (1 − �̂�)

𝜇1𝑚 (𝑚,X𝑖,Z𝑖)
]

as the plugin estimator based on outcome regression.

The following lemma is from the Supplemental Materials for Kennedy, Balakrishnan and G’Sell

(2020) and follows from an application of Chebyshev’s inequality. For any random function �̂�(O𝑖),

let ℙ(�̂�𝑖) = ℙ(�̂�(O𝑖)) =
∫
�̂�(o)𝑑ℙ(o), which is equivalent to the expectation of �̂� according to the

distribution ℙ.

Lemma SM.1. Let �̂� (o) be a function estimated from a sample O−𝑏 = {O𝑖 : 𝐵𝑖 ≠ 𝑏} and let ℙ𝑏𝑛 be the

empirical measure over O𝑏 = {O𝑖 : 𝐵𝑖 = 𝑏}, which is independent of O−𝑏 . Then,

(ℙ𝑏𝑛 − ℙ) ( �̂� − 𝑓 ) = 𝑂ℙ

©«
 �̂� − 𝑓


√
𝑛

ª®®¬
Here we describe the regularity conditions that are required to prove Theorem 2.

Assumption 6 (Regularity conditions). We assume that (a) ℙ[𝜖1 ≤ �̂�1𝑚 ≤ 1 − 𝜖1] = 1, ℙ[𝜖𝑑 ≤ �̂�𝑑 ≤

1 − 𝜖𝑑] = 1, and ℙ[𝜖2 ≤ �̂�𝑖,2𝑚 ≤ 1 − 𝜖2] = 1 for some values of 𝜖1, 𝜖𝑑 , 𝜖2 > 0; (b) ∥𝑌𝑖𝑡 ∥𝑞 ≤ 𝐶𝑦 ,𝜇𝑖,𝑑𝑚𝑞 ≤ 𝐶𝜇, and 𝜈𝑖,𝑑𝑚𝑞 ≤ 𝐶𝜈 for some fixed strictly positive constants 𝐶𝑦, 𝐶𝜇, 𝐶𝜈 and 𝑞 > 2.
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Proof of Theorem 2. We focus on the result for �̂�𝑚 since the derivation for �̂�𝑚 follows similarly. To

ease notation and without loss of generality, let 𝜌𝑚 = �̂�𝑚 = 1 so there is only one baseline mediator

value possible. Let ℙ̂−𝑏 be the empirical measure like ℙ̂𝑛 but with the nuisance functions estimated

without fold 𝑏. For this proof, we write the EIFs as functions of a measure rather than the nuisance

terms, so that 𝜓𝑚 (O𝑖 ;ℙ) is the EIF under the true data generating distribution and 𝜓𝑚 (O𝑖 ; ℙ̂−𝑏) is

the EIF when the nuisance functions are estimated without fold 𝑏. Define the estimated effect from

fold 𝑏 as

�̂�𝑚,𝑏 = ℙ𝑏𝑛

{
𝜓𝑚 (O𝑖 ; ℙ̂−𝑏)

}
= 𝜏𝑚 (ℙ̂−𝑘 ) + ℙ𝑏𝑛

{
𝜓𝑚 (O𝑖 ; ℙ̂−𝑏)

}
We can write the estimation error in fold 𝑏 as

�̂�𝑚,𝑏 − 𝜏𝑚 = 𝜏𝑚 (ℙ̂−𝑘 ) + ℙ𝑏𝑛

{
𝜓𝑚 (O𝑖 ; ℙ̂−𝑏)

}
− 𝜏𝑚 (ℙ)

= (ℙ𝑏𝑛 − ℙ)
{
𝜓𝑚 (O𝑖 ;ℙ)

}
+ (ℙ𝑏𝑛 − ℙ)

{
𝜓𝑚 (O𝑖 ; ℙ̂−𝑏) − 𝜓𝑚 (O𝑖 ;ℙ)

}
+ 𝑅2(ℙ̂−𝑏,ℙ),

= 𝑆∗𝑏 + 𝑇1𝑏 + 𝑇2𝑏,
where

𝑅2(𝑃, 𝑃) = 𝜏𝑚 (𝑃) − 𝜏𝑚 (𝑃) +
∫

𝜓𝑚 (o; 𝑃)𝑑𝑃(o).

