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How to Make Causal Inferences with Time-Series Cross-Sectional
Data under Selection on Observables
MATTHEW BLACKWELL Harvard University
ADAM N. GLYNN Emory University

Repeatedmeasurements of the same countries, people,or groups over time are vital tomany fields of
political science. These measurements, sometimes called time-series cross-sectional (TSCS) data,
allow researchers to estimate a broad set of causal quantities, including contemporaneous effects

and direct effects of lagged treatments. Unfortunately, popular methods for TSCS data can only produce
valid inferences for lagged effects under some strong assumptions. In this paper,we use potential outcomes
to define causal quantities of interest in these settings and clarify how standard models like the autore-
gressive distributed lag model can produce biased estimates of these quantities due to post-treatment
conditioning. We then describe two estimation strategies that avoid these post-treatment biases—inverse
probability weighting and structural nestedmeanmodels—and show via simulations that they can outper-
form standard approaches in small sample settings.We illustrate these methods in a study of how welfare
spending affects terrorism.

INTRODUCTION

M any inquiries in political science involve the
study of repeated measurements of the same
countries, people, or groups at several points

in time. This type of data, sometimes called time-series
cross-sectional (TSCS) data,allows researchers to draw
on a larger pool of information when estimating causal
effects. TSCS data also give researchers the power to
ask a richer set of questions than data with a single
measurement for each unit (for example, see Beck
and Katz 2011). Using this data, researchers can move
past the narrowest contemporaneous questions—
what are the effects of a single event?—and instead
ask how the history of a process affects the political
world. Unfortunately, the most common approaches
to modeling TSCS data require strict assumptions to
estimate the effect of treatment histories without bias
and make it difficult to understand the nature of the
counterfactual comparisons.
This paper makes three contributions to the study

of TSCS data. Our first contribution is to define some
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counterfactual causal effects and discuss the assump-
tions needed to identify them nonparametrically. We
also relate these quantities of interest to common
quantities in the TSCS literature, like impulse re-
sponses, and show how to derive them from the param-
eters of a commonTSCSmodel, the autoregressive dis-
tributed lag (ADL)model. These treatment effects can
be nonparametrically identified under a key selection-
on-observables assumption called sequential ignora-
bility; unfortunately, however, many common TSCS
approaches rely on more stringent assumptions,
including a lack of causal feedback between the
treatment and time-varying covariates. This feedback,
for example, might involve a country’s level of welfare
spending affecting the vote share of left wing parties,
which in turnmight affect future levels of spending.We
argue that this type of feedback is common in TSCS
settings. While we focus on a selection-on-observables
assumption in this paper, we discuss the tradeoffs
with this choice compared to standard fixed-effects
methods, noting that the latter may also rule out this
type of dynamic feedback.
Our second contribution is to provide an introduc-

tion to twomethods frombiostatistics that can estimate
the effect of treatment histories without bias and under
weaker assumptions than common TSCS models. We
focus on two methods: (1) structural nested mean
models or SNMMs (Robins 1997) and (2) marginal
structural models (MSMs) with inverse probability of
treatment weighting (IPTWs) (Robins, Hernán, and
Brumback 2000).Thesemodels allow for consistent es-
timation of lagged effects of treatment by paying care-
ful attention to the causal ordering of the treatment, the
outcome, and the time-varying covariates. The SNMM
approach generalizes the standard regressionmodeling
of ADLs and often implies very simple and intuitive
multi-step estimators. The MSM approach focuses on
modeling the treatment process to develop weights
that adjust for confounding in simple weighted regres-
sion models. Both of these approaches have the ability
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to incorporate weaker modeling assumptions than
traditional TSCS models. We describe the modeling
choices involved and provide guidance on how to
implement these methods.
Our third contribution is to show how traditional

models like the ADL are biased for the direct effects
of lagged treatments in common TSCS settings, while
MSMs and SNMMs are not. This bias arises from the
time-varying covariates—researchers must control for
them to accurately estimate contemporaneous effects,
but they induce post-treatment bias for lagged effects.
Thus, ADL models can only consistently estimate
lagged effects when time-varying covariates are
unaffected by past treatment. SNMMs and MSMs, on
the other hand, can estimate these effects even when
such feedback exists. We provide simulation evidence
that this type of feedback can lead to significant bias
in ADL models compared to the SNMM and MSM
approaches. Overall, these latter methods could be
promising for TSCS scholars, especially those who are
interested in longer-term effects.
This paper proceeds as follows. We first clarify

the causal quantities of interest available with TSCS
data and show how they relate to parameters from
traditional TSCS models. Causal assumptions are a
key part of any TSCS analysis and we discuss them
in the following section. We then turn to discussing
the post-treatment bias stemming from traditional
TSCS approaches, and then introduce the SNMM and
MSM approaches, which avoid this post-treatment
bias, and show how to estimate causal effects using
these methodologies. We present simulation evidence
of how these methods outperform traditional TSCS
models in small samples in the following section. Next,
we present an empirical illustration of each approach,
based on Burgoon (2006), investigating the connection
between welfare spending and terrorism. Finally, we
conclude with thoughts on both the limitations of
these approaches and avenues for future research.

CAUSAL QUANTITIES OF INTEREST IN
TSCS DATA

At their most basic, TSCS data consists of a treatment
(ormain independent variable of interest),an outcome,
and some covariates all measured for the same units at
various points in time. In our empirical setting below,
we focus on a dataset of countries with the number of
terrorist incidents as an outcome and domestic welfare
spending as a binary treatment. With one time period,
only one causal comparison exists: a country has either
high or low levels of welfare spending. As we gather
data on these countries over time, there aremore coun-
terfactual comparisons to investigate. How does the
history of welfare spending affect the incidence of ter-
rorism?Does the spending regime today only affect ter-
rorism today or does the recent history matter as well?
The variation over time provides the opportunity and
the challenge of answering these complex questions.
To fix ideas, letXit be the treatment for unit i in time

period t. For simplicity, we focus first on the case of a
binary treatment so that Xit = 1 if the unit is treated in

period t and Xit = 0 if the unit is untreated in period t
(it is straightforward to generalize to arbitrary treat-
ment types). In our running example, Xit = 1 would
represent a country that had high welfare spending in
year t and Xit = 0 would be a country with low welfare
spending. We collect all of the treatments for a given
unit into a treatment history,Xi = (Xi1,…,XiT),whereT
is the number of time periods in the study.For example,
wemight have a country that always had high spending,
(1, 1,…, 1), or a country that always had low spending,
(0, 0, …, 0). We refer to the partial treatment history
up to t as Xi, 1: t = (Xi1, …, Xit), with x1: t as a possible
particular realization of this random vector.We define
Zit,Zi, 1: t, and z1: t similarly for a set of time-varying co-
variates that are causally prior to the treatment at time t
such as the government capability, population size, and
whether or not the country is in a conflict.
The goal is to estimate causal effects of the treat-

ment on an outcome, Yit, that also varies over time. In
our running example,Yit is the number of terrorist inci-
dents in a given country in a given year.We take a coun-
terfactual approach and define potential outcomes for
each time period,Yit(x1: t) (Rubin 1978; Robins 1986).1
This potential outcome represents the incidence of ter-
rorism that would occur in country i in year t if i had
followed history of welfare spending equal to x1: t. Ob-
viously, for any country in any year, we only observe
one of these potential outcomes since a country can-
not follow multiple histories of welfare spending over
the same time window. To connect the potential out-
comes to the observed outcomes, we make the stan-
dard consistency assumption. Namely, we assume that
the observed outcome and the potential outcome are
the same for the observed history:Yit = Yit(x1: t) when
Xi, 1: t = x1: t.2
To create a common playing field for all the methods

we evaluate, we limit ourselves to making causal infer-
ences about the time window observed in the data—
that is, we want to study the effect of welfare spend-
ing on terrorism for the years in our data set. Under
certain assumptions like stationarity of the covariates
and error terms, many TSCS methods can make infer-
ences about the long-term effects beyond the end of
the study. This extrapolation is typically required with
a single time series, but with the multiple units we have
in TSCS data, we have the ability to focus our infer-
ences on a particular window and avoid these assump-
tions about the time-series processes. We view this as
a conservative approach because all methods for han-
dling TSCS should be able to generate sensible esti-
mates of causal effects in the period under study.There