For ease of exposition, We assume that we have equal-sized fold, though all results go through as long

as the number of folks is finite. In this case, the overall estimate is �̂�𝑚 = 1
𝐵

∑𝐵
𝑏=1 �̂�𝑚,𝑏 , so we can write

the overall estimation error as

�̂�𝑚 − 𝜏𝑚 = 𝑆∗ + 1
𝐵

𝐵∑︁
𝑏=1

𝑇1𝑏 +
1
𝐵

𝐵∑︁
𝑏=1

𝑇2𝑏 = 𝑆
∗ + 𝑇1 + 𝑇2,

where 𝑆∗ = (ℙ𝑛 − ℙ) 𝜓𝑖𝑚 .

We take each term in turn. First, 𝑆∗ is the average of 𝑛 iid mean-zero random variables with finite

variance, so can employ the central limit theorem to establish that it will converge in distribution to

𝑁 (0, 𝕍 [𝜓𝑖𝑚]). Note that 𝕍 [𝜓𝑖𝑚] = 𝔼[𝜓𝑚 (O𝑖 ;ℙ)2].

For 𝑇1, we first note that 𝜓𝑚 (O𝑖 ; 𝑃) = 𝜓𝑚 (O𝑖 ; 𝑃) + 𝜏𝑚 (𝑃) and (ℙ𝑏𝑛 − ℙ) (𝜏𝑚 (ℙ̂−𝑏) − 𝜏𝑚 (ℙ)) = 0

because 𝜏𝑚 (ℙ̂−𝑏) and 𝜏𝑚 (ℙ) are constantwith respect to thosemeasures. We thenwrite this empirical

process term as

𝑇1𝑏 = (ℙ𝑏𝑛 − ℙ)
{
𝜓𝑚 (O𝑖 ; ℙ̂−𝑏) − 𝜓𝑚 (O𝑖 ;ℙ)

}
= (ℙ𝑏𝑛 − ℙ)

{
𝜓𝑚 (O𝑖 ; ℙ̂−𝑏) − 𝜓𝑚 (O𝑖 ;ℙ)

}
,
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ByLemmaSM.1, to show that𝑇2𝑏 is 𝑜𝑝 (1/
√
𝑛), we have to show that

𝜓𝑚 (O𝑖 ; ℙ̂−𝑏) − 𝜓𝑚 (O𝑖 ;ℙ)
 =

𝑜𝑝 (1). If this holds for all 𝑇1𝑘 , then it also will hold for 𝑇1. Then, omitting arguments for cleaner ex-

position, we have

∥𝜓𝑚 (O𝑖 ; ℙ̂−𝑏) − 𝜓𝑚 (O𝑖 ;ℙ)∥

=

𝐷𝑖𝑊𝑖2𝑚

�̂��̂�1𝑚
(Δ𝑌𝑖 − 𝜇1𝑚) −

𝐷𝑖𝑊𝑖1𝑚

𝛿𝜋1𝑚
(Δ𝑌𝑖 − 𝜇𝑖1𝑚)

+ (1 − 𝐷𝑖)𝑊𝑖2𝑚

(1 − �̂�)�̂�0𝑚
(Δ𝑌𝑖 − 𝜇0𝑚) −

(1 − 𝐷𝑖)𝑊𝑖1𝑚

(1 − 𝛿)𝜋1𝑚
(Δ𝑌𝑖 − 𝜇0𝑚)

+ 𝐷𝑖
�̂�
𝜇1𝑚 − 𝐷𝑖

𝛿
𝜇1𝑚 − 1 − 𝐷𝑖

1 − �̂�
𝜇0𝑚 + 1 − 𝐷𝑖

1 − 𝛿 𝜇0𝑚


=

𝐷𝑖𝑊𝑖2𝑚

𝛿𝜋1𝑚
(𝜇1𝑚 − 𝜇1𝑚) +

𝐷𝑖𝑊𝑖2𝑚

𝛿�̂�1𝑚
(Δ𝑌𝑖 − 𝜇1𝑚) (𝜋1𝑚 − �̂�1𝑚) +

𝐷𝑖𝑊𝑖1𝑚

𝛿�̂��̂�1𝑚
(Δ𝑌𝑖 − 𝜇1𝑚)

(
𝛿 − �̂�

)
− (1 − 𝐷𝑖)𝑊𝑖2𝑚

(1 − 𝛿)𝜋0𝑚
(𝜇0𝑚 − 𝜇0𝑚) −

(1 − 𝐷𝑖)𝑊𝑖2𝑚

(1 − 𝛿)�̂�0𝑚
(Δ𝑌𝑖 − 𝜇0𝑚) (𝜋0𝑚 − �̂�0𝑚)

− (1 − 𝐷𝑖)𝑊𝑖1𝑚

(1 − 𝛿) (1 − �̂�)�̂�0𝑚
(Δ𝑌𝑖 − 𝜇0𝑚)

(
�̂� − 𝛿

)
+ 𝐷𝑖
𝛿

(𝜇1𝑚 − 𝜇1𝑚) −
1 − 𝐷𝑖
1 − 𝛿 (𝜇0𝑚 − 𝜇0𝑚)

+ 𝐷𝑖
𝛿�̂�
𝜇1𝑚

(
𝛿 − �̂�

)
− 1 − 𝐷𝑖

(1 − 𝛿) (1 − �̂�)
𝜇0𝑚

(
𝛿 − �̂�

) ,
≲
�̂� − 𝛿 +max

𝑑
∥�̂�𝑑𝑚 − 𝜋𝑑𝑚 ∥ +max

𝑑
∥𝜇𝑑𝑚 − 𝜇𝑑𝑚 ∥ = 𝑜ℙ(1)

where the hats are estimated from non-𝑏 folds and recall that we write 𝑎 ≲ 𝑏 if 𝑎 ≤ 𝐶𝑏 for some

positive constant 𝐶 > 0. The second equality is just rearranging. The last inequality follows teh

triangle inequality, the fact that the propensity scores (and their estimates) are bounded away from

zero (per Assumption 6), and combination of the bounded moment conditions from Assumption 6

and Hölder’s inequality. Here we have also used the fact that the estimated and true propensity scores

are bounded away from zero. By Lemma SM.1, 𝑇1𝑏 and thus 𝑇1 must be 𝑜ℙ(1/
√
𝑁).

For 𝑇2, we must show that 𝑇2𝑏 = 𝑅2(ℙ̂−𝑏,ℙ) = 𝑜ℙ(1/
√
𝑛). First, note that 𝜏𝑚 (ℙ) = 𝜈1𝑚 − 𝜈0𝑚

and 𝜏𝑚 (ℙ̂−𝑏) = �̂�1𝑚 − �̂�0𝑚 where �̂�1𝑚 = ℙ𝑛,−𝑏{(𝐷𝑖/�̂�)𝜇1𝑚} is the average of the estimated outcome

regression over the empirical distribution of the covariates conditional on 𝐷𝑖 = 1 (and 𝑀𝑖0 = 𝑚
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though this is suppressed in the notation). We can write the remainder term as

𝑅2(ℙ̂−𝑏,ℙ) = 𝜏𝑚 (ℙ̂−𝑏) − 𝜏𝑚 (ℙ)

+
∫ [

𝐷𝑖𝑊𝑖2𝑚

�̂��̂�1𝑚
(Δ𝑌𝑖 − 𝜇1𝑚) −

(1 − 𝐷𝑖)𝑊𝑖2𝑚

(1 − �̂�)�̂�0𝑚
(Δ𝑌𝑖 − 𝜇0𝑚)

+ 𝐷𝑖
�̂�
𝜇1𝑚 − 1 − 𝐷𝑖

1 − �̂�
𝜇0𝑚 − 𝐷𝑖

�̂�
�̂�1𝑚 + 1 − 𝐷𝑖

1 − �̂�
�̂�0𝑚

]
𝑑ℙ.