1 The definition of potential outcomes in this manner implicitly as-
sumes the usual stable unit treatment value assumption (SUTVA)
(Rubin 1978). This assumption is questionable for the many compar-
ative politics and international relations applications, but we avoid
discussing this complication in this paper to focus on the issues re-
garding TSCS data. Implicit in our definition of the potential out-
comes is that outcomes at time t only depend on past values of treat-
ment, not future values (Abbring and van den Berg 2003).
2 Implicit in the definition of the potential outcomes is that the
treatment history can affect the outcome through the history of
time-varying covariates: Yit(xi:t) = Yit(x1: t, Zi, 1: t(x1:t − 1)). Here,
Zi, 1: t(x1:t − 1) represents the values that the covariate history would
take under this treatment history.
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is a tradeoff with this approach: we cannot study some
common TSCS estimands like the long-run multiplier
that are based on time-series analysis. We discuss this
estimand in particular in the Supplemental Material.
Given our focus on a fixed time window, we will de-

fine expectations over cross-sectional units and con-
sider asymptotic properties of the estimators as the
number of these units grows (rather than the length
of the time series). Asymptotics are only useful in how
they guide our analyses in the real world of finite sam-
ples, and we may worry that “large-N, fixed-T” asymp-
totic results do not provide a reliable approximation
when N and T are roughly the same size, as is often
the case for TSCS data. Fortunately, as we show in the
simulation studies below, our analysis of the various
TSCS estimators holds even when N and T are small
and close in size. Thus, we do not see the choices of
“fixed time-window” versus “time-series analysis” or
large-N versus large-T asymptotics to be consequential
to the conclusions we draw.

The Effect of a Treatment History

For an individual country, the causal effect of a par-
ticular history of welfare spending, x1: t, relative to
some other history of spending, x′

1:t , is the difference
Yit (x1:t ) −Yit (x′

1:t ). That is, it is the difference in the po-
tential or counterfactual level of terrorism when the
country follows history x1: t minus the counterfactual
outcome when it follows history x′

1:t .Given the number
of possible treatment histories, there can be numerous
causal effects to investigate, even with a simple binary
treatment. As the length of time under study grows, so
does the number of possible comparisons. In fact, with
a binary treatment, there are 2t different potential out-
comes for the outcome in period t. This large number
of potential outcomes allows for a very large number of
comparisons and a host of causal questions: Does the
stability of spending over time matter for the impact
on the incidence of terrorism? Is there a cumulative
impact of welfare spending or is it only the current level
that matters?
These individual-level causal effects are difficult to

identify without strong assumptions, so we often focus
on estimating the average causal effect of a treatment
history (Robins, Greenland, and Hu 1999; Hernán,
Brumback, and Robins 2001):

τ (x1:t, x′
1:t ) = E[Yit (x1:t ) −Yit (x′

1:t )]. (1)

Here, the expectations are over the units so that this
quantity is the average difference in outcomes between
the world where all units had history x1: t and the world
where all units had history x′

1:t . For example, we might
be interested in the effect of a country having always
high welfare spending versus a country always having
low spending levels. Thus, this quantity considers the
effect of treatment at time t, but also the effect of all
lagged values of the treatment as well. A graphical de-
piction of the pathways contained in τ (x1:t, x′

1:t ) is pre-
sented in Figure 1,where the dotted arrows correspond
to components of the effect. These arrows represent all

FIGURE 1. Directed acyclic graph (DAG) of
typical TSCS data. Dotted lines are the causal
pathways that constitute the average causal
effect of a treatment history at time t.

· · ·

· · ·

· · ·

· · ·

Xt−1

Zt−1

Yt−1

Xt

Zt

Yt

of the effects of Xit,Xi, t − 1,Xi, t − 2, and so on, that end
up at Yit. Note that many of these effects flow through
the time-varying covariates,Zit. This point complicates
the estimation of causal effects in this setting and we
return to it below.

Marginal Effects of Recent Treatments

As mentioned above, there are numerous possible
treatment histories to compare when estimating causal
effects. This can be daunting for applied researchers
who may only be interested in the effects of the first
few lags of welfare spending. Furthermore, any partic-
ular treatment history may not be well-represented in
the data if the number of time periods is moderate. To
avoid these problems, we introduce causal quantities
that focus on recent values of treatment and average
over more distant lags. We define the potential out-
comes just intervening on treatment the last j periods
as Yit(xt − j:t) = Yit(Xi, 1:t − j − 1, xt − j:t). This “marginal”
potential outcome represents the potential or counter-
factual level of terrorism in country i if we let welfare
spending run its natural course up to t − j − 1 and just
set the last j lags of spending to xt − j:t.3
With this definition in hand, we can define one

important quantity of interest, the contemporaneous
effect of treatment (CET) of Xit on Yit:

τc(t) = E[Yit (Xi,1: t−1, 1) −Yit (Xi,1: t−1, 0)],

= E[Yit (1) −Yit (0)],

Here we have switched from potential outcomes that
depend on the entire history to potential outcomes that
only depend on treatment in time t. The CET reflects
the effect of treatment in period t on the outcome in
period t, averaging across all of the treatment histories
up to period t. Thus, it would be the expected effect of
switching a random country from low levels of welfare
spending to high levels in period t. A graphical depic-
tion of a CET is presented in Figure 2, where the dot-
ted arrow corresponds to component of the effect. It is
common in pooled TSCS analyses to assume that this
effect is constant over time so that τ c(t) = τ c.

Researchers are also often interested in how more
distant changes to treatment affect the outcome. Thus,

3 See Shephard andBojinov (2017) for a similar approach to defining
recent effects in time-series data.
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FIGURE 2. DAG of a TSCS setting where the
dotted line represents the contemporaneous
effect of treatment at time t.

· · ·

· · ·

· · ·

· · ·

Xt−1

Zt−1

Yt−1

Xt

Zt

Yt

FIGURE 3. DAG of a panel setting where the
dotted lines represent the paths that
constitute the lagged effect of treatment at
time t − 1 on the outcome at time t.

· · ·

· · ·

· · ·

· · ·

Xt−1

Zt−1

Yt−1

Xt

Zt

Yt

we define the lagged effect of treatment, which is the
marginal effect of treatment in time t − 1 on the
outcome in time t, holding treatment at time t fixed:
E[Yit(1, 0)−Yit(0, 0)].More generally, the j-step lagged
effect is defined as follows:

τl (t, j) = E[Yit (Xi,1: t− j−1, 1, 0 j) −Yit (Xi,1: t− j−1, 0, 0 j)],

= E[Yit (1, 0 j) −Yit (0 j+1)], (2)

where 0s is a vector of s zero values. For example, the
two-step lagged effect would be E[Yit(1, 0, 0) − Yit(0,
0, 0)] and represents the effect of welfare spending two
years ago on terrorism today holding the intervening
welfare spending fixed at low levels. A graphical
depiction of the one-step lagged effect is presented in
Figure 3, where again the dotted arrows correspond to
components of the effect. These effects are similar to
a common quantity of interest in both time-series and
TSCS applications called the impulse response (Box,
Jenkins, and Reinsel 2013).
Another common quantity of interest in the TSCS

literature is the step response, which is the cumulative
effect of a permanent shift in treatment status on some
future outcome (Box, Jenkins, and Reinsel 2013; Beck
and Katz 2011). The step response function, or SRF,
describes how this effect varies by time period and dis-
tance between the shift and the outcome:

τs(t, j) = E[Yit (1 j) −Yit (0 j)], (3)

where 1s has a similar definition to 0s. Thus, τ s(t, j)
is the effect of j periods of treatment starting at time
t − j on the outcome at time t. Without further as-
sumptions, there are separate lagged effects and step

responses for each pair of periods. As we discuss next,
traditional modeling of TSCS data imposes restrictions
on the data-generating processes, in part, to summarize
this large number of effects with a few parameters.