Again, the nuisance functions are estimated on the non-𝑏 fold, so they are constant with respect to

the data and measure ℙ. By iterated expectations and the parallel trends assumptions, we have∫
𝐷𝑖𝑊𝑖2𝑚

�̂��̂�1𝑚
(Δ𝑌𝑖 − 𝜇1𝑚)𝑑ℙ =

∫
𝛿𝜋1𝑚

�̂��̂�1𝑚
(𝜇1𝑚 − 𝜇1𝑚)𝑑ℙ∫

𝐷𝑖

�̂�
𝜇1𝑚𝑑ℙ =

∫
𝛿

�̂�
𝜇1𝑚𝑑ℙ∫

𝐷𝑖

�̂�
𝜇1𝑚𝑑ℙ =

∫
𝛿

�̂�
𝜈1𝑚𝑑ℙ

Using these fact, we can show

𝑅2(ℙ̂−𝑏,ℙ) = (�̂�1𝑚 − �̂�0𝑚) − (𝜈1𝑚 − 𝜈0𝑚)

+
∫ [

𝛿𝜋1𝑚

�̂��̂�1𝑚
(𝜇1𝑚 − 𝜇1𝑚) −

(1 − 𝛿)𝜋0𝑚
(1 − �̂�)�̂�0𝑚

(𝜇0𝑚 − 𝜇0𝑚) +
𝐷𝑖

�̂�
𝜇1𝑚 − 1 − 𝐷𝑖

1 − �̂�
𝜇0𝑚 − 𝜏𝑚 (ℙ)

]
𝑑ℙ.

= (�̂�1𝑚 − �̂�0𝑚) − (𝜈1𝑚 − 𝜈0𝑚)

+
∫ [

𝛿𝜋1𝑚

�̂��̂�1𝑚
(𝜇1𝑚 − 𝜇1𝑚) −

(1 − 𝛿)𝜋0𝑚
(1 − �̂�)�̂�0𝑚

(𝜇0𝑚 − 𝜇0𝑚) +
𝐷𝑖

�̂�
(𝜇1𝑚 − 𝜇1𝑚) −

1 − 𝐷𝑖
1 − �̂�

(𝜇0𝑚 − 𝜇0𝑚)

+ 𝐷𝑖
�̂�
𝜇1𝑚 − 1 − 𝐷𝑖

1 − �̂�
𝜇0𝑚 − 𝐷𝑖

�̂�
�̂�1𝑚 + 1 − 𝐷𝑖

1 − �̂�
�̂�0𝑚

]
𝑑ℙ.

= (�̂�1𝑚 − �̂�0𝑚) − (𝜈1𝑚 − 𝜈0𝑚)

+
∫ [

𝛿𝜋1𝑚

�̂��̂�1𝑚
(𝜇1𝑚 − 𝜇1𝑚) −

(1 − 𝛿)𝜋0𝑚
(1 − �̂�)�̂�0𝑚

(𝜇0𝑚 − 𝜇0𝑚) +
𝛿

�̂�
(𝜇1𝑚 − 𝜇1𝑚) −

1 − 𝛿
1 − �̂�

(𝜇0𝑚 − 𝜇0𝑚)

− 𝐷𝑖

�̂�
(�̂�1𝑚 − 𝜈1𝑚) +

1 − 𝐷𝑖
1 − �̂�

(�̂�0𝑚 − 𝜈0𝑚)
]
𝑑ℙ.

=

∫ [
𝛿𝜋1𝑚

�̂��̂�1𝑚
(𝜇1𝑚 − 𝜇1𝑚) (�̂�1𝑚 − 𝜋1𝑚) −

(1 − 𝛿)𝜋0𝑚
(1 − �̂�)�̂�0𝑚

(𝜇0𝑚 − 𝜇0𝑚) (�̂�0𝑚 − 𝜋0𝑚)

+ 𝐷𝑖
�̂�
(�̂�1𝑚 − 𝜈1𝑚) (�̂� − 𝛿) −

1 − 𝐷𝑖
1 − �̂�

(�̂�0𝑚 − 𝜈0𝑚) (�̂� − 𝛿)
]
𝑑ℙ.
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Recall that all estimated nuisance functions are bounded, which allows us to bound the remainder

term as

|𝑅2(ℙ̂−𝑏,ℙ) | ≲
∫ [

|𝜇1𝑚 − 𝜇1𝑚 | |�̂�1𝑚 − 𝜋1𝑚 | + |𝜇0𝑚 − 𝜇0𝑚 | |�̂�0𝑚 − 𝜋0𝑚 |

+ |�̂�1𝑚 − 𝜈1𝑚 | |�̂� − 𝛿 | + |�̂�0𝑚 − 𝜈0𝑚 | |�̂� − 𝛿 |
]
𝑑ℙ.

≤ max
𝑑

∥𝜇𝑑𝑚 − 𝜇𝑑𝑚 ∥ ∥�̂�𝑑𝑚 − 𝜋𝑑𝑚 ∥ +max
𝑑

∥ �̂�𝑑𝑚 − 𝜈𝑑𝑚 ∥
�̂� − 𝛿

The second inequality follows from Cauchy-Schwarz. By assumption, the first term is 𝑜ℙ(1/
√
𝑛).

Note that �̂�𝑑𝑚 is a sample average of 𝜇𝑑𝑚 so it is consistent and thus hasmax𝑑 ∥ �̂�𝑑𝑚 − 𝜈𝑑𝑚 ∥ = 𝑜ℙ(1).

Given that
�̂� − 𝛿 = 𝑂ℙ(1/

√
𝑛), then second term is 𝑜ℙ(1/

√
𝑛). This implies that 𝑇2𝑏 and thus 𝑇2 is

also 𝑜ℙ(1/
√
𝑛), and we have,

√
𝑛(�̂�𝑚 − 𝜏𝑚) =

1
√
𝑛

𝑛∑︁
𝑖=1

𝜓𝑖𝑚 + 𝑜ℙ(1),

and combined with the CLT results about (I), the desired result obtains.

□

51



𝑌1𝑋1, 𝑋2

𝑀1

𝐷

𝑈1 𝑈2

𝑍1 𝑍2

𝑀2

𝑌2

Figure SM.6: Directed acyclic graph showing the simulation setup.

C Simulation Results

We now evaluate the finite-sample performance of our estimator with a simulation experiment.

Specifically, we are interested in how the doubly robust estimator compares to both traditional difference-

in-differences and non-doubly robust CDE methods as well as how different machine learning tech-

niques in the doubly robust approach can handle misspecification. We evaluate the performance of

our estimator against two alternative approaches for computing direct effects—traditional regression

DID controlling for baseline covariatesX𝑖 and the mediator, and the same specification also control-

ling for intermediate covariates Z𝑖—and against plug-in estimators based on the IPW and outcome

regression approaches from Proposition 1 in the text. As the results show, our method performs

well against these alternatives even when the working models are misspecified, particularly at larger

sample sizes.

The DGP follows the DAG in Figure SM.6. Treatment has independent probability 𝑝𝑑 = 0.5, and

we generate two observed baseline variables, X𝑖 = (𝑋𝑖1, 𝑋𝑖2)′ ∼ N2(0, 𝜎2
𝑥 I2), where 𝜎2

𝑥 = 0.01, and

two unobserved independent baseline variables𝑈𝑖1,𝑈𝑖2 ∼ N(0, 0.01). We draw the baseline media-

tor as𝑀𝑖1 = 𝕀(𝑋𝑖1+𝑋𝑖2+𝜀𝑖𝑚1 ≥ 0). The baseline outcome follows𝑌𝑖1 = 1+0.4𝑀𝑖1+X′
𝑖
𝜷+𝜀𝑖𝑦1, where

𝜷 = (0.5, 0.5)′, and then we generate the intermediate confounders with heterogeneous treatment

effects, 𝑍𝑖 𝑗 = 𝛿𝑖 𝑗𝐷𝑖 + 5𝑈𝑖 𝑗 + 𝜀𝑖𝑧 𝑗 , where 𝛿𝑖 𝑗 ∼ N(0.25, 0.0025) for 𝑗 ∈ {1, 2}. The posttreatment
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mediator follows 𝑀𝑖2 = 𝕀(−1 + 1.5𝐷𝑖 + 0.4𝑀𝑖1 + Z′
𝑖
𝜸 + 𝜀𝑖𝑚2 ≥ 0), where 𝜸 = (0.75, 0.75)′. The

second-period outcome is

𝑌𝑖2 = 𝑌𝑖1 + 0.4𝑀𝑖1 + 0.2𝐷𝑖 + 0.3𝑀𝑖2 + 5𝑈𝑖1 + 5𝑈𝑖2 + 𝜀𝑖𝑦2,

where (𝜀𝑖𝑚1, 𝜀𝑖𝑦1, 𝜀𝑖𝑧1, 𝜀𝑖𝑧2, 𝜀𝑖𝑚2, 𝜀𝑖𝑦2) ∼ N6(0, Σ𝜀) and Σ𝜀 is a diagonal matrix with diag(Σ𝜀) =