Relationship to Traditional TSCS Models

The potential outcomes and causal effects defined
above are completely nonparametric in the sense that
they impose no restrictions on the distribution of Yit.
To situate these quantities in the TSCS literature, it is
helpful to see how they are parameterized in a par-
ticular TSCS model. One general model that encom-
passesmany different possible specifications is anADL
model:4

Yit = β0 + αYi,t−1 + β1Xit + β2Xi,t−1 + εit , (4)

where εit are independent and identically distributed
errors, independent of Xis for all t and s. The key fea-
tures of such a model are the presence of lagged inde-
pendent and dependent variables and the exogeneity
of the independent variables. This model for the out-
come would imply the following form for the potential
outcomes:

Yit (x1: t ) = β0 + αYi,t−1(x1: t−1) + β1xt + β2xt−1 + εit .
(5)

In this form, it is clear to see what TSCS scholars have
long pointed out: causal effects are complicated with
lagged dependent variables (LDVs) since a change in
xt − 1 can have both a direct effect on Yit and an indi-
rect effect through Yi, t − 1. This is why even seemingly
simple TSCSmodels such as theADL imply quite com-
plicated expressions for long-run effects.
TheADLmodel also has implications for the various

causal quantities, both short term and long term. The
coefficient on the contemporaneous treatment, β1, is
constant over time and does not depend on past values
of the treatment, so it is equal to the CET, τ c(t) = β1.
One can derive the lagged effects from different com-
binations of α, β1, and β2:

τl (t, 0) = β1, (6)

τl (t, 1) = αβ1 + β2, (7)

τl (t, 2) = α2β1 + αβ2. (8)

Note that these lagged effects are constant across t. The
step response, on the other hand, has a stronger im-
pact because it accumulates the impulse responses over
time:

τs(t, 0) = β1, (9)

τs(t, 1) = β1 + αβ1 + β2, (10)

τs(t, 2) = β1 + αβ1 + β2 + α2β1 + αβ2. (11)

4 For introductions to modeling choices for TSCS data in political
science, see De Boef and Keele (2008) and Beck and Katz (2011).
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Note that the step response here is just the sum of all
previous lagged effects. It is clear that one benefit of
such a TSCS model is to summarize a broad set of es-
timands with just a few parameters. This helps to sim-
plify the complexity of the TSCS setting while intro-
ducing the possibility of bias if thismodel is incorrect or
misspecified.

CAUSAL ASSUMPTIONS AND DESIGNS IN
TSCS DATA

Under what assumptions are the above causal quan-
tities identified? When we have repeated measure-
ments on the outcome-treatment relationship, there
are a number of assumptions we could invoke to iden-
tify causal effects. In this section, we discuss several
of these assumptions. We focus on cross-sectional as-
sumptions given our fixed time-window approach.That
is, we make no assumptions on the time-series pro-
cesses such as stationarity even though imposing these
types of assumptions will not materially affect our con-
clusions about the bias of traditional TSCS methods.
This result is confirmed in the simulations below,where
the data generating process is stationary and the biases
we describe below still occur.

Baseline Randomized Treatments

A powerful, if rare, research design for TSCS data is
one that randomly assigns the entire history of treat-
ment,X1:T, at time t = 0. Under this assumption, treat-
ment at time t cannot be affected by, say, previous val-
ues of the outcome or time-varying covariates. In terms
of potential outcomes, the baseline randomized treat-
ment history assumption is

{Yit (x1: t ) : t = 1, . . . ,T } ⊥⊥ Xi,1: t |Zi0, (12)

where A⊥⊥B|C is defined as “A is independent of B
conditional on C.” This assumes that the entire history
of welfare spending is independent of all potential lev-
els of terrorism, possibly conditional on baseline (that
is, time-invariant) covariates. Hernán, Brumback, and
Robins (2001) called Xi, 1: t causally exogenous under
this assumption. The lack of time-varying covariates or
past values of Yit on the right-hand side of the condi-
tioning bar in Equation (12) implies that these vari-
ables do not confound the relationship between the
treatment and the outcome. For example, this assumes
there are no time-varying covariates that affect both
welfare spending and the number of terrorist incidents.
Thus, baseline randomization relies on strong assump-
tions that are rarely satisfied outside of randomized
experiments and is unsuitable for most observational
TSCS studies.5
Baseline randomization is closely related to exo-

geneity assumptions in linear TSCS models. For exam-
ple, supposewe had the following distributed lagmodel

5 A notable exception are experiments with a panel design that ran-
domize rollout of a treatment (e.g., Gerber et al. 2011).

with no autoregressive component:

Yit = β0 + β1Xit + β2Xi,t−1 + ηit . (13)

Here, baseline randomization of the treatment history,
combined with the assumptions implicit in linear TSCS
models, implies the usual identifying assumption in
these models, strict exogeneity of the errors:

E[ηit |Xi,1:T ] = E[ηit] = 0. (14)

This is a mean independence assumption about the re-
lationship between the errors,ηit,and the treatment his-
tory,Xi, 1:T.

Sequentially Randomized Treatments

Beginning with Robins (1986), scholars in epidemiol-
ogy have expanded the potential outcomes framework
to handle weaker identifying assumptions than base-
line randomization. These innovations centered on se-
quentially randomized experiments, where at each pe-
riod,Xit was randomized conditional on the past values
of the treatment and time-varying covariates (includ-
ing past values of the outcome). Under this sequential
ignorability assumption, the treatment is randomly as-
signed not at the beginning of the process, but at each
point in time and can be affected by the past values of
the covariates and the outcome.
At its core, sequential ignorability assumes there is

some function or subset of the observed history up to
time t,Vit = g(Xi, 1:t − 1,Yi, 1:t − 1,Zi, 1: t), that is sufficient
to satisfy no unmeasured confounders for the effect of
Xit on future outcomes.Formally, the assumption states
that, conditional on this set of variables, Vit, the treat-
ment at time t is independent of the potential outcomes
at time t:

Assumption 1 (Sequential Ignorability). For every
treatment history x1: T and period t,

{Yis(x1:s) : s = t, , . . . ,T } ⊥⊥ Xit |Vit . (15)

For example,a researchermight assume that sequen-
tial ignorability for current welfare spending holds con-
ditional on lagged levels of terrorism, lagged welfare
spending, and some contemporaneous covariates, so
that Vit = {Yi, t − 1, Xi, t − 1, Zit}. Unlike baseline ran-
domization and strict exogeneity, it allows for observed
time-varying covariates like conflict status and lagged
values of terrorism to confound the relationship be-
tween welfare spending and current terrorism levels,
so long as we have measures of these confounders. Fur-
thermore, these time-varying covariates can be affected
by past values of welfare spending.
In the context of traditional linear TSCSmodels such

as Equation (4), with their implicit assumptions, se-
quential ignorability implies the sequential exogeneity
assumption:

E[εit |Xi,1: t,Zi,1: t,Yi,1: t−1] = E[εit |Xit,Vit] = 0. (16)
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According to the model in Equation (4), the time-
varying covariates here would include the LDV. This
assumption states that the errors of the TSCS model
are mean independent of welfare spending at time t
given the conditioning set that depends on the history
of the data up to t. Thus, this allows the errors for levels
of terrorism to be related to future values of welfare
spending.
Sequential ignorability weakens baseline random-

ization to allow for feedback between the treatment
status and the time-varying covariates, including lagged
outcomes. For instance, sequential ignorability allows
for the welfare spending of a country to impact future
levels of terrorism and for this terrorism to affect fu-
ture welfare spending.Thus, in this dynamic case, treat-
ments can affect the covariates and so the covariates
also have potential responses:Zit(x1:t − 1). This dynamic
feedback implies that the lagged treatment may have
both a direct effect on the outcome and an indirect
effect through these covariates. For example, welfare
spendingmight directly affect terrorism by reducing re-
sentment among potential terrorists, but it might also
have an indirect effect if it helps to increase levels of
state capacity which could, in turn, help combat future
terrorism.
In TSCS models, the LDV, is often included in the

above time-varying conditioning set, Vit, to assess
the dynamics of the time-series process or to
capture the effects of longer lags of treatment in a
simple manner.6 In either case, sequential ignorabil-
ity would allow the LDV to have an effect on the
treatment history as well, but baseline randomization
would not. For instance, welfare spending may have a
strong effect on terrorism levels which, in turn, affect
future welfare spending. Under this type of feedback,
an LDV must be in the conditioning set Vit and strict
exogeneity will be violated.

Unmeasured Confounding and Fixed Effects
Assumptions

Sequential ignorability is a selection-on-observables
assumption—the researcher must be able to choose a
(time-varying) conditioning set to eliminate any con-
founding. An oft-cited benefit of having repeated ob-
servations is that it allows scholars to estimate causal
effects in spite of time-constant unmeasured con-
founders. Linear fixed effects models have the benefit
of adjusting for all time-constant covariates, measured
or unmeasured. This would be very helpful if, for in-
stance, each country had its own baseline level of wel-
fare spending that was determined by factors corre-
lated with terrorist attacks, but the year-to-year vari-
ation in spending within a country was exogenous. At
first glance, this ability to avoid time-constant omitted
variable bias appears to be a huge benefit.

6 In certain parametric models, the LDV can be interpreted as sum-
marizing the effects of the entire history of treatment. More gener-
ally, the LDV may effectively block confounding for contemporane-
ous treatment even if it has no causal effect on the current outcome.