(0.01, 0.01, 0.04, 0.04, 1, 0.01)′. In order to test how thesemethods performwhen the relevantmod-

els are misspecified, we also construct transformations of the covariates 𝑋𝑖1, 𝑋𝑖2, 𝑍𝑖1, 𝑍𝑖2 as follows,

employing a similar setup to Kang and Schafer (2007):

𝑋∗
𝑖1 = (exp(𝑋𝑖1/2) − 1)2, 𝑋∗

𝑖2 = 𝑋𝑖2/(1 + exp(𝑋𝑖1)) + 10,

𝑍∗
𝑖1 = (𝑋𝑖1𝑍𝑖1/25 + 0.6)3, 𝑍∗

𝑖2 = (𝑋𝑖2 + 𝑍𝑖2 + 20)2.

For each simulated dataset, we construct seven estimates for themarginalized ACDE-BC, 𝜏. First,

we simply regressΔ𝑌𝑖 = 𝑌𝑖2−𝑌𝑖1 on𝐷𝑖 , controlling for𝑀𝑖1,𝑀𝑖2, 𝑋𝑖1 and 𝑋𝑖2 (“DID +Mediator”). Sec-

ond, we add the intermediate covariates to this specification (“DID +Mediator + Covariates”). Third,

we use our doubly robust ACDE estimator with the same outcome regression as the DID +Mediator

+ Covariates estimator and three different propensity score estimators for 𝑀𝑖2: logistic regression

(“DR ACDE (Logit)”), the Lasso (“DR ACDE (Lasso)”), and random forests (“DR ACDE (RF)”). For the

Lasso approach, we include all squared terms and two-way interactions of the covariates in both the

propensity score and outcome regression models. Finally, we create separate IPW (“Inverse Propen-

sity Weighting”) and outcome regression (“Outcome Regressions”) estimators using the propensity

score and outcome regression models from the DR ACDE logit approach and plugging our estimates

into sample versions of equations 2 and 3 in Proposition 1 respectively (estimating standard errors

using a bootstrap with 500 samples).

We ran 1000 replications of this DGP and computed the average bias, the root mean square error

(RMSE), and the coverage of nominal 95% confidence intervals for sample sizes of 250, 500, and 1000

for four scenarios: using the “correctly specified” covariates (𝑋𝑖1, 𝑋𝑖2, 𝑍𝑖1, 𝑍𝑖2), using the “incorrectly

specified” transformed versions (𝑋∗
𝑖1, 𝑋

∗
𝑖2, 𝑍

∗
𝑖1, 𝑍

∗
𝑖2), and using the misspecified versions either in any

propensity score models or in any outcome regression models, but not both. For each iteration of the

Monte Carlo simulation, we also calculated the true values of 𝜏𝑚 and 𝜏.
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Figure SM.7 presents the results of this simulation. Under both correctly and incorrectly spec-

ified models, we can see that the DID estimators exhibit large biases at all sample sizes and have

correspondingly high RMSEs and low coverage. As expected, this performance comes from con-

founding bias when excluding the intermediate covariates and posttreatment bias when including

these covariates. Under this DGP, these biases can be made larger or smaller by manipulating the

strength of the relationships on those paths.

When the relevant models are correctly specified, the IPW and outcome regression methods have

very little bias and relatively accurate coverage (especially the later, which also has very low RMSE in

this situation). When they are misspecified, however, the performance of these approaches becomes

much worse, although still not as bad as the “naive” DID estimators.

Relative to these methods, the performance of our DR ACDE estimator is more consistent across

the correct and incorrect specifications, although it varies based on the estimation engine employed.

When using the correctly specified variables, all of the multiply robust methods are similar in having

low bias, low RMSE, and close-to-correct coverage, particularly at higher sample sizes. This largely

continues to be the case when either the propensity score model or the outcome regressions are

based on the misspecified variables, as would be expected given double robustness, although the bias

is slightly greater for the random forest. Conversely, when both models are incorrectly specified, all

three DR approaches have higher bias, but the increase is more muted for the random forest than

the others. The Lasso, which uses a more extensive set of basis functions, and the random forest,

which allows data-driven estimation of interactive relationships between variables, both outperform

the logit in this situation, showing that flexible approaches can reduct bias even when hampered by

misspecified covariates.
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Figure SM.7: Performance of our doubly robust estimator compared with difference-in-differences
controlling for themediator and baseline covariates; difference-in-differences controlling for theme-
diator, baseline covariates, and intermediate covariates; inverse propensity weighting; and outcome
regressions.
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D Additional Tables for Empirical Application

Table SM.3: List of covariates

Pre-treatment covariates Post-treatment covariates

Trans law support Obama feeling thermometer (Δ)
Registered Democrat Trans tolerance (Δ)
Political ideology Gender norms (Δ)
Religiousity Trans law support (Δ)
Knows trans people
Female
Hispanic
Af.-Am.
Age
Survey in Spanish
Transgender tolerance
Gender norms
Obama feeling thermometer
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Table SM.4: ACDE-BC estimates by subgroup

Subgroup Baseline Mediator ACDE-BC (s.e.) n (ACDE) ATT (s.e.) n (ATT)

All Marginal 0.401 (0.261) 369 0.296 (0.137) 369
All m = Cool -0.132 (0.284) 72 -0.198 (0.328) 94
All m = Neutral 0.747 (0.260) 138 0.540 (0.219) 168
All m = Warm 0.296 (0.261) 159 0.254 (0.170) 107
Non-white Marginal 0.328 (0.323) 261 0.203 (0.156) 261
Non-white m = Cool 0.127 (0.331) 53 -0.206 (0.348) 74
Non-white m = Neutral 0.500 (0.326) 97 0.348 (0.255) 118
Non-white m = Warm 0.226 (0.321) 111 0.366 (0.214) 69
White Marginal 0.616 (0.562) 108 0.474 (0.304) 108
White m = Cool n.a. 19 n.a. 20
White m = Neutral 1.326 (0.553) 41 0.866 (0.474) 50
White m = Warm 0.371 (0.540) 48 0.207 (0.323) 38
Woman Marginal 0.475 (0.345) 210 0.349 (0.186) 210
Woman m = Cool 0.070 (0.376) 40 0.032 (0.525) 49
Woman m = Neutral 0.977 (0.344) 76 0.795 (0.305) 98
Woman m = Warm 0.031 (0.342) 94 0.094 (0.223) 63
Non-woman Marginal 0.194 (0.446) 159 0.136 (0.215) 159
Non-woman m = Cool -0.943 (0.514) 32 -0.094 (0.546) 45
Non-woman m = Neutral 0.545 (0.449) 62 0.098 (0.342) 70
Non-woman m = Warm 0.738 (0.446) 65 0.471 (0.276) 44

Table SM.6: ACDE-BC estimates mediator and outcome timing

Outcome Mediator Estimate Std. Error n

t = 3 t = 2 0.747 0.260 138
t = 4 t = 2 0.644 0.246 130
t = 4 t = 3 0.527 0.230 142

57



Table SM.8: ACDE-BC estimates with alternative discretization of the mediator

Baseline Mediator ACDE-BC (s.e.) n (ACDE) ATT (s.e.) n (ATT)

Marginal 0.457 (0.635) 369 0.292 (0.137) 369
m = 0 0.024 (0.930) 23 0.258 (0.551) 37
0 < m < 50 -0.847 (0.412) 49 -0.331 (0.484) 57
m = 50 0.752 (0.627) 138 0.540 (0.219) 168
50 < m < 100 0.287 (0.838) 124 0.242 (0.188) 77
m = 100 2.180 (0.600) 35 -0.429 (0.434) 30
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