Unfortunately, these fixed effects estimation strate-
gies require within-unit baseline randomization to
identify any quantity other than the CET (Sobel 2012;
Imai and Kim 2017). Specifically, standard fixed ef-
fects models assume that previous values of covari-
ates like GDP growth or lagged terrorist attacks (that
is, the LDV) have no impact on the current value
of welfare spending. Thus, to estimate any effects of
lagged treatment, fixed effects models would allow for
time-constant unmeasured confounding butwould also
rule out a large number of TSCS applications where
there is feedback between the covariates and the treat-
ment. Furthermore, the assumptions of fixed-effects-
style models in nonlinear settings can impose strong
restrictions on over-time variation in the treatment and
outcome (Chernozhukov et al.2013).For these reasons,
and because there is a large TSCS literature in politi-
cal science that relies on selection-on-observables as-
sumptions, we focus on situations where sequential ig-
norability holds. We return to the avenues for future
research on fixed effects models in this setting in the
conclusion.

THE POST-TREATMENT BIAS OF
TRADITIONAL TSCS MODELS

Under sequential ignorability, standard TSCS mod-
els like the ADL model above can become biased
for common TSCS estimands. The basic problem with
these models is that sequential ignorability allows for
the possibility of post-treatment bias when estimating
lagged effects in the ADLmodel.While this problem is
well known in statistics (Rosenbaum1984;Robins 1997;
Robins, Greenland, and Hu 1999), we review it here in
the context of TSCS models to highlight the potential
for biased and inconsistent estimators.
The root of the bias in the ADL approach is the

nature of time-varying covariates, Zit. Under the as-
sumption of baseline randomization, there is no need
to control or adjust for these covariates beyond the
baseline covariates, Zi0, because treatment is assigned
at baseline—future covariates cannot confound past
treatment assignment. The ADL approach thrives in
this setting. But when baseline randomization is im-
plausible, as we argue is true in most TSCS settings, we
will typically require conditioning on these covariates
to obtain credible causal estimates.And this condition-
ing on Zit is what can create large biases in the ADL
approach.
To demonstrate the potential for bias, we focus on

a simple case where we are only interested in the first
two lags of treatment and sequential ignorability as-
sumption holds with Vit = {Yi, t − 1, Zit, Xi, t − 1}. This
means that treatment is randomly assigned conditional
on the contemporaneous value of the time-varying co-
variate and the lagged values of the outcome and the
treatment.Given this setting, theADLapproachwould
model the outcome as follows:

Yit = β0 + αYi,t−1 + β1Xit + β2Xi,t−1 + Z′
itδ + εit .

(17)

1072

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
03

05
54

18
00

03
57

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0003055418000357


How to Make Causal Inferences with Time-Series Cross-Sectional Data under Selection on Observables

Assuming this functional form is correct and assuming
that εit are independent and identically distributed, this
model would consistently estimate the CET, β1, given
the sequential ignorability assumption.But what about
the effect of lagged treatment? In the ADL approach,
one would combine the coefficients as α̂β̂1 + β̂2. The
problem with this approach is that, if Zit is affected
by Xi, t − 1, then Zit will be post-treatment and in many
cases induce bias in the estimation of β̂2 (Rosenbaum
1984;Acharya,Blackwell, and Sen 2016).Why not sim-
ply omit Zit from our model? Because this would bias
the estimates of the contemporary treatment effect, β̂1
due to omitted variable bias.7
In this setting, there is no way to estimate the di-

rect effect of lagged treatment without bias with a sin-
gle ADL model. Unfortunately, even weakening the
parametric modeling assumptions via matching or gen-
eralized additive models will fail to overcome this
problem—it is inherent to the data generating pro-
cess (Robins 1997). These biases exist even in favor-
able settings for the ADL, such as when the outcome
is stationary and treatment effects are constant over
time. Furthermore, as discussed above, standard fixed
effects models cannot eliminate this bias because it
involves time-dependent causal feedback. Traditional
approaches can only avoid the bias under special cir-
cumstances such as when treatment is randomly as-
signed at baseline or when the time-varying covariates
are completely unaffected by treatment. Both of these
assumptions lack plausibility in TSCS settings, which is
why many TSCS studies control for time-varying co-
variates. Below, we demonstrate this bias in simula-
tions,but we first turn to twomethods frombiostatistics
that can avoid these biases.

TWO METHODS FOR ESTIMATING THE
EFFECT OF TREATMENT HISTORIES

If the traditional ADL model is biased in the pres-
ence of time-varying covariates, how can we proceed
with estimating both contemporaneous and lagged ef-
fect of treatment in the TSCS setting? In this section,
we show how to estimate these causal quantities of in-
terest defined above under sequential ignorability us-
ing two approaches developed in biostatistics to specif-
ically address this potential for bias in this type of set-
ting. The first approach is based on SNMMs, which, in
their simplest form, represent an extension of theADL
approach to avoid the post-treatment bias described
above. The second class of estimators, based on MSMs
and IPTW, is semiparametric in the sense that it mod-
els the treatment history, but leaves the relationship
between the outcome and the time-varying covariates
unspecified.Because of this,MSMs have the advantage
of being robust to our ability or inability to model the
outcome. We focus our attention on these two broad

7 A second issue is that ADL models often only include condition-
ing variables to identify the contemporaneous effect, not any lagged
effects of treatment. Thus, the effect ofXi, t − 1 might also suffer from
omitted variable bias. This issue can be more easily corrected by in-
cluding the proper condition set,Vi, t − 1, in the model.

classes of models because they are commonly used ap-
proaches that both (a) avoid post-treatment bias in this
setting and (b) do not require the parametric modeling
of the distribution of the time-varying covariates.
One modeling choice that is common to all of these

approaches, including the ADL, is the choice of causal
lag length. Should we attempt to estimate the effect of
the entire history of welfare spending on terrorist inci-
dents with potential outcome Yit(x1: t)? Or should we
only investigate the contemporaneous and first lagged
effects with potential outcome Yit(xt − 1, xt)? As we
discussed above, we can always focus on effects that
marginalize over lags of treatment beyond the scope
of our investigation. Thus, this choice of lag length is
less about the “correct” specification and more about
choosingwhat question the researcherwants to answer.
A separate question is what variables and their lags
need to be included in the various models for our an-
swers to be correct.Wediscuss the details of what needs
to be controlled for and when in our discussion of each
estimator.

Structural Nested Mean Models

Our first class of models, SNMMs, can be seen as an
extension of the ADL approach that allows for esti-
mation of lagged effects in a relatively straightforward
manner (Robins 1986, 1997). At their most general,
these models focus on parameterizing a conditional
version of the lagged effects (that is, the impulse re-
sponse function):8

bt (x1: t, j) = E[Yit (x1: t− j, 0 j)

−Yit (x1: t− j−1, 0 j+1)|X1: t− j = x1: t− j].

(18)

Robins (1997) refers to these impulse responses as
“blip-down functions.” This function gives the effect of
a change from 0 to xt − j in terms of welfare spending on
levels of terrorism at time t, conditional on the treat-
ment history up to time t − j. Inference in SNMMs fo-
cuses on estimating the causal parameters of this func-
tion. The conditional mean of the outcome given the
covariates needs to be estimated as part of this ap-
proach, but this is seen as a nuisance function rather
than the object of direct interest.
Given the chosen lag length to study, a researcher

must only specify the parameters of the impulse re-
sponse up to that many lags. If we chose a lag length of
1, for example, thenwemight parameterize the impulse
response function as

bt (x1: t, j; γ ) = γ jxt− j, j ∈ {0, 1}. (19)

8 Because of focus on being faithful to the ADL setup, we assume
that the lagged effects are constant across levels of the time-varying
confounders as is standard in ADL models. One can include inter-
actions with these variables, though SNMMs then require additional
models for Zit. See Robins (1997, sec. 8.3) for more details.
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Here, γ j is the impulse effect of a one-unit change of
welfare spending at lag j on levels of terrorism, which
does not depend on the past treatment history, x1:t − 1
or the time period t. Keeping the desired lag length,
we could generalize this specification and have an im-
pulse response that depended on past values of the
treatment:

bt (x1: t, j; γ ) = γ1 jxt− j + γ2 jxt− jxt− j−1, j ∈ {0, 1},
(20)

where γ 2j captures the interaction between contempo-
raneous and lagged values of welfare spending. Note
that, given the definition of the impulse response, if
xt-j = 0, then bt = 0 since this would be comparing the
average effect of a change from 0 to 0. Choosing this
function is similar to modeling Xi, t − j in a regression—
it requires the analyst to decide what nonlinearities
or interactions are important to include for the effect
of treatment. If Yit is not continuous, it is possible to
choose an alternative functional form (such as one that
uses a log link) that restricts the effects to the proper
scale (Vansteelandt and Joffe 2014).
Note that the noninteractive impulse response func-

tion in Equation (19) can be seen as an alternative pa-
rameterization of theADL (1,1) in Equation (4).When
j = 0 in Equation (19) and an ADL (1,1) model holds,
then the contemporaneous effect of γ 0 corresponds to
the β1 parameter from the ADL model. When j = 1
in Equation (19) and an ADL (1,1) model holds, then
the impulse response effect of γ 1 corresponds to the
αβ1 + β2 combination of parameters from the ADL
model.We derive this connection in more detail below,
but one important difference can be seen in this exam-
ple. The SNMM approach directly models the lagged
effects while the ADL model recreates these effects
from all constituent path effects.
The key to the SNMM identification approach is that

problems of post-treatment bias can be avoided by us-
ing a transformation of the outcome that leads to easy
estimation of each conditional impulse responses (γ j).
This transformation is

Ỹ j
it = Yit −

j−1∑
s=0

bt (Xi,1: t, s), (21)

which, under the modeling assumptions of
Equation (19), would be

Ỹ j
it = Yit −

j−1∑
s=0

γsXi,t−s. (22)

These transformed outcomes are called the blipped-
down or demediated outcomes. For example, the first
blipped-down outcome, which we will use to estimate
first lagged effect, subtracts the contemporaneous ef-
fect for each unit off of the outcome, Ỹ 1

it = Yit − γ0Xit .
Intuitively, the blip-down transformation subtracts off

the effect of j lags of treatment, creating an estimate of
the counterfactual level of terrorism at time t if welfare
spending had been set to zero for j periods before t.
Robins (1994) and Robins (1997) show that, under se-
quential ignorability, the transformed outcome, Ỹ j

it , has
the same expectation as this counterfactual, Yit(x1:t − j,
0j), conditional on the past. Thus, we can use the rela-
tionship between Ỹ j

it and Xi, t − j as an estimate of the
j-step lagged effect of treatment, which can be used to
create Ỹ j+1

it and estimate the lagged effect for j + 1.
This recursive structure of the modeling is what gives
SNMM the “nested”moniker.
We focus on one approach to estimating the param-

eters called sequential g-estimation in the biostatistics
literature (Vansteelandt 2009).9 This approach is simi-
lar to an extension of the standard ADL model in the
sense that it requires modeling the conditional mean
of the (transformed) outcome to estimate the effect
of each lag under study. In particular, for lag j the re-
searcher must specify a linear regression of Ỹ j

it on the
variables in the assumed impulse response function,
bt(x1: t, j; γ ) and whatever covariates are needed to sat-
isfy sequential ignorability.
For example, suppose we focused on the contem-

poraneous effect and the first lagged effect of welfare
spending and we adopted the simple impulse response
bt(x1: t, j;γ )= γ jxt − j for both of these effects.As above,
we assume that sequential ignorability held conditional
on Vit = {Xi, t − 1, Yi, t − 1, Zit}. Sequential g-estimation
involves the following steps:

1. For j = 0, we would regress the untransformed out-
come on {Xit, Xi, t − 1, Yi, t − 1, Zit}, just as we would
for the ADL model. If the modeling is correctly
specified (as we would assume with the ADL ap-
proach), the coefficient on Xit in this regression will
provide an estimate of the blip-down parameter, γ 0
(the contemporaneous effect).

2. We would use γ̂0 to construct the one-lag blipped-
down outcome, Ỹ 1

i,t = Yit − γ̂0Xit .
3. This blipped-down outcome would be regressed on

{Xi, t − 1, Xi, t − 2, Yi, t − 2, Zi, t − 1} to estimate the next
blip-down parameter, γ 1 (the first lagged effect).

If more than two lags are desired, we could use γ̂1
to construct the second set of blipped-down outcomes,
Ỹ 2
i,t = Ỹ 1

i,t − γ̂1Xi,t−1, which could then be regressed on
{Xi, t − 2, Xi, t − 3, Yi, t − 3, Zi, t − 2} to estimate γ 2. This it-
eration can continue for as many lags as desired. This
approach avoids including a post-treatment covariate
when estimating a particular lagged effect. That is,
when estimating the effect of welfare spending at lag
j, only variables causally prior to welfare spending at
that point are included in the regression. Standard er-
rors for all of the estimated effects can be estimated
using a consistent variance estimator presented in the
Supplemental Material or via a block bootstrap.

9 See Acharya, Blackwell and Sen (2016) for an introduction to this
method in political science.
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This sequential g-estimation approach requires the
correct specification of the relationship between the
(transformed) outcome and the covariate and treat-
ment histories. It thus requires a similar regression
model to the ADL approach described above. More
complicated SNMM estimators can incorporate a
model for the treatment process, providing some ro-
bustness to the modeling choices for the outcome.
These estimators are consistent for the parameters
of the SNMM when either the model for the (trans-
formed) outcome or the model for the treatment pro-
cess is correctly specified. This property is called dou-
ble robustness because there are “two shots” to achieve
consistency. Vansteelandt and Joffe (2014) provides a
review of these methods for SNMMs.

Relationship to the ADL model. As we mentioned
above, the ADL approach and the sequential g-
estimation version of SNMMpresented above are very
similar when the time-varying covariates,Zit, are not af-
fected by treatment.One intuition for this result is that
the ADL model and the SNMM with the linear model
are equivalent when there are no covariates aside from
the LDV. To see this, suppose that the ADL model in
Equation (4) is correct and perform the first transfor-
mation from step 2 above, noting, as above, that the
contemporaneous effect is the same for both models
γ 0 = β1:

Yit − γ0Xit = Yit − β1Xit (23)

= β0 + αYi,t−1 + β2Xi,t−1 + εit (24)

= β0 + α(β0 + αYi,t−2 + β1Xi,t−1 + β2Xi,t−2

+ εi,t−1) + β2Xi,t−1 + εit (25)

= (β0 + αβ0) + α2Yi,t−2 + (αβ1 + β2)︸ ︷︷ ︸
γ1

Xi,t−1

+αβ2Xi,t−2 + (αεi,t−1 + εit ). (26)

From this, we can see that the coefficient on Xi, t − 1
for this transformed outcome is simply the impulse re-
sponse at lag 1, which is exactly the quantity that the
SNMM targets. Given the ADL and SNMM assump-
tions above, this quantity will be αβ1 + β2 for the ADL
model and γ 1 for the SNMM.Of course, this correspon-
dence will continue for all lagged effects and Table 1
shows how the two sets of quantities relate for various
lags.
Furthermore, in the SupplementalMaterial,we show

that the sequential g-estimation estimator with no co-
variates except an LDV is nearly mechanically equiva-
lent to a traditional ADL estimator with one lag. The
difference is that the traditional ADL model relies on
an assumption that the contemporaneous effect is con-
stant over time, whereas sequential g-estimation re-

TABLE 1. The lagged effects, or impulse
responses, under the ADL (1,1) in Equation
(4) and SNMM in Equation (19).

Lag ADL SNMM

0 β1 γ 0
1 αβ1 + β2 γ 1
2 α2β1 + αβ2 γ 2
3 α3β1 + α2β2 γ 3
4 α4β1 + α3β2 γ 4

laxes this assumption. This provides a useful interpre-
tation of the ADL model in terms of counterfactual
causal effects. It is important to note, however, that
this equivalence also relies on the form of the ADL
model, which uses only three parameters regardless of
the number of lags, while the SNMM in this version
uses a new parameter for every lag. Additionally, the
near equivalence disappears once there is an additional
time-varying covariate (Zit) in the model.

Marginal Structural Models

One potential downside of the SNMM approach is
that it requires the analyst to correctly model the rela-
tionship between the time-varying covariates and the
outcome. This can be difficult when the outcome is
a complicated process and there is little theoretical
guidance for specifying the outcome-covariate rela-
tionships. An alternative that relies instead on mod-
eling the treatment-covariate relationship is called a
marginal structural model or MSM (Robins, Hernán,
and Brumback 2000).10 To specify an MSM, we first
choose a potential outcome lag length to study and
write a model for the marginal mean of those potential
outcomes in terms of the treatment history.At themost
general, then, an MSM would be the following:

E[Yit (x1: t )] = g(x1: t;β), (27)

where the function g operates similarly to a link func-
tion in a generalized linear model.11 These models are
similar to the impulse response functions in the SNMM
approach, bt, because they provide structure for the
treatment-outcome relationship. For instance, suppose
that we were focused on the contemporaneous effect
and the effect of the first two lags and so we had to
model E[Yit(xt − 2:t)] = g(xt − 2:t; β), marginalizing over
further lags and other covariates. If Yit were approxi-
mately continuous, as in the case of the number of ter-
rorist incidents, we might take g to be linear and focus

10 For a detailed introduction to and application ofMSMs in political
science, see Blackwell (2013).
11 These marginal structural models are similar in spirit to transfer
functions the context of pure time-series data (Box, Jenkins, and
Reinsel 2013).
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on the additive effects of each period of treatment:12

g(xt−2:t;β) = β0 + β1xt + β2xt−1 + β3xt−2. (28)

If Yit were binary, we might instead assume g to have a
logistic form:

g(xt−2:t;β) = exp(β0 + β1xt + β2xt−1 + β3xt−2)
1 + exp(β0 + β1xt + β2xt−1 + β3xt−2)

.

(29)

In both of these cases, we have restricted our attention
to the last three periods of treatment and so we can-
not answer questions about longer-term effects with
these models. On the other hand, as we increase the
number of lags under study, the number of parameters
needed to summarize the effects grows and the model
can become unwieldy. Thus, we may consider focus-
ing on the effect of the cumulative number of treated
periods,

∑t
s=1 xis. This allows for the entire history of

treatment to affect the outcome in a structured, low-
dimensional way. Under any of these models, the aver-
age causal effect becomes

τ (x1: t, x′
1: t ) = g(x1: t;β) − g(x′

1: t;β). (30)

Of course, the MSM specification will place restric-
tions on the average causal effects. An MSM that is a
function of only the cumulative treatment, for instance,
implies that τ (x1: t, x′

1: t ) = 0 if x1: t and x′
1: t have the

same number of treated periods, even if their sequence
differs.
How can a researcher estimate an MSM? If one

blindly follows model Equation (28) and regresses Yit
on {Xi, t − 2, Xi, t − 1, Xit} using ordinary least squares,
there will be omitted variable bias in the estimated co-
efficients. But as we have seen above, simply includ-
ing time-varying covariates in these models can lead to
post-treatment bias. Fortunately, the causal parameters
of these models are estimable using an IPTW approach
where we adjust for time-varying covariates using the
propensity score weights, not the outcome model it-
self, avoiding post-treatment bias (Robins,Hernán, and
Brumback 2000). The weighting balances the distri-
bution of the time-varying covariates across values of
the treatments, so that omitting these variables in the
reweighted data produces no omitted variable bias.
To use IPTW, a researcher must develop a model for

the probability of treatment in period t given the vari-
ables that satisfy sequential ignorability. For example,
suppose that sequential ignorability holds conditional
on some conditioning set Vit. If Xit is binary, then we
must obtain a consistent estimate of Pr[Xit = 1 | Vit =
v]. This might be a pooled logit, a generalized addi-
tive model with a flexible functional form, a boosted
regression (McCaffrey,Ridgeway, andMorral 2004), or
a covariate-balancing propensity score (CBPS) model

12 When the treatment is binary and the chosen lag length is short,
we can relax the linearity assumption here by saturating themodeling
with all interactions between the periods under study.

(Imai and Ratkovic 2015). The IPTW approach re-
quires this model to provide consistent estimates of
the conditional predicted probability of treatment.13 In
spite of this requirement, somemethods for propensity
score estimation such as CBPS have good finite-sample
properties in the face of model misspecification (Imai
and Ratkovic 2015).
We use the predicted probabilities from this treat-

mentmodel to construct weights for each country-year.
For example, suppose that Vit included lagged levels of
terrorism,Yi, t − 1, lagged welfare spending,Xi, t − 1, and
a set of time-varying covariates, Zit. Then, for a binary
treatment, we would construct the weights as

ŜWit =
t∏

t=1

P̂r[Xit | Xi,t−1; γ̂ ]

P̂r[Xit | Zit,Yi,t−1,Xi,t−1; α̂]
. (31)

The denominator of each term in the product is the pre-
dicted probability of observing unit i’s observed treat-
ment status in time t (Xit), conditional on the covariates
that satisfy sequential ignorability.14 When we multiply
this over time, it is the probability of seeing this unit’s
treatment history conditional on the past. The numer-
ators here are the marginal probability of the observed
treatment history and stabilize the weights to make
sure they are not too variable which can lead to poor fi-
nite sample performance (Cole and Hernán 2008). For
instance, to construct this numerator we might run a
pooled logistic regression of welfare spending in year
t on welfare spending in year t − 1, omitting any time-
varying covariates or LDVs. While this choice of nu-
merator is not required for consistency of the estimator
(it can be replaced with 1, for instance), it can help to
stabilize weights that are highly variable and thus in-
crease efficiency.
Under these assumptions, the expectation ofYit con-

ditional on Xi, 1: t in the reweighted data converges to
the true MSM:

EŜW [Yit |Xi,1: t = x1: t]
p→ E[Yit (x1: t )]. (32)

Here EŜW [·] is the expectation in the reweighted
data. For example, if we used the linear MSM in
Equation (28), then we can estimate the causal
parameters of MSM by running a weighted least
squares (WLS) regression of the outcome, Yit on
{Xi, t − 2, Xi, t − 1, Xit} with ŜWit as the weights. If
sequential ignorability holds, the coefficients on the
components of Xi, 1: t from this regression will have
a causal interpretation, though they may depend on
the particular modeling choices of the MSM (Robins,
Hernán, and Brumback 2000). Standard errors can

13 This requirement makes it difficult to apply IPTW to fixed-effects
settings with binary treatments since estimating the unit-specific
models would face an incidental parameters problem, at least for a
fixed time window.
14 To ensure the weights are well-defined, the conditional probability
of treatment given the pastmust be bounded away from zero and one.
In the biostatistics literature, this assumption is called positivity and
is similar to the overlap condition in the matching literature.
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be estimated via a block bootstrap of units. Note that,
unlike the ADL and SNMMs, this approach does
not require a model for the relationship between the
time-varying covariates and the outcome.
Finally, when the conditional probability of treat-

ment is close to zero or one, the IPTW approach can
have large and unstable weights, leading to high vari-
ance and sometimes small sample biases (Imai and
Ratkovic 2015). SNMMs, on the other hand, tend to
be more stable in this setting. And while MSMs and
SNMMs can accommodate general types of covariates,
SNMMs also tend to be more stable when the treat-
ment is continuous since weighting by a continuous
density (as would be required with IPTW) is sensitive
to small perturbations in the data (Goetgeluk,Vanstee-
landt, and Goetghebeur 2008).

Modeling Checklist

In this section, we review the key modeling choices re-
quired to implement these methods.

Causal lag length. First, one must choose the lag
length to study.At themost general,one can investigate
the effect of an entire treatment history, but these are
usually too highly dimensional to study without further
assumptions. In MSMs, one can reduce this dimension-
ality by assuming that treatment history only affects the
outcome through the average level of treatment or the
cumulative amount of treatment up to time t. Alterna-
tively, a researcher can focus on the marginal effects of
the last j lags of treatment.

Conditioning set for sequential ignorability. Separate
from the question of what to study is the question
of what covariates to choose so that the question can
be answered. Sequential ignorability is an assump-
tion about conditional independence: welfare spend-
ing is independent of the potential outcomes condi-
tional on past treatment and some set of baseline and
time-varying covariates. Thus, scholars must choose a
set of covariates for each time period that blocks all
confounding for the treatment-outcome relationship—
that is, theremust be no omitted variables after control-
ling for that conditioning set. In the context of welfare
spending, these covariates might include lagged wel-
fare spending (Xi, t − 1) and the lagged terrorist activ-
ity (Yi, t − 1), time-varying economic factors like GDP
growth unemployment (Zit), and baseline characteris-
tics such as region of the world (Zi0). This conditioning
set of variables will be included in the models for the
outcome in the SNMM approach or in the models for
the treatment in the MSM approach.

Modeling treatment or outcome. In all of the meth-
ods described in this paper, the analyst must specify
the functional form of how the treatment history and
outcome relate. In the SNMM approach, this is done
through the blip-down functions while, in the MSM,
this is done through the specification of the MSM it-
self. To actually estimate these models, however, a re-
searcher must additionally model either the relation-
ship between the outcome and the covariates in the

conditioning set (in the ADL or SNMM approaches)
or the relationship between the treatment and the co-
variates in the conditioning set (in theMSMapproach).
Because the quality of the causal estimates depends on
this modeling, we encourage researchers to choose the
approach for which more substantive knowledge can
be mustered to help with the modeling task. For exam-
ple, suppose we were estimating the effect of central
bank interest rate changes on support for incumbent
candidates. It may be easier to model the central bank
interest rate changes if we have detailed information
on central bank deliberations about changes that help
us specify the model. In other cases, there may be more
substantive information about the outcome model.

Functional form assumptions. Finally, in either model
that is chosen, the analyst must correctly specify the
model in the sense that the functional formassumed for
the variables in the conditioning set is correct.This may
require, for instance, taking the natural log of popula-
tion, including a squared term forGDP growth to allow
for a nonlinear relationship, or including an interaction
between two important covariates.This task is common
to all modeling strategies and is not unique to the cur-
rent setting. A researcher can weaken these modeling
assumptions by replacing linear or generalized linear
models with generalized additive models that allow the
functional forms of chosen covariates to be estimated
alongwith the othermodel parameters (Beck and Jack-
man 1998).15

SIMULATION EVIDENCE

To investigate the small sample properties of the var-
ious estimators, we conducted a simulation study of a
TSCS settingwith a treatment,an outcome,and a single
covariate, all time-varying. We describe the simulation
in more detail in the Supplemental Material, but the
main causal relationships in the design are displayed
in Figure 4.Here, the treatment history only has a con-
temporaneous effects—lagged treatments,Xi, 1:t − 1,and
outcomes, Yi, 1:t − 1, have no direct or indirect effect on
current outcomes, Yit, that don’t go through current
treatment, Xit. The treatment-outcome relationship is
confounded due to a time-constant unmeasured con-
founder,Ui, but conditioning on {Yi, t − 1,Zit} can block
this confounding and ensure sequential ignorability for
Xit. Finally, the distribution of {Yit, Xit, Zit} is Marko-
vian and stationary within each unit, which should be
an ideal setting for the ADL approach.
To show how the causal structure can affect the per-

formance of the estimators, we consider two scenarios
that vary the feedback between the treatment and the
time-varying covariate. In the first, we allow for lagged
treatment to affect future covariates so that Xi, t − 1 →

15 A growing literature has developed several approaches to flex-
ibly estimating linear (and sometimes generalized linear) models
that would reduce the modeling burden on the researcher even fur-
ther. These models include sparse additive models (Ravikumar et al.
2009), kernal regularized least squares (Hainmueller and Hazlett
2014), and generalized boosted models (McCaffrey, Ridgeway, and
Morral 2004).
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FIGURE 4. Direct acyclic graph of the
simulation study. Dotted thick line represents
the key causal quantity varied in the
simulations, whether past treatment affects
future covariates. Dashed thin lines represent
unmeasured confounding.

· · ·

· · ·

· · ·

· · ·

Xt−1

Zt−1 Yt−1

Xt

Zt Yt

U

Zit, and, in the second, we close this path. These two
scenarios represent when the time-varying confounder,
Zit, is post-treatment to lagged treatment and when
it is not. Unfortunately, when Zit is post-treatment,
conditioning on it will induce post-treatment bias for
the effect of lagged treatment, because conditioning
will open a back-door path from Zit through Ui to
Yit. However, we must condition on Zit to remove the
omitted variable bias for contemporaneous treatment.
This is the dilemma that traditional TSCS models like
the ADL model cannot solve, because a single model
cannot simultaneously control for Zit and not control
for Zit.
We generate data from this model varying numbers

of time periods and units and focus on the lagged effect
of treatment,E[Yit(1, 0) − Yit(0, 0)], which in this case
is zero. We compared several methods for estimating
this quantity: (1) an ADL as above with estimate
α̂β̂1 + β̂2; (2) an SNMM sequential g-estimation with
additive linear models for the outcome for each lag; (3)
a linear, additive MSM with g(xt − 1, xt; β) = β0 + β1xt
+ β2xt − 1; and (4) a raw model with no controls that
only includes Xit and Xi, t − 1.16 For reference, we also
compare these estimators to the infeasible estimator
that simply takes the sample average of Yit(0, 1) −
Yit(0, 0) across all unit-periods.
Figure 5 shows the results of these simulations.

The left column shows the root mean squared error
(RMSE) of the various estimators when the time-
varying confounder, Zit, is affected by past treatment.
While the SNMM and MSM approaches have roughly
similar estimation error across different sample sizes,
they vastly outperform the ADL approach. The high
RMSE of the ADL approach that persists across sam-
ple sizes is due to a large degree of post-treatment bias
on the coefficient on Xi, t − 1 due to conditioning on Zit.
This bias propagates to the ADL computation of the
total effect of lagged treatment. The ADL model even
performs worse than a model that has significant omit-
ted variable bias due to excluding all time-varying co-

16 For each of these approaches except the last, we include the rele-
vant covariates, correctly specified in terms of their functional form.
In the SupplementalMaterial,weweaken usemisspecified functional
forms for all models and the results are qualitatively similar.

variates from the model (labelled Raw in the figure).
These results hold even though the DGP here is sta-
tionary and the sample size and the number of time
periods are small and similar in size,meaning that they
are unlikely to depend on a “large-N, small-T” setting.
Furthermore, in the Supplemental Material, we show
that the same substantive results hold when we fix the
value of N and let T increase to as high as 500.
The right column of Figure 5 shows the results when

the time-varying confounder is not affected by treat-
ment. Here, the ADL has lower estimation error than
any of the other methods, slightly beating out SNMM.
The ADL model performs well in this setting since the
LDV is the only variable affected by past treatment.As
we show in the Supplemental Material, in this case the
ADL model is essentially a correctly specified SNMM.
This correct specification breaks down when time-
varying covariates are affected by treatment.Given the
robustness of SNMM to this feature of the causal pro-
cess and given the similarity in modeling choices for
the SNMM and ADL approaches, we recommend us-
ing the SNMM as a working replacement for the ADL
model whenever lagged effects are of interest.17

EMPIRICAL ILLUSTRATION: WELFARE
SPENDING AND TERRORISM

Burgoon (2006) studied the effect of domestic welfare
spending on terrorist activity within countries and used
TSCS data to show that increasing spending leads to
lower levels of terrorist activity within a country. But
how does the timing of this spending matter? Can we
assess the effects of lagged government spending on fu-
ture values of terrorist activity? We apply the models
of this paper to show how they differ from traditional
approaches to answering these questions.
To do this, we closely follow the specification of

Burgoon (2006). The dependent variable is the num-
ber of transnational terrorist incidents occurring in a
country, omitting purely domestic terrorism such as the
Oklahoma City bombing in the United States. Bur-
goon (2006) uses a negative binomial regression model
to estimate the effect of contemporaneous spending,
whereas we use a linear model. To account for overdis-
persion, we use the square root of the number of
transnational terrorist incidents as our dependent vari-
able. This approach recovers very similar substantive
results as that of Burgoon (2006).

A first step for any of the methods we describe in the
paper is to choose a conditioning set of covariates that
can satisfy sequential ignorability. Given that Burgoon
(2006) interprets the effect of spending in a causal fash-
ion, we follow this selection-on-observables approach
and assume that the control variables in the paper’s
models are sufficient to satisfy sequential ignorabil-
ity. These include a set of regional and year dummies
as baseline covariates and the following time-varying
covariates: an LDV, left-party control of government,

17 The ADL approach is also biased when omittingZit, but including
Yi, t − 1 (results not reported here). There is no permutation of con-
trols that eliminate the bias of ADL when Zit is affected by Xi, t − 1.
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FIGURE 5. Simulation results when the time-varying confounder is post-treatment (left column)
and when the time-varying confounder is not post-treatment (right column). Points represent the
root mean squared error (RMSE) of each estimator for the lagged effect of treatment.

Polity score and its lag, log population, a measure of
government capability,whether the country is in a con-
flict,and the amount of trade logged. In this context, the
sequential ignorability assumption states that welfare
spending is exogenous with respect to terrorism condi-
tional on previous terrorist incidents, the time-varying
covariates, and region and year fixed effects. Note that
if there were unmeasured confounding beyond these
controls, the estimates of causal effects in this applica-
tion could be biased. One could, however, perform a
sensitivity analysis to determine how much of the esti-
mated effect disappears under various departures from
sequential ignorability (Blackwell 2014).
To begin,we compare how the ADL and the SNMM

approaches differ in terms of their estimates in this

context. For the SNMM, we assume each lag has a
simple additive effect as in Equation (19), γ jxt − j,
with no interactions between treatment and lagged
treatment.For theADLmodel,we use the specification
described above while including a lag of treatment
in the model to allow for some flexibility in the lag
structure. We use the formulas for calculating lagged
effects from an ADL model, as described above. This
ADL regression is also the first-stage regression for our
sequential g-estimation approach, since under sequen-
tial ignorability, it can estimate the CET.We focus on a
lag length of four years for comparing the SNMM and
ADL approaches. Finally, we use the consistent and
cluster-robust variance estimator in the Supplemental
Material for the SNMM and a standard cluster-robust
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FIGURE 6. Left: Estimated effect of government spending on the terrorist incidents at various
lags, along with 95% confidence intervals. Right: Implied step response function at various lags.
Data from Burgoon (2006).
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variance estimator for the ADL, with both clustered
on country.
Figure 6 shows the estimated contemporaneous and

lagged effect of welfare spending on terrorist activity.
For instance, a one-year lag has γ̂1 for the SNMM, es-
timated from a regression of the blipped-down out-
come on lagged treatment and its conditioning set, and
α̂β̂1 + β̂2 for the ADL approach. The two approaches
are equivalent for the contemporaneous effect but dif-
fer in their estimates of the lagged effects. Both meth-
ods show a significant and negative effect on lagged
spending,but the coefficient from the SNMMapproach
is about 60% larger in magnitude than the ADL ap-
proach. These differences continue with the lags—the
effect of the second and third lags are 60% greater in
the ADL approach,whereas the effect of the fourth lag
is almost double the magnitude for SNMMs.These dif-
ferences lead to large differences in the estimated cu-
mulative effect of the SRF at the end of four years,with
the SNMM estimate almost 40% larger in magnitude.
Why do these differences between the SNMM and

the ADL occur? Differences in assumptions about
functional forms of the covariates are ruled out since
the SNMM and ADL models handle these covariates
in the exact same way. Furthermore, each of the two
approaches rely on a similar assumption about no un-
measured confounding. We believe that the difference
between these two approaches is in the post-treatment
bias induced by conditioning on the time-varying con-
trols in the ADL approach. In this case, it is highly un-
likely that the time-varying covariates are exogenous
to welfare spending. For example, one time-varying co-
variate is the proportion of the government held by
left-wing parties. It would be unreasonable to assume
that past values of welfare spending are unrelated to
future electoral prospects of leftist parties, as would

have to be the case for the ADLmodel to be correct in
this case. Indeed, if we regress proportion of the gov-
ernment controlled by leftist parties on lagged welfare
spending and the conditioning set for lagged spending,
there is a statistically significant and positive coefficient
on lagged welfare spending. Thus, it does appear that
post-treatment bias could loom large in the estimated
effects of the ADL approach.
In the above analysis, we focused on a lag length of

four, even though the data run from 1978 until 1995.
Can we learn more about the effects of the history of
welfare spending on terrorism? To do this, we turn to
MSMs, where we can develop models that summarize
the effects of the entire treatment history in low dimen-
sions. We have seen that lagged welfare spending ap-
pears to have an effect, and so we may want to know
if having a long history of spending also decreases inci-
dences of terrorism. To implement this, we first create
a binary measure of welfare spending, X ∗

it , that is one
if the country-year had spending (as a function of its
GDP) above the global average and zero if the spend-
ing was below the average.We then specify the follow-
ing MSM:

E[Yit (x∗
i,1: t )] = β0 + β1x∗

it + β2

(
t−1∑
s=1

x∗
is

)
. (33)

Here, the mean of the potential outcomes is a func-
tion of the contemporaneous level of spending and
the number of lagged periods that have above-average
spending. We focus on this simple model, though it is
possible to include further lags or interactions between
different parts of the history.
We use three approaches to estimate the pa-

rameters of the MSM. First, we take the standard
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FIGURE 7. Estimated effect of the cumulative
number of high welfare spending years
through t − 1 on terrorism incidents in year t,
fixing welfare spending in year t. The three
approaches are (a) when controlling for
time-varying covariates, (b) when omitting
those variables, and (c) using IPTW. Lines are
95% confidence intervals based on a block
bootstrap with 1,000 replications.

-0.10 -0.05 0.00 0.05 0.10

Effect of Cumulative Lagged Welfare Spending on Terrorism

(a) Control for TVCs

(b) Omit TVCs

(c) IPTW

ADL-like approach of including the entire set of base-
line and time-varying covariates in a regression model.
Second,we run the same regression with only the base-
line covariates.As we have discussed above, the first of
these approaches is likely to produce post-treatment
bias and the second is likely to produce omitted vari-
able bias. We compare these to a third approach that
uses the IPTW method described above. To create the
weights, we fit a logistic regression of the binary treat-
ment on the first two lags of treatment, the cumula-
tive sum of treatment through t − 3, and the baseline
and time-varying covariates described above. We use
predicted probabilities from this model to create the
weights as in Equation (31), which we use in WLS re-
gression of the above MSM.We use a block bootstrap
to estimate standard errors and trim the weights at ten
to help guard against highly unstable weights (Cole and
Hernán 2008).

Figure 7 shows the results of these models. Both of
the traditional approaches estimate a relatively small
negative effect of lagged welfare spending on terror-
ism. The IPTW approach, on the other hand, shows
a much larger negative and statistically significant im-
pact, which is consistent with the results of the analy-
sis from both the SNMM and ADL models above. It
is interesting to note that the implied post-treatment
and omitted variable biases in the first and second

models, respectively, are in the same direction. This
agreement tempts us to confirm the approximate va-
lidity of their results; after all, a natural intuition would
be that the true effect must be between these two es-
timates. Unfortunately, this intuition, while natural, is
incorrect. The biases of both approaches can be in the
same direction, negating their usefulness as bounds
(Blackwell 2013). Finally, we note that the rather large
increase of the standard errors in the IPTWapproach is
driven in part by large weights due to predicted proba-
bilities being close to zero or one.This can happen with
slowly changing treatments and is one reason to prefer
an SNMM approach in this setting.

CONCLUSIONS, DRAWBACKS,
AND FUTURE RESEARCH

Repeated measurements over time of countries, peo-
ple, or governments expand the scope of causal infer-
ence methods. TSCS data allow us to estimate both
contemporaneous effects and the effects of more dis-
tant lags of treatment. But with an expanded scope
comes complications.The usual TSCS regressionmeth-
ods break down for lagged effects. Nevertheless, we
have shown that two approaches developed in bio-
statistics can overcome these difficulties and recover
effect estimates across a wide variety of settings.
Both SNMMs andMSMs have their own drawbacks,

of course. Even though sequential ignorability non-
parametrically identifies any average causal effect of a
treatment history, both approaches will almost always
depend on modeling to estimate these effects since the
covariates needed to justify such an assumption will be
highly dimensional.While these modeling assumptions
can be weakened to some extent through generalized
additive models or other semiparametric techniques,
there will always be some degree of model dependence
that follows from these approaches. Another problem
is that sequential ignorability is a strong, untestable as-
sumption that might be violated.One approach to mit-
igating this problem is to conduct a formal sensitivity
analysis using the methods of Blackwell (2014) or rely-
ing on the bias formulas presented in Acharya, Black-
well, and Sen (2016).These sensitivity analyses can give
researchers a sense of how reliant their results are on
sequential ignorability holding. Finally, it is important
to note that the empirical setting may determine which
of these two approaches is a better fit, as SNMMs are
more suited to modeling the outcome and MSMs are
more suited to modeling the treatment process.
In this paper, we focused on the usual sequential

ignorability assumption as commonly invoked in epi-
demiology. Many TSCS applications in political sci-
ence rely on a “fixed effects” assumption that there
is time-constant, unmeasured heterogeneity in units.
Linear models can easily handle these types of as-
sumptions, though nonlinear fixed effects models pose
greater difficulties.Estimating the above causal quanti-
ties with thesemodels, however, remains elusive except
under strong assumptions like baseline randomization
(Chernozhukov et al. 2013; Sobel 2012). A valuable

1081

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
03

05
54

18
00

03
57

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0003055418000357


Matthew Blackwell and Adam N.Glynn

direction for future work would be to develop fixed ef-
fects methods that could estimate causal effects under
a within-unit version of sequential ignorability.

SUPPLEMENTARY MATERIAL

Replication materials can be found on Dataverse at:
https://doi.org/10.7910/DVN/SFBX6Z.
